Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación

dc.contributor.advisorSerrato Bermúdez, Juan Carlos
dc.contributor.advisorMagnin, Jean Pierre
dc.contributor.authorMorales Cortés, Yenny Paola
dc.contributor.otherCastillo Moreno, Patricia
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2022-03-24T17:23:50Z
dc.date.available2022-03-24T17:23:50Z
dc.date.issued2022-03-23
dc.descriptionilustraciones, fotografías , graficasspa
dc.description.abstractEn el presente trabajo se evaluó la producción de hidrógeno a partir de la bacteria Afifella marina utilizando un medio sintético con composición similar a un residuo de fermentación oscura de la paja de trigo con una concentración total de ácidos de 112 mM. Este medio contenía ácidos orgánicos tales como ácido láctico y ácido acético los cuales fueron utilizados por la bacteria como principal fuente de carbono en un proceso de fotofermentación. Para establecer las condiciones óptimas de crecimiento de la bacteria y producción de hidrógeno, se estudiaron en medios sintéticos algunas variables significativas para el proceso: concentración y relación de ácidos orgánicos, fuente de nitrógeno, intensidad lumínica, agitación, concentración de sal y solución amortiguadora en botellas de 120 mL. La verificación de la presencia de hidrógeno en el biogás producido se realizó por medio de un cromatógrafo de gases de la serie 5890 de Hewlett Packard (serie A), con detector de conductividad térmica (TCD) obteniendo un 95% de hidrógeno (H2) en las muestras procesadas, el 5% restante se caracterizó como dióxido de carbono (CO2). Inicialmente se empleó un diseño de mezcla simplex lattice para escoger la mejor relación de los ácidos estudiados y posteriormente un diseño central compuesto rotable para evaluar el efecto sobre la producción de hidrógeno de tres variables continuas: relación de la concentración de la fuente de carbono (ácido láctico y ácido acético, concentración total 112 mM), concentración de fuente de nitrógeno (glutamato entre 3.5 y 13 mM) e intensidad lumínica (entre 6,000 y 18,000 lux); y una variable discreta (solución amortiguadora (medio LGK y medio LGB). La relación de ácidos orgánicos con la que se presentó la mejor producción de biogás para la solución amortiguadora LGK fue: 60 mM ácido acético, 60 mM ácido láctico con una producción total de 169 mL de biogás, mientras que para la solución amortiguadora LGB la mejor relación de ácidos orgánicos fue: 20 mM ácido acético, 80 mM ácido láctico, 20 mM de ácido butírico con una producción total de 200 mL de biogás. Además, se determinó que las mejores condiciones para la producción de biogás en la solución amortiguadora LGK fueron: una concentración de ácidos totales de 76 mM, una concentración de glutamato de 0.26 mM y una intensidad lumínica de 12.000 lux con un rendimiento de 19.08% respecto al ácido láctico y ácido acético. Para la solución amortiguadora LGB las condiciones que presentaron la mejor producción de biogás fueron: una concentración de ácidos totales de 76 mM, una concentración de glutamato de 8.25 mM y una intensidad lumínica de 12.000 lux con un rendimiento de 44.13% respecto al ácido láctico y ácido acético. Por último, se realizó un escalado de los experimentos con las dos soluciones amortiguadoras LGK y LGB en reactores de 1 L. Por cada solución amortiguadora se evaluaron dos reactores en los cuales se probaron las mejores condiciones obtenidas previamente: concentración total de ácidos 76 y 112 mM, concentración de glutamato 3.5 y 8.25 mM, intensidad lumínica 4,000 lux, obteniendo que la solución amortiguadora LGB presentó la mayor producción de biogás (concentración total de ácidos 112 mM, concentración de glutamato 3.50 mM) con una producción máxima de 4,139 mL de biogás/L. (Texto tomado de la fuente)spa
dc.description.abstractIn the present study, the hydrogen production by the photosynthetic bacterium Afifella marina was evaluated using a synthetic medium with a similar composition to a residue dark fermentation of wheat straw. This medium contained organic acids such as lactic acid acetic and butyric acid with a total acid organic concentration of 112 mM which were used by the bacteria as the main carbon source in a photofermentation process. Optimal conditions for growth and hydrogen production were established by DOE methodology. Continuous and discontinuous variables were studied in synthetic media: concentration and ratio of organic acids, nitrogen source, light