Análisis Lagrangiano de oleaje alrededor de arrecifes de coral

dc.contributor.advisorOsorio Arias, Andrés Fernando
dc.contributor.advisorHernandez-Carrasco, Ismael
dc.contributor.authorRamírez Monsalve, Juan Pablo
dc.contributor.orcidHernández Carrasco, Ismael [0000-0002-4574-0198]spa
dc.contributor.researchgroupOceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacionalspa
dc.date.accessioned2023-05-25T16:39:58Z
dc.date.available2023-05-25T16:39:58Z
dc.date.issued2023-05-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDebido a su inherente naturaleza turbulenta, la dinámica de los océanos es muy compleja. Podemos modelar los principales patrones de transporte de la circulación oceánica en meso- y submeso-escalas, O (0,1-100 km, horas-meses) utilizando enfoques de sistemas dinámicos, pero la riqueza extrema en microescalas O (0,001-10 m, segundos) y sus patrones de circulación, hace que la evaluación de los fenómenos de transporte oceánico sea una tarea extraordinariamente complicada. En la microescala podemos encontrar ecosistemas de arrecifes coralinos, que en los últimos años han cobrado notoria importancia por los efectos que pueden generar sobre la hidrodinámica del flujo incidente, en áreas que van desde la biología hasta la ingeniería debido a su papel como estructuras de protección costera. A pesar de los estudios realizados para comprender la hidrodinámica en torno a estos ecosistemas, aún no existe una idea clara de cómo los diferentes tipos de geometría de las colonias de coral condicionan los patrones de transporte que se desarrollan en el flujo. Uno de los tipos de técnicas que más contribuye a la comprensión de los patrones de transporte y a la descripción de la topología del flujo es la conocida con el nombre de Estructuras Coherentes Lagrangianas (LCS por sus siglas en inglés), que es una generalización de las variedades inestables y estables de puntos hiperbólicos en sistemas dependientes del tiempo. En esta tesis evaluamos la viabilidad de utilizar el concepto LCS para describir las propiedades de transporte y mezcla en flujos altamente fluctuantes a microescala alrededor de geometrías de coral. En particular, estudiamos los patrones de transporte inducidos por la interacción entre una ola solitaria y objetos sumergidos de diferente geometría, que se aproximan a la geometría presente en los corales. Usamos datos de velocidad de las salidas del modelo RANS-VOF. Los escenarios analizados consisten en la variación del número de Reynolds, la relación entre la altura de la ola, H, y la profundidad del agua, h, con la altura del coral, L (H/L y h/L , respectivamente) y la forma de éste. Los patrones de transporte se estudian mediante el cálculo de estructuras coherentes lagrangianas con la implementación del método del exponente de Lyapunov de tiempo finito (FTLE por sus siglas en inglés), y se comparan con el campo de vorticidad y el campo de criterio Q (Okubo-Weiss). Encontramos que el campo de vorticidad tiene una mejor correlación con el campo FTLE (geometría LCS) que con el campo Q, lo que sugiere que la topología de flujo está más controlada por el proceso de vorticidad obtenido por un flujo cortante que por los mismos vórtices(regiones de rotación pura). Para los corales representados por geometrías rectangulares, las LCS tienen forma de espiral, se forman sobre y en la parte posterior del coral. Ambas LCS permanecen adheridas al objeto sumergido una vez que h/L y H/L comienzan a disminuir. Para los corales con geometrías triangulares, la geometría de las LCS se caracteriza por una doble espiral que permanece unida a la cresta del coral. La doble espiral es generada por un anillo vorticial(vortex ring) que aparece cuando la ola pasa sobre el coral. Cuando la altura del coral comienza a ser comparable con la profundidad del agua, los patrones LCS descritos anteriormente comienzan a deformarse debido a la falta de profundidad del agua para evolucionar, por lo tanto, para las geometrías triangulares y rectangulares, tenemos un proceso de ruptura de olas, donde parece que el LCS actúa como un "falso fondo'' generando inestabilidades en la ola incidente que inducen la ruptura de la misma. Las LCS más cercanas a la superficie libre también parecen controlar la curvatura de la misma después de que se produzcan las roturas. Las LCS para el coral triangular presentan valores mayores del campo FTLE que el rectangular, lo que sugiere que los corales que tienen una forma aproximadamente triangular aumentan la mezcla del flujo con un gran impacto en la dispersión del material transportado (es decir, nutrientes, oxígeno, etc.), respecto a las geometrías rectangulares. (Texto tomado de la fuente)spa
dc.description.abstractOwing to its inherent turbulent nature, ocean dynamics is highly complex. We can model the main transport patterns of the ocean circulation at meso- and submeso-scales, O(0.1-100 km, hours-months) using dynamical systems approaches, but the extreme richness at microscales O(0.001-10m, seconds) circulation patterns, makes the assessment of water pathways and the study of oceanic transport phenomena an extraordinarily complicated task. At microscales we can find coral reef ecosystems, which in recent years have gained notorious importance regarding the effects they can generate on the hydrodynamics of the incident flow, in areas from biology to engineering due to their role as structures of coastal protection. Despite the studies carried out to understand the hydrodynamics around these ecosystems, there is still not a clear idea of how the different types of geometry of the coral colonies condition the transport patterns that develop in the flow. One type of techniques contributing most to the understanding of transport patterns and the description of flow’s topology is the one known under the name of Lagrangian Coherent Structures, which is a generalization of the unstable and stable manifolds of hyperbolic points in time independent systems to finite-time and time-dependent systems. In this thesis we evaluate the feasibility of using the LCS concept to describe the transport and mixing properties in highly fluctuating flows at microscales around coral geometries. In particular, we study the transport patterns induced by the interaction between a solitary wave with submerged objects of different geometry, that approximate the geometry present in corals. We use velocity data from RANS-VOF model outputs. The analized scenarios consist in variation of Reynolds number, the ratio between the wave height, H, and the water depth, h, with the coral heigth, L (H/L and h/L, respectively) and shape. The transport patterns are studied through the computation of Lagrangian coherent structures with the implementation of the finite-time Lyapunov exponent (FTLE) method, and compared with the vorticity field and the Q criterion field. We found that vorticity field has a better correlation with the FTLE field (LCS geometry) than the Q field, suggesting that the flow topology is controled more for vorticity process obtained by a shear flow than for vortices itself (pure rotation regions). For corals represented by rectangular geometries, the LCS have an spiral form, and are formed above and at the lee side of the coral. Both LCS remain attached to the submerged object once h/L and H/L starts to decrease. For the corals with triangular geometries, the LCS geometry is characterized by a double spiral that remains attached to coral’s crest. The double spiral is generated by a vortex ring that appears when the wave pass over the coral. When coral’s height starts to be comparable to the water depth, the LCS patterns described above, start to be deformed due to the lack of water depth to evolve, so for both triangular and rectangular geometries, we have a wave breaking process, where it seems that the LCS acts like a “fake bottom” generating instabilities in the incident wave that induce the break of it. The closest LCS ridges to the free surface also appears to control the curvature of it after the breaks takes place. The LCS for the triangular coral presents larger values of the FTLE field than the rectangular one, suggesting that corals that have an approximately triangular shape increase the flow mixing processes with a large impact on the spreading of the transported material (i.e nutrients, oxygen, etc), with respect to the rectangular ones.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.methodsSe usa la metodología de los FTLE para obtener los campos de las estructuras coherentes lagrangianas (LCS) para el estudio de patrones de mezcla,transporte y rotura del oleaje al interacturar con un obstáculo sumergido (coral)spa
dc.description.researchareaInteracción flujo estructura en ecosistemas marinosspa
dc.format.extentxiii, 69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83869