intensity, stirring, salt concentration, and buffer solution. Produced hydrogen contained 95% hydrogen (H2) and 5% of carbon dioxide (CO2). A two-step procedure was carried out with the statistical software Design-Expert a simplex lattice mixture design for the selection of the best acids ratio studied and a central composite sphere-type design to evaluate the effect on hydrogen production of three continuous variables: concentration ratio of lactic acid and acetic acid (total concentration 112 mM), nitrogen source concentration as Na Glutamate (3.50 and 13 mM) and light intensity (range 6,000 -18,000 lux); and one discrete variable as: buffer solution (LGK and LGB medium). The best ratio of organic acid in LGK (KPI buffer) and LGB (Borax buffer) for maximal H2 production was 60 mM acetic acid, 60 mM lactic acid with a total production of 161 mL H2 and 20 mM acetic acid, 80 mM lactic acid, 20 mM butyric acid with a total production of 190 mL H2 respectively. Maximal H2 production, in the second part of the study was determined. The best conditions to produce biogas in the solution LGK buffer were: a total acid concentration of 76 mM, a glutamate concentration of 0.26 mM and a light intensity of 12.000 lux with a yield of 19.08% for lactic acid and acetic acid. For the LGB buffer solution, the conditions that presented the best biogas production were a total acid concentration of 76 mM, a glutamate concentration of 8.25 mM, and a light intensity of 12.000 lux with a yield of 44.13% concerning lactic acid and acetic acid. At the end of the project, the experiments were scaled up with the two buffer solutions LGK and LGB in 1 L reactors. For each buffer solution, two reactors were evaluated in which the best conditions obtained in the previous experiment designs were tested, the conditions in The ones in which these experiments were carried out were: total acid concentration 76 and 112 mM, glutamate concentration 3.50 and 8.25 mM, light intensity 4,000 lux, obtaining that the LGB buffer solution presented the highest biogas production (total acid concentration 112 mM, glutamate concentration 3.50 mM) with a total volume of 4,139 mL of biogas.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.degreenamequímspa
dc.description.researchareaBioprocesosspa
dc.format.extentxxii, 152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81366
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesEIA, “About 7% of fossil fuels are consumed for non-combustion use in the United States - Today in Energy - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Apr. 06, 2018. https://www.eia.gov/todayinenergy/detail.php?id=35672 (accessed Sep. 13, 2021)spa
dc.relation.referencesH. Shaftel, S. Callery, R. Jackson, D. Bailey, and S. Callery, “Causes | Facts – Climate Change: Vital Signs of the Planet,” Earth Science Communications Team at the NASA’s Jet Propulsion Laboratory, 2021. https://climate.nasa.gov/causes/ (accessed Sep. 11, 2021).spa
dc.relation.references“Global Emissions | Center for Climate and Energy Solutions.” https://www.c2es.org/content/international-emissions/ (accessed Nov. 09, 2019).spa
dc.relation.referencesEnerdata, “CO2 Emissions from fuel Combustion | World Statistics on CO2 Updated | Enerdata,” The Enerdata Yearbook, 2021. https://yearbook.enerdata.net/co2/emissions-co2-data-from-fuel-combustion.html (accessed Sep. 11, 2021).spa
dc.relation.referencesBanco Mundial, “Cambio Climático,” 2021. https://www.bancomundial.org/es/topic/climatechange/overview (accessed Sep. 12, 2021).spa
dc.relation.referencesMinistère de la Transition écologique et solidaire, “Baisse de 4,2 % des émissions de gaz à effet de serre de la France en 2018 | Ministère de la Transition écologique et solidaire,” 2019. https://www.ecologique-solidaire.gouv.fr/baisse-42-des-emissions-gaz-effet-serre-france-en-2018 (accessed Nov. 10, 2019).spa
dc.relation.referencesUnidad de Planeación Minero Energética (UPME), Integración de las energías renovables no convencionales en Colombia. 2015.spa
dc.relation.referencesUPME - Unidad de Planeación Minero-Energética, “Plan Energético Nacional 2020-2050,” p. 2015, 2020, [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf.spa
dc.relation.referencesUPME, Resolución N° 000463. 2018, pp. 1–3.spa
dc.relation.referencesRoyal Society of Chemistry- RSC, “Hydrogen - Element information, properties and uses | Periodic Table,” Royal Society of Chemistry 2021, 2021. https://www.rsc.org/periodic-table/element/1/hydrogen (accessed Sep. 12, 2021).spa