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAndersson, A. J. and Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual review of marine science, 5:321–348.spa
dc.relation.referencesAndono, P. N., Yuniarno, E. M., Hariadi, M., and Venus, V. (2012). 3d reconstruction of under water coral reef images using low cost multi-view cameras. In 2012 International Conference on Multimedia Computing and Systems, pages 803–808. IEEE.spa
dc.relation.referencesArtale, V., Boffetta, G., Celani, A., Cencini, M., and Vulpiani, A. (1997). Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Physics of Fluids, 9(11):3162–3171.spa
dc.relation.referencesBaldock, T., Golshani, A., Callaghan, D., Saunders, M., and Mumby, P. (2014). Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine pollution bulletin, 83(1):155–164.spa
dc.relation.referencesBasco, D. R. (1985). A qualitative description of wave breaking. Journal of waterway, port, coastal, and ocean engineering, 111(2):171–188.spa
dc.relation.referencesBeall, C., Lawrence, B. J., Ila, V., and Dellaert, F. (2010). 3d reconstruction of underwater structures. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4418–4423. IEEE.spa
dc.relation.referencesBeron-Vera, F. J., Olascoaga, M. J., and Goni, G. (2008). Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophysical Research Letters, 35(12).spa
dc.relation.referencesBilger, R. and Atkinson, M. (1992). Anomalous mass transfer of phosphate on coral reef flats. Limnology and Oceanography, 37(2):261–272.spa
dc.relation.referencesBrown, B. E. and Cossins, A. R. (2011). The potential for temperature acclimatisation of reef corals in the face of climate change. In Coral reefs: An ecosystem in transition, pages 421–433. Springer.spa
dc.relation.referencesCáceres-Euse, A., Toro-Botero, F., Orfila, A., Hern´andez-Carrasco, I., Osorio, A., and Wyssmann, M. (2022). Backwards wave breaking by flow separation vortices under solitary waves. Journal of Fluids and Structures, 115:103779spa
dc.relation.referencesCáceres-Euse, A., Toro-Botero, F., Orfila, A., and Osorio, A. (2018). Vortex formation in wave-submerged structure interaction. Ocean Engineering, 166:47–63.spa
dc.relation.referencesChamberlain Jr, J. A. and Graus, R. R. (1975). Water flow and hydromechanical adaptations of branched reef corals. Bulletin of Marine Science, 25(1):112–125.spa
dc.relation.referencesChindapol, N., Kaandorp, J. A., Cronemberger, C., Mass, T., and Genin, A. (2013). Modelling growth and form of the scleractinian coral pocillopora verrucosa and the influence of hydrodynamicsspa
dc.relation.referencesCinner, J. E., Huchery, C., Darling, E. S., Humphries, A. T., Graham, N. A., Hicks, C. C., Marshall, N., and McClanahan, T. R. (2013). Evaluating social and ecological vulnerability of coral reef fisheries to climate change.spa
dc.relation.referencesCinner, J. E., McClanahan, T. R., Graham, N. A., Daw, T. M., Maina, J., Stead, S. M., Wamukota, A., Brown, K., and Bodin, O. (2012). Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environmental Change, 22(1):12–20.spa
dc.relation.referencesCooker, M., Peregrine, D., Vidal, C., and Dold, J. (1990). The interaction between a solitary wave and a submerged semicircular cylinder. Journal of Fluid Mechanics, 215:1–22.spa
dc.relation.referencesCresswell, A. K., Thomson, D. P., Haywood, M. D., and Renton, M. (2020). Frequent hydrodynamic disturbances decrease the morphological diversity and structural complexity of 3d simulated coral communities. Coral Reefs, 39(4):1147–1161.spa
dc.relation.referencesDabiri, J. O. and Gharib, M. (2004). Fluid entrainment by isolated vortex rings. Journal of fluid mechanics, 511:311–331spa
dc.relation.referencesDennison, W. C. and Barnes, D. J. (1988). Effect of water motion on coral photosynthesis and calcification. Journal of Experimental Marine Biology and Ecology, 115(1):67–77.spa
dc.relation.referencesDoropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O., and Mumby, P. J. (2012). Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology letters, 15(4):338–346.spa
dc.relation.referencesDuvall, M. S., Rosman, J. H., and Hench, J. L. (2020). Estimating geometric properties of coral reef topography using obstacle-and surface-based approaches. Journal of Geophysical Research: Oceans, 125(6).spa
dc.relation.referencesEdmunds, P. J., Carpenter, R. C., and Comeau, S. (2013). Understanding the threats of ocean acidification to coral reefs. Oceanography, 26(3):149–152.spa
dc.relation.referencesElhma¨ıdi, D., Provenzale, A., and Babiano, A. (1993). Elementary topology of two- dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. Journal of Fluid Mechanics, 257:533–558.spa
dc.relation.referencesFabricius, K. E., Genin, A., and Benayahu, Y. (1995). Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnology and Oceanography, 40(7):1290–1301.spa
dc.relation.referencesFukunaga, A. and Burns, J. H. (2020). Metrics of coral reef structural complexity extracted from 3d mesh models and digital elevation models. Remote Sensing, 12(17):2676.spa
dc.relation.referencesGourlay, M. (1996). Wave set-up on coral reefs. 2. set-up on reefs with various profiles. Coastal Engineering, 28(1-4):17–55.spa
dc.relation.referencesGracia, A., Rangel-Buitrago, N., Oakley, J. A., and Williams, A. (2018). Use of ecosystems in coastal erosion management. Ocean & coastal management, 156:277–289.spa
dc.relation.referencesGraham, N. and Nash, K. (2013). The importance of structural complexity in coral reef ecosystems. Coral reefs, 32(2):315–326spa
dc.relation.referencesGrilli, S. T., Losada, M. A., and Martin, F. (1994). Characteristics of solitary wave breaking induced by breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(1):74–92.spa
dc.relation.referencesHadjighasem, A. and Haller, G. (2016). Geodesic transport barriers in jupiter’s atmosphere: A video-based analysis. Siam Review, 58(1):69–89.spa
dc.relation.referencesHaller, G. (2005). An objective definition of a vortex. Journal of fluid mechanics, 525:1–26.spa
dc.relation.referencesHaller, G. (2015). Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47:137–162spa
dc.relation.referencesHaller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795:136–173.spa
dc.relation.referencesHaller, G. and Yuan, G. (2000). Lagrangian coherent structures and mixing in two- dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4):352–370.spa
dc.relation.referencesHarris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., and Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances.spa
dc.relation.referencesHarrison, C. S. and Glatzmaier, G. A. (2012). Lagrangian coherent structures in the california current system–sensitivities and limitations. Geophysical & Astrophysical Fluid Dynamics, 106(1):22–44.spa
dc.relation.referencesHearn, C. (2001). Introduction to the special issue of coral reefs on coral reef hydrodynamics.spa
dc.relation.referencesHearn, C. J. (1999). Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. Journal of Geophysical Research: Oceans, 104(C12):30007–30019.spa
dc.relation.referencesHearn, C. J. (2011). Perspectives in coral reef hydrodynamics. Coral Reefs, 30(1):1.spa
dc.relation.referencesHernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2011). How reliable are finite-size lyapunov exponents for the assessment of ocean dynamics? Ocean Modelling, 36(3-4):208–218.spa
dc.relation.referencesHernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2012). Seasonal and regional characterization of horizontal stirring in the global ocean. Journal of Geophysical Research: Oceans, 117(C10).spa
dc.relation.referencesHoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and freshwater research, 50(8):839–866.spa
dc.relation.referencesHossain, M. M. and Staples, A. E. (2020). Mass transport and turbulent statistics within two branching coral colonies. Fluids, 5(3):153.spa
dc.relation.referencesHuang, C.-J. and Dong, C.-M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engineering, 43(3-4):265–286.spa
dc.relation.referencesHuang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., and McCabe, R. M. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research: Oceans, 117(C3).spa
dc.relation.referencesHuhn, F., von Kameke, A., P´erez-Mu˜nuzuri, V., Olascoaga, M. J., and Beron-Vera, F. J. (2012). The impact of advective transport by the south indian ocean countercurrent on the madagascar plankton bloom. Geophysical research letters, 39(6).spa
dc.relation.referencesIafrati, A. (2009). Numerical study of the effects of the breaking intensity on wave breaking flows. Journal of Fluid Mechanics, 622:371–411.spa
dc.relation.referencesJakobsson, J. (2012). Investigation of Lagrangian coherent structures-to understand and identify turbulence. Chalmers University of Technology, Gothenburg, Sweden.spa