dc.relation.referencesD. Mesa Puyo, “Transición energética: un legado para el presente y el futuro de Colombia Iván Duque Márquez Presidente de la República,” Accessed: Sep. 12, 2021. [Online]. Available: www.laimprentaeditores.com.spa
dc.relation.referencesJ. Ceballos et al., “Aprovechamiento de residuos industriales como combustibles,” Prospectiva, vol. 5, no. 1, pp. 61–68, 2007.spa
dc.relation.referencesS. K. Khanal, M. Rasmussen, P. Shrestha, H. J. Van Leeuwen, C. Visvanathan, and H. Liu, “Bioenergy and Biofuel Production from Wastes/Residues of Emerging Biofuel Industries,” Water Environ. Res., vol. 80, no. 10, pp. 1625–1647, 2008, doi: 10.2175/106143008x328752.spa
dc.relation.referencesPreethi, T. M. M. Usman, J. Rajesh Banu, M. Gunasekaran, and G. Kumar, “Biohydrogen production from industrial wastewater: An overview,” Bioresour. Technol. Reports, vol. 7, no. July, p. 100287, 2019, doi: 10.1016/j.biteb.2019.100287.spa
dc.relation.referencesY. Ueno, S. Otsuka, and M. Morimoto, “Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture,” J. Ferment. Bioeng., vol. 82, no. 2, pp. 194–197, 1996, doi: 10.1016/0922-338X(96)85050-1.spa
dc.relation.referencesM. L. Chong, V. Sabaratnam, Y. Shirai, and M. A. Hassan, “Biohydrogen production from biomass and industrial wastes by dark fermentation,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3277–3287, 2009, doi: 10.1016/j.ijhydene.2009.02.010.spa
dc.relation.referencesJ. Rajesh Banu, S. Kavitha, R. Yukesh Kannah, R. R. Bhosale, and G. Kumar, “Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route,” Bioresour. Technol., vol. 298, p. 122378, 2020, doi: 10.1016/j.biortech.2019.122378.spa
dc.relation.referencesR. Nandi and S. Sengupta, “Microbial Production of Hydrogen: An Overview,” Crit. Rev. Microbiol., vol. 24, no. 1, pp. 61–84, 1998, doi: 10.1080/10408419891294181.spa
dc.relation.referencesNusaibah, K. Syamsu, and D. Susilaningsih, “Biohydrogen Production in Substrates Combination of Vinasse and Tofu Whey Using Photosynthetic Bacteria Rhodobium marinum,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2451–2457, 2020, doi: 10.18517/ijaseit.10.6.9469.spa
dc.relation.referencesP. K. Rai and S. P. Singh, “Integrated dark- and photo-fermentation: Recent advances and provisions for improvement,” Int. J. Hydrogen Energy, vol. 41, no. 44, pp. 19957–19971, 2016, doi: 10.1016/j.ijhydene.2016.08.084.spa
dc.relation.referencesP. Y. Lin et al., “Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1728–1735, 2007, doi: 10.1016/j.ijhydene.2006.12.009.spa
dc.relation.referencesK. Anam and D. Susilaningsih, “HYDROGEN PRODUCTION USING Rhodobium marinum IN MILK,” vol. 38, no. 1, pp. 1–8, 2015.spa
dc.relation.referencesY. H. P. Zhang, B. R. Evans, J. R. Mielenz, R. C. Hopkins, and M. W. W. Adams, “High-yield hydrogen production from starch and water by a synthetic enzymatic pathway,” PLoS One, vol. 2, no. 5, pp. 2–7, 2007, doi: 10.1371/journal.pone.0000456.spa
dc.relation.referencesJ. A. Rollin et al., “High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 16, pp. 4964–4969, 2015, doi: 10.1073/pnas.1417719112.spa
dc.relation.referencesY. Du, W. Zou, K. Zhang, G. Ye, and J. Yang, “Advances and Applications of Clostridium Co-culture Systems in Biotechnology,” Front. Microbiol., vol. 11, no. November, pp. 1–22, 2020, doi: 10.3389/fmicb.2020.560223.spa
dc.relation.referencesT. Maeda, V. Sanchez-Torres, and T. K. Wood, “Hydrogen production by recombinant Escherichia coli strains,” Microb. Biotechnol., vol. 5, no. 2, pp. 214–225, 2012, doi: 10.1111/j.1751-7915.2011.00282.x.spa
dc.relation.referencesL. M. Rosales-Colunga and A. De León Rodríguez, “Escherichia coli and its application to biohydrogen production,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 123–135, 2015, doi: 10.1007/s11157-014-9354-2.spa
dc.relation.referencesK. T. Tran, T. Maeda, V. Sanchez-Torres, and T. K. Wood, “Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol,” Appl. Microbiol. Biotechnol., vol. 99, no. 6, pp. 2573–2581, 2015, doi: 10.1007/s00253-014-6338-7.spa
dc.relation.referencesS. K. S. Patel, M. Singh, and V. C. Kalia, “Hydrogen and Polyhydroxybutyrate Producing Abilities of Bacillus spp. From Glucose in Two Stage System,” Indian J. Microbiol., vol. 51, no. 4, pp. 418–423, 2011, doi: 10.1007/s12088-011-0236-9.spa
dc.relation.referencesA. T. Shah et al., “Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste,” Appl. Energy, vol. 176, pp. 116–124, 2016, doi:10.1016/j.apenergy.2016.05.054.spa
dc.relation.referencesS. Lertsriwong and C. Glinwong, “Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater,” Int. J. Hydrogen Energy, vol. 45, no. 51, pp. 26812–26821, 2020, doi: 10.1016/j.ijhydene.2020.07.032.spa
dc.relation.referencesC. M. Lee, P. C. Chen, C. C. Wang, and Y. C. Tung, “Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1309–1313, 2002, doi: 10.1016/S0360-3199(02)00102-7.spa
dc.relation.referencesN. Basak, A. K. Jana, D. Das, and D. Saikia, “Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective,” Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 6853–6871, 2014, doi: 10.1016/j.ijhydene.2014.02.093.spa
dc.relation.referencesP. C. Hallenbeck and Y. Liu, “Recent advances in hydrogen production by photosynthetic bacteria,” Int. J. Hydrogen Energy, vol. 41, no. 7, pp. 4446–4454, 2016, doi: 10.1016/j.ijhydene.2015.11.090.spa
dc.relation.referencesN. Basak and D. Das, “The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art,” World J. Microbiol. Biotechnol., vol. 23, no. 1, pp. 31–42, 2007, doi: 10.1007/s11274-006-9190-9.spa
dc.relation.referencesG. Antonopoulou, I. Ntaikou, K. Stamatelatou, and G. Lyberatos, Biological and fermentative production of hydrogen. Woodhead Publishing Limited, 2011.spa
dc.relation.referencesR. Łukajtis et al., “Hydrogen production from biomass using dark fermentation,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 665–694, 2018, doi: 10.1016/j.rser.2018.04.043.spa
dc.relation.referencesQ. Zhang and Z. Zhang, Biological Hydrogen Production From Renewable Resources by Photofermentation, 1st ed., vol. 3. Elsevier Inc., 2018.spa
dc.relation.referencesT. Keskin, M. Abo-Hashesh, and P. C. Hallenbeck, “Photofermentative hydrogen production from wastes,” Bioresour. Technol., vol. 102, no. 18, pp. 8557–8568, 2011, doi: 10.1016/j.biortech.2011.04.004.spa
dc.relation.referencesFenalce, “Histórico de área, producción y rendimiento de cereales y leguminosas,” Oct. 13, 2021. https://app.powerbi.com/view?r=eyJrIjoiOTk3NDZhYTMtZjg5NC00OWIxLWE3NmItOTIzYjdlZmFmNmJhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9 (accessed Oct. 15, 2021).spa
dc.relation.referencesGovernment of Aragon, “La relación paja-grano en los cereales ( Una aproximación en condiciones de secano semiárido , en Aragón ),” Inf. técnicas, vol. 91, 2000.spa
dc.relation.referencesT. Helin et al., “BIOCORE BIOCOmmodity REfinery Collaborative project Seventh framework programme BIOREFINERY,” 2012.spa
dc.relation.referencesEuropean Council of the European Union, “Climate change: what the EU is doing - Consilium,” General Secretariat of the Council EU, 2021. https://www.consilium.europa.eu/en/policies/climate-change/ (accessed Sep. 15, 2021).spa
dc.relation.referencesJ. M. Rincón, “Colombian Case Problems and Perspectives Renewable Energy Sugarcane in the Future Summary.”spa
dc.relation.referencesU. de P. M. E. UPME, “Balance de Gas Natural en Colombia 2015-2023,” 2015. Accessed: Nov. 12, 2019. [Online]. Available: www.upme.gov.co.spa
dc.relation.referencesU. de P. M. E. (UPME) Ministerio de Minas y Energía, “Invierta y Gane con Energía Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” 2017.spa
dc.relation.referencesJ. Ospina, C.-C. Espinosa Velásquez, ; William, J. Murcia, A.-R. E. De La, and R. Julio, “EL DESARROLLO DEL GLP EN COLOMBIA ¿AVIZORANDO UNA OPORTUNIDAD HACIA EL FUTURO?,” 2018.spa
dc.relation.referencesEIA, “Production of hydrogen - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Jan. 07, 2021. https://www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php (accessed Sep. 15, 2021).spa
dc.relation.referencesR. M. Navarro, R. Guil, and J. L. G. Fierro, Introduction to hydrogen production. Elsevier Ltd, 2015.spa
dc.relation.referencesNREL, “Hydrogen Production and Delivery | Hydrogen and Fuel Cells | Hydrogen and Fuel Cells | NREL,” The National Renewable Energy Laboratory, 2021. https://www.nrel.gov/hydrogen/hydrogen-production-delivery.html (accessed Sep. 15, 2021).spa
dc.relation.referencesJ. I. Linares Hurtado and B. Y. Moratilla Soria, El hidrógeno y la energía. 2007.spa
dc.relation.referencesR. B. Gupta, HYDROGEN FUEL- Production, Transport ans Storage. CRC Press- Taylor & Francis Group, 2009.spa
dc.relation.referencesG. I. CRYOGAS, “Ficha Técnica: Hidrógeno industrial,” pp. 1–1, 2018.spa
dc.relation.referencesF. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 3847–3869, 2020, doi: 10.1016/j.ijhydene.2019.12.059.spa
dc.relation.referencesBruce S et al., “Pathways to an economically sustainable hydrogen industry in Australia National Hydrogen Roadmap ENERGY AND FUTURES www.csiro.au CITATION,” [Online]. Available: www.csiro.au.spa
dc.relation.referencesIRENA, Hydrogen: a Renewable Energy Perspective, no. September. 2019.spa
dc.relation.referencesV. S. Ke Liu, Chunshan Song and Ubramani, Hydrogen and Syngas Production and Purification Technologies. New Jersey: Wiley, 2010.spa
dc.relation.referencesStaples and Jeff, “Focus on Blue Hydrogen (August 2020),” Gaffney Cline, pp. 1–4, Aug. 2020, Accessed: Sep. 16, 2021. [Online]. Available: www.gaffneycline.com.spa
dc.relation.referencesK. Anam, M. S. Habibi, T. U. Harwati, and D. Susilaningsih, “Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15436–15442, 2012, doi: 10.1016/j.ijhydene.2012.06.076.spa
dc.relation.referencesN. Academy, Committee on Alternatives and Strategies for Future Hydrogen Production and Use Board on Energy and Environmental Systems Division on Engineering and Physical Sciences. 2005.spa
dc.relation.referencesR. Ramachandran and R. K. Menon, “An overview of industrial uses of hydrogen,” Int. J. Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998, doi: 10.1016/s0360-3199(97)00112-2.spa
dc.relation.referencesMinEnergia, “HOJA DE RUTA DEL HIDRÓGENO EN COLOMBIA,” 2021.spa
dc.relation.referencesC. Mansilla, C. Bourasseau, C. Cany, B. Guinot, A. Le Duigou, and P. Lucchese, Hydrogen applications: Overview of the key economic issues and perspectives. Elsevier Ltd., 2018.spa
dc.relation.referencesU.S. Department of Energy, “Potential Roles of Ammonia in a Hydrogen Economy,” Energy, pp. 1–23, 2006, [Online]. Available: https://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf.spa
dc.relation.referencesI. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” Energy Environ. Sci., vol. 12, no. 2, pp. 463–491, 2019, doi: 10.1039/c8ee01157e.spa
dc.relation.referencesEuronews, “Costa Rica trials hydrogen bus | Euronews,” 2017. https://www.euronews.com/2017/11/28/costa-rica-trials-hydrogen-bus (accessed Dec. 04, 2019).spa
dc.relation.referencesArirang News, “Seoul’s first hydrogen bus to operate from Wednesday - YouTube,” 2018. https://www.youtube.com/watch?v=6eKNWnJoq3s (accessed Dec. 04, 2019).spa
dc.relation.referencesAlstom Coradia iLint, “Coradia iLint-The world’s 1st hydrogen powered train,” 2018. https://www.alstom.com/our-solutions/rolling-stock/coradia-ilint-worlds-1st-hydrogen-powered-train (accessed Dec. 04, 2019).spa
dc.relation.referencesTransport for London, “World-first hydrogen double decker buses to help tackle London’s toxic air - Transport for London,” 2019. https://tfl.gov.uk/info-for/media/press-releases/2019/may/world-first-hydrogen-double-decker-buses-to-help-tackle-london-s-toxic-air (accessed Dec. 04, 2019).spa
dc.relation.referencesK. Turoń, “Hydrogen-powered vehicles in urban transport systems-current state and development,” Transp. Res. Procedia, vol. 45, no. 2019, pp. 835–841, 2020, doi: 10.1016/j.trpro.2020.02.086.spa
dc.relation.referencesARIEMA, “Usos y Aplicaciones del Hidrógeno ,” 2020. http://www.ariema.com/usos-y-aplicaciones-del-hidrogeno (accessed Jul. 19, 2020).spa
dc.relation.referencesO. Z. Sharaf and M. F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renew. Sustain. Energy Rev., vol. 32, pp. 810–853, 2014, doi: 10.1016/j.rser.2014.01.012.spa
dc.relation.referencesR. H. Lin, X. N. Xi, P. N. Wang, B. D. Wu, and S. M. Tian, “Review on hydrogen fuel cell condition monitoring and prediction methods,” Int. J. Hydrogen Energy, pp. 5488–5498, 2019, doi: 10.1016/j.ijhydene.2018.09.085.spa
dc.relation.referencesA. Arshad, H. M. Ali, A. Habib, M. A. Bashir, M. Jabbal, and Y. Yan, “Energy and exergy analysis of fuel cells: A review,” Therm. Sci. Eng. Prog., vol. 9, pp. 308–321, 2019, doi: 10.1016/j.tsep.2018.12.008.spa
dc.relation.referencesR. M. Dell, P. T. Moseley, and D. A. J. Rand, Hydrogen, Fuel Cells and Fuel Cell Vehicles. 2014.spa
dc.relation.referencesD. Hart, F. Lehner, R. Rose, and J. Lewis, “The Fuel Cell Industry Review 2019,” pp. 1–52, 2019, [Online]. Available: https://www.californiahydrogen.org/wp-content/uploads/2019/01/TheFuelCellIndustryReview2018.pdf.spa
dc.relation.referencesJon Hebditch, “World first for Aberdeen as city orders 15 double decker hydrogen buses | Press and Journal,” The Press and Journal, Jul. 18, 2019. https://www.pressandjournal.co.uk/fp/news/aberdeen/1799344/world-first-for-aberdeen-as-city-orders-15-double-decker-hydrogen-buses/ (accessed Jul. 19,2020).spa
dc.relation.referencesBertel Schmitt, “China Switches Over to Hydrogen Fuel Cells, and Toyota Delivers the Tech - The Drive,” The drive, Jul. 05, 2019. https://www.thedrive.com/tech/28837/china-switches-over-to-hydrogen-fuel-cells-and-toyota-delivers-the-tech (accessed Jul. 19, 2020).spa
dc.relation.referencesWorld Economic Forum, “Grey, blue, green – the many colours of hydrogen explained | World Economic Forum,” 2021, 7AD. https://www.weforum.org/agenda/2021/07/clean-energy-green-hydrogen/ (accessed Sep. 15, 2021).spa
dc.relation.referencesOcean Based Perpetual Energy, “All About OceanBased Perpetual Energy’s Clean ‘Green Hydrogen’ | OceanBased,” Ocean Based, 2021. https://oceanbased.energy/all-about-oceanbased-perpetual-energys-clean-green-hydrogen/ (accessed Sep. 15, 2021).spa
dc.relation.referencesO. Tlili, C. Mansilla, D. Frimat, and Y. Perez, “Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 16048–16068, 2019, doi: 10.1016/j.ijhydene.2019.04.226.spa
dc.relation.referencesG. Maggio, A. Nicita, and G. Squadrito, “How the hydrogen production from RES could change energy and fuel markets: A review of recent literature,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11371–11384, 2019, doi: 10.1016/j.ijhydene.2019.03.121.spa
dc.relation.referencesIEA, “The clean hydrogen future has already begun,” 2019. .spa
dc.relation.referencesIEA, “Renewable Energy Outlook,” 2013.spa
dc.relation.referencesC. Fernandez, “Sistema de Energía del Hidrogeno,” Energética del Hidrogeno. Context. Estado aActual y Perspect. Futur., pp. 91–126, 2005.spa
dc.relation.referencesR. H. Wijffels, H. Barten, and R. H. Reith, Bio_methane & Bio-hydrogen. 2003.spa
dc.relation.referencesN. E. W. Hydrogen and H. O. R. Hype, “Innovation Insights Brief NEW HYDROGEN ECONOMY -,” 2019.spa
dc.relation.referencesIEA, “The Future of Hydrogen,” Futur. Hydrog., no. June, 2019, doi: 10.1787/1e0514c4-en.spa
dc.relation.referencesA. Pino Priego, “Producción de Hidrógeno,” pp. 8–25, 2009, [Online]. Available: http://bibing.us.es/proyectos/abreproy/30127/fichero/Capítulo+2+-+Producción+de+Hidrógeno.pdf.spa
dc.relation.referencesA. G. García Conde, “Producción , almacenamiento y distribución de hidrógeno,” Asoc. Española del Hidrógeno, pp. 1–16, 2008.spa
dc.relation.referencesL. van Cappellen, H. Croezen, and F. Rooijers, “Feasibility study into blue hydrogen,” pp. 0–46, 2018, [Online]. Available: https://greet.es.anl.gov/publication-smr_h2_2019.spa
dc.relation.referencesH. Kurokawa, Y. Shirasaki, and I. Yasuda, “Energy-efficient distributed carbon capture in hydrogen production from natural gas,” Energy Procedia, vol. 4, pp. 674–680, 2011, doi: 10.1016/j.egypro.2011.01.104.spa
dc.relation.referencesN. Muradov, Low-carbon production of hydrogen from fossil fuels, no. 2013. Elsevier Ltd, 2015spa
dc.relation.referencesI. Dincer, “Green methods for hydrogen production,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1954–1971, 2012, doi: 10.1016/j.ijhydene.2011.03.173.spa
dc.relation.referencesARIEMA, “Producción de Hidrógeno Verde a partir de Agua ,” 2019. http://www.ariema.com/produccion-de-hidrogeno-verde-a-partir-de-agua (accessed Jul. 19, 2020).spa
dc.relation.referencesJ. Benemann, “Hydrogen Production:Progress and prospects,” Nat. Biotechnol., vol. 14, pp. 1101–1103, 1996.spa
dc.relation.referencesV. Martínez-Merino, M. J. Gil, and A. Cornejo, “Biological Hydrogen Production,” Renew. Hydrog. Technol. Prod. Purification, Storage, Appl. Saf., pp. 171–199, 2013, doi: 10.1016/B978-0-444-56352-1.00008-8.spa
dc.relation.referencesL. C. Fuentes-Casullo, “Producción de hidrógeno por fermentación oscura y producción de electricidad a partir de suero de queso y otros subproductos industriales,” 2020.spa
dc.relation.referencesD. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes,” Int. J. Hydrogen Energy, vol. 33, no. 21, pp. 6046–6057, 2008, doi: 10.1016/j.ijhydene.2008.07.098.spa
dc.relation.referencesD. J. Lee, K. Y. Show, and A. Su, “Dark fermentation on biohydrogen production: Pure culture,” Bioresour. Technol., vol. 102, no. 18, pp. 8393–8402, 2011, doi: 10.1016/j.biortech.2011.03.041.spa
dc.relation.referencesV. T. Mota, A. D. N. F. Júnior, E. Trably, and M. Zaiat, “Biohydrogen production at pH below 3 . 0 : Is it possible ?,” Water Res., vol. 128, pp. 350–361, 2018, doi: 10.1016/j.watres.2017.10.060.spa
dc.relation.referencesF. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes, “Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress,” Int. J. Hydrogen Energy, vol. 32, no. 2, pp. 172–184, 2007, doi: 10.1016/j.ijhydene.2006.08.014.spa
dc.relation.referencesI. Akiko, T. Murakawa, H. Kawaguchi, K. Hirata, and K. Miyamoto, “Photoproduction of hydrogen from raw starch using a halophilic bacterial community,” J. Biosci. Bioeng., vol. 88, no. 1, pp. 72–77, 1999, doi: 10.1016/S1389-1723(99)80179-0.spa
dc.relation.referencesD. Akroum-Amrouche, N. Abdi, H. Lounici, and N. Mameri, “Biohydrogen production by dark and photo-fermentation processes,” Proc. 2013 Int. Renew. Sustain. Energy Conf. IRSEC 2013, no. October 2014, pp. 499–503, 2013, doi: 10.1109/IRSEC.2013.6529679.spa
dc.relation.referencesK. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, “Biohydrogen production: Current perspectives and the way forward,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15616–15631, 2012, doi: 10.1016/j.ijhydene.2012.04.109.spa
dc.relation.referencesD. B. Levin, L. Pitt, and M. Love, “Biohydrogen production: Prospects and limitations to practical application,” Int. J. Hydrogen Energy, vol. 29, no. 2, pp. 173–185, 2004, doi: 10.1016/S0360-3199(03)00094-6.spa
dc.relation.referencesM. J. Barbosa, J. M. S. Rocha, J. Tramper, and R. H. Wijffels, “Acetate as a carbon source for hydrogen production by photosynthetic bacteria,” J. Biotechnol., vol. 85, no. 1, pp. 25–33, 2001, doi: 10.1016/S0168-1656(00)00368-0.spa
dc.relation.referencesD. N. Tekucheva and A. A. Tsygankov, “Combined biological hydrogen-producing systems: A review,” Appl. Biochem. Microbiol., vol. 48, no. 4, pp. 319–337, 2012, doi: 10.1134/S0003683812040114.spa
dc.relation.referencesFedegán, “Producción | Fedegan,” Oct. 04, 2021. https://www.fedegan.org.co/estadisticas/produccion-0 (accessed Oct. 04, 2021).spa
dc.relation.referencesProexport, “Sector lácteo en Colombia.” Proexport, Bogotá, p. 18, 2011, [Online]. Available: http://portugalcolombia.com/media/Perfil-Lacteo-Colombia.pdf.spa
dc.relation.referencesFEDEGAN, “FEDEGAN [Federación Colombiana de Ganaderos] (2018). Cifras de Referencia del Sector Ganadero Colombiano,” 2018.spa
dc.relation.referencesI. (Universidad L. Burbano, “Utilización Actual Del Lactosuero En Colombia,” 1 ° Semin. Int. sobre Valorización del Suero Quesería, p. 15, [Online]. Available: https://www.inti.gob.ar/lacteos/pdf/4colombia.pdf.spa
dc.relation.referencesA. R. Prazeres, F. Carvalho, and J. Rivas, “Cheese whey management: a review.,” J. Environ. Manage., vol. 110, pp. 48–68, Nov. 2012, doi: 10.1016/j.jenvman.2012.05.018.spa
dc.relation.referencesFranceAgriMer, “Fichas de FranceAgriMer SECTOR - Grandes cultivos- Cereales,” 2015. Accessed: Jan. 28, 2020. [Online]. Available: www.franceagrimer.fr.spa
dc.relation.referencesÁ. Martínez-Alcalá García, “Producción de bioetanol: mejora del proceso a partir de grano de cereal y de biomasa lignocelulósica tratada con steam explosion,” pp. 1–263, 2012.spa
dc.relation.referencesK. Rajeshwar, R. McConnell, and S. Licht, Solar hydrogen generation: Toward a renewable energy future. 2008.spa
dc.relation.referencesR. ( Blankenship, Molecular Mechanisms of Photosynthesis. Arizona, 1997.spa
dc.relation.referencesD. D. Kunkel, “Thylakoid centers: Structures associated with the cyanobacterial photosynthetic membrane system,” Arch. Microbiol., vol. 133, no. 2, pp. 97–99, 1982, doi: 10.1007/BF00413518.spa
dc.relation.referencesE. Zak, B. Norling, R. Maitra, F. Huang, B. Andersson, and H. B. Pakrasi, “The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 23, pp. 13443–13448, 2001, doi: 10.1073/pnas.241503898.spa
dc.relation.referencesA. Pirson and M. H. Zimmermann, Photosynthesis III. 1986.spa
dc.relation.referencesM. K. Ashby and C. W. Mullineaux, “Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II,” FEMS Microbiol. Lett., vol. 181, no. 2, pp. 253–260, 1999, doi: 10.1016/S0378-1097(99)00547-9.spa
dc.relation.referencesK. Schütz et al., “Cyanobacterial H2 production - A comparative analysis,” Planta, vol. 218, no. 3, pp. 350–359, 2004, doi: 10.1007/s00425-003-1113-5.spa
dc.relation.referencesJ. F. Imhoff, “Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria,” Anoxygenic Photosynth. Bact., pp. 1–15, 2006, doi: 10.1007/0-306-47954-0_1.spa
dc.relation.referencesJ. H. Kim, “Effect of Light Intensity on Nutrient Removal and Pigment Production by Purple Non-Sulfur Bacteria,” Delft Univ. Technol., p. 82, 2018.spa
dc.relation.referencesR. A. Masters and M. Madigan, “Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue,” J. Bacteriol., vol. 155, no. 1, pp. 222–227, 1983.spa
dc.relation.referencesP. C. Hallenbeck, C. M. Meyer, and P. M. Vignais, “Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: Purification and molecular properties,” J. Bacteriol., vol. 149, no. 2, pp. 708–717, 1982.spa
dc.relation.referencesI. Akkerman, M. Janssen, J. Rocha, and H. Wij, “Photobiological hydrogen production : photochemical e ciency and bioreactor design,” vol. 27, pp. 1195–1208, 2002.spa
dc.relation.referencesH. Koku, I. Erolu, U. Gündüz, M. Yücel, and L. Türker, “Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1315–1329, 2002, doi: 10.1016/S0360-3199(02)00127-1.spa
dc.relation.referencesH. Ooshima et al., “Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus,” J. Ferment. Bioeng., vol. 85, no. 5, pp. 470–475, 1998, doi: 10.1016/S0922-338X(98)80064-0.spa
dc.relation.referencesH. Zürrer and R. Bachofen, “Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture,” Biomass, vol. 2, no. 3, pp. 165–174, 1982, doi: 10.1016/0144-4565(82)90027-0.spa
dc.relation.referencesK. Sasikala, C. V. Ramana, P. Raghuveer Rao, and M. Subrahmanyam, “Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001,” Int. J. Hydrogen Energy, vol. 15, no. 11, pp. 795–797, 1990, doi: 10.1016/0360-3199(90)90015-Q.spa
dc.relation.referencesO. Hädicke, H. Grammel, and S. Klamt, “Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria,” BMC Syst. Biol., vol. 5, 2011, doi: 10.1186/1752-0509-5-150.spa
dc.relation.referencesM. Abo-Hashesh and P. C. Hallenbeck, “Microaerobic dark fermentative hydrogen production by the photosynthetic bacterium, Rhodobacter capsulatus JP91,” Int. J. Low-Carbon Technol., vol. 7, no. 2, pp. 97–103, 2012, doi: 10.1093/ijlct/cts011.spa
dc.relation.referencesM. Abo-Hashesh, D. Ghosh, A. Tourigny, A. Taous, and P. C. Hallenbeck, “Single stage photofermentative hydrogen production from glucose: An attractive alternative to two stage photofermentation or co-culture approaches,” Int. J. Hydrogen Energy, vol. 36, no. 21, pp. 13889–13895, 2011, doi: 10.1016/j.ijhydene.2011.02.122.spa
dc.relation.referencesD. Ghosh, I. F. Sobro, and P. C. Hallenbeck, “Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology,” Bioresour. Technol., vol. 123, pp. 199–206, 2012, doi: 10.1016/j.biortech.2012.07.061.spa
dc.relation.referencesP. Castillo-Moreno, “Desarrollo de un proceso de producción fotofermentativa de hidrógeno a partir de suero de leche,” p. 155, 2018.spa
dc.relation.referencesBacDive, “Afifella marina BN 126 | Type strain | DSM 2698, ATCC 35675, CIP 104405, NBRC 100434 | BacDiveID:13874,” 2020. https://bacdive.dsmz.de/strain/13874 (accessed Jan. 29, 2020).spa
dc.relation.referencesS. Al Azad, W. H. Jie, and M. T. B. M. Lal, “Utilization of Vegetable Waste Juice by Purple Non-Sulfur Bacterium (<i>Afifella marina</i> Strain ME) for Biomass Production,” J. Geosci. Environ. Prot., 2018, doi: 10.4236/gep.2018.65017.spa
dc.relation.referencesA. Ike, N. Toda, N. Tsuji, K. Hirata, and K. Miyamoto, “Hydrogen photoproduction from co2-fixing microalgal biomass: application of halotolerant photo synthetic bacteria,” J. Ferment. Bioeng., vol. 84, no. 6, pp. 606–609, 1997, doi: 10.1016/S0922-338X(97)81921-6.spa
dc.relation.referencesH. Kawaguchi, K. Hashimoto, K. Hirata, and K. Miyamoto, “H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus,” J. Biosci. Bioeng., vol. 91, no. 3, pp. 277–282, 2001, doi: 10.1016/S1389-1723(01)80134-1.spa
dc.relation.referencesD. Susilaningsih, L. S. Sirait, K. Anam, M. S. Habibi, and B. Prasetya, “Possible application of biohydrogen technologies as electricity sources in Indonesian remote areas,” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 19400–19405, 2014, doi: 10.1016/j.ijhydene.2014.08.073.spa
dc.relation.referencesJ. F. Imhoff, “Rhodopseudomonas marina sp. nov., a New Marine Phototrophic Purple Bacterium,” Syst. Appl. Microbiol., vol. 4, no. 4, pp. 512–521, 1983, doi: 10.1016/S0723-2020(83)80009-5.spa
dc.relation.referencesP. G. Roessler and S. Lien, “ Purification of Hydrogenase from Chlamydomonas reinhardtii ,” Plant Physiol., vol. 75, no. 3, pp. 705–709, 1984, doi: 10.1104/pp.75.3.705.spa
dc.relation.referencesT. HAPPE and J. D. NABER, “Isolation, characterization and N‐terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii,” Eur. J. Biochem., vol. 214, no. 2, pp. 475–481, 1993, doi: 10.1111/j.1432-1033.1993.tb17944.x.spa
dc.relation.