dc.relation.referencesKrieger, M. S., Sinai, S., and Nowak, M. A. (2020). Turbulent coherent structures and early life below the kolmogorov scale. Nature Communications, 11(1):1–14.spa
dc.relation.referencesKrishnan, P., Roy, S. D., George, G., Srivastava, R., Anand, A., Murugesan, S., Kaliya- moorthy, M., Vikas, N., and Soundararajan, R. (2011). Elevated sea surface temperature during may 2010 induces mass bleaching of corals in the Andaman. Current Science, pages 111–117.spa
dc.relation.referencesLin, M., Zheng, Y., and Xu, M. (2020). Application of Lagrangian coherent structures to coulomb formation on elliptic orbit. Nonlinear Dynamics, 102(4):2649–2668.spa
dc.relation.referencesLin, M.-Y. and Huang, L.-H. (2010). Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave. Journal of Fluid Mechanics, 651:503–518.spa
dc.relation.referencesLugo-Fernández, A., Roberts, H., Wiseman Jr, W., and Carter, B. (1998). Water level and currents of tidal and infragravity periods at tague reef, st. croix (usvi). Coral Reefs, 17(4):343–349.spa
dc.relation.referencesMass, T., Genin, A., Shavit, U., Grinstein, M., and Tchernov, D. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences, 107(6):2527–2531.spa
dc.relation.referencesMaxworthy, T. (1972). The structure and stability of vortex rings. Journal of Fluid Mechanics, 51(1):15–32spa
dc.relation.referencesMcIntyre, A. (2010). Life in the world’s oceans: Diversity, distribution, and abundance. John Wiley & Sons.spa
dc.relation.referencesMendoza, C. and Mancho, A. M. (2012). The Lagrangian description of aperiodic flows: a case study of the kuroshio current. Nonlinear Processes in Geophysics, 19(4):449–472spa
dc.relation.referencesMezié, I., Loire, S., Fonoberov, V. A., and Hogan, P. (2010). A new mixing diagnostic and gulf oil spill movement. Science, 330(6003):486–489.spa
dc.relation.referencesMichini, M. (2014). Tracking of Manifolds and Coherent Structures in Flows: Simulations and Experiments. PhD thesis, Drexel University.spa
dc.relation.referencesMonismith, S. G. (2007). Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39:37–55.spa
dc.relation.referencesMonismith, S. G., Rogers, J. S., Koweek, D., and Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10):4063–4071.spa
dc.relation.referencesNilsson, G. E., Ostlund-Nilsson, S., and Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(4):389–393.spa
dc.relation.referencesOkubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In Deep sea research and oceanographic abstracts, volume 17, pages 445–454. Elsevier.spa
dc.relation.referencesOsorio-Cano, J. D., Osorio, A., and Peláez-Zapata, D. (2019a). Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering, 130:282–295.spa
dc.relation.referencesOsorio-Cano, J. D., Osorio, A. F., Alcérreca-Huerta, J. C., and Oumeraci, H. (2019b). Drag and inertia forces on a branched coral colony of acropora palmata. Journal of Fluids and Structures, 88:31–47.spa
dc.relation.referencesPatterson, M. R., Sebens, K. P., and Olson, R. R. (1991). In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 36(5):936–948.spa
dc.relation.referencesPeacock, T. and Haller, G. (2013). Lagrangian coherent structures: The hidden skeleton of fluid flows. PhT, 66(2):41.spa
dc.relation.referencesPeng, J. and Dabiri, J. (2009). Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. Journal of Fluid Mechanics, 623:75–84.spa
dc.relation.referencesPratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., and Graham, N. A. (2011). Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity, 3(3):424–452.spa
dc.relation.referencesPutnam, H. M. and Edmunds, P. J. (2011). The physiological response of reef corals to diel fluctuations in seawater temperature. Journal of Experimental Marine Biology and Ecology, 396(2):216–223.spa
dc.relation.referencesQuataert, E., Storlazzi, C., Van Rooijen, A., Cheriton, O., and Van Dongeren, A. (2015). The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters, 42(15):6407–6415.spa
dc.relation.referencesReidenbach, M. A., Koseff, J. R., Monismith, S. G., Steinbuckc, J. V., and Genin, A. (2006). The effects of waves and morphology on mass transfer within branched reef corals. Limnology and Oceanography, 51(2):1134–1141.spa
dc.relation.referencesRoberts, H. and Murray, S. (1975). Physical processes in a fringing reef system. journal of Marine Research, 32(2):233spa
dc.relation.referencesRogers, A., Blanchard, J. L., and Mumby, P. J. (2014). Vulnerability of coral reef fisheries to a loss of structural complexity. Current Biology, 24(9):1000–1005.spa
dc.relation.referencesSamson, J. E., Miller, L. A., Ray, D., Holzman, R., Shavit, U., and Khatri, S. (2019). A novel mechanism of mixing by pulsing corals. Journal of Experimental Biology, 222(15)spa
dc.relation.referencesSapsis, T., Peng, J., and Haller, G. (2011). Instabilities on prey dynamics in jellyfish feeding. Bulletin of mathematical biology, 73(8):1841–1856.spa
dc.relation.referencesScales, K. L., Hazen, E. L., Jacox, M. G., Castruccio, F., Maxwell, S. M., Lewison, R. L., and Bograd, S. J. (2018). Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences, 115(28):7362–7367.spa
dc.relation.referencesSchoepf, V., Stat, M., Falter, J. L., and McCulloch, M. T. (2015). Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific reports, 5(1):1–14.spa
dc.relation.referencesSchott, F. A. and McCreary Jr, J. P. (2001). The monsoon circulation of the indian ocean. Progress in Oceanography, 51(1):1–123.spa
dc.relation.referencesSebens, K. P., Witting, J., and Helmuth, B. (1997). Effects of water flow and branch spacing on particle capture by the reef coral madracis mirabilis (duchassaing and michelotti). Journal of experimental marine biology and ecology, 211(1):1–28.spa
dc.relation.referencesShadden, S. C., Dabiri, J. O., and Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of fluids, 18(4):047105.spa
dc.relation.referencesShadden, S. C., Lekien, F., and Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3-4):271–304.spa
dc.relation.referencesShaked, Y., Lazar, B., Marco, S., Stein, M., Tchernov, D., and Agnon, A. (2005). Evolution of fringing reefs: space and time constraints from the gulf of aqaba. Coral Reefs, 24:165–172.spa
dc.relation.referencesSheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., and Payet, R. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: examples from the seychelles. Estuarine, Coastal and Shelf Science, 64(2-3):223–234.spa
dc.relation.referencesStocking, J. B., Laforsch, C., Sigl, R., and Reidenbach, M. A. (2018). The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. Journal of the Royal Society Interface, 15(149):20180448.spa
dc.relation.referencesVogel, J. and Eaton, J. (1985). Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. Journal of Heat Transfer, 107(4):922–929.spa
dc.relation.referencesWallcraft, A., Metzger, E., and Carroll, S. (2009). Software design description for the hybrid coordinate ocean model (hycom), version 2.2. Technical report, Naval Research Lab Stennis Space Center Ms Oceanography Div.spa
dc.relation.referencesWang, J., He, G., You, R., and Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean engineering, 158:1–14.spa
dc.relation.referencesWeiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3):273–294.spa
dc.relation.referencesWild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J.-C., et al. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater research, 62(2):205–215.spa
dc.relation.referencesWilson, S., Fisher, R., Pratchett, M. S., Graham, N., Dulvy, N., Turner, R., Cakacaka, A., and Polunin, N. V. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20(2):442–451.spa
dc.relation.referencesWolanski, E. (1994). Physical oceanographic processes of the great barrier reef. CRC Press.spa
dc.relation.referencesWu, Y.-T. and Hsiao, S.-C. (2013). Propagation of solitary waves over a submerged permeable breakwater. Coastal Engineering, 81:1–18.spa
dc.relation.referencesYoung, G., Dey, S., Rogers, A., and Exton, D. (2017). Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3d models.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembEcología de arrecifes madrepóricosspa
dc.subject.lembCoral reef ecologyeng
dc.subject.lembEcología de arrecifesspa
dc.subject.lembReef ecologyeng
dc.subject.proposalCoralesspa
dc.subject.proposalCoralseng
dc.subject.proposalVorticityeng
dc.subject.proposalVorticidadspa
dc.subject.proposalOnda solitariaspa
dc.subject.proposalSolitary waveeng
dc.subject.proposalEstructuras coherentes lagrangianasspa
dc.subject.proposalLagrangian coherent structureseng
dc.titleAnálisis Lagrangiano de oleaje alrededor de arrecifes de coralspa
dc.title.translatedLagrangian analysis of wave dynamics around coral reefseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036670881.2023.pdf
Tamaño:
12.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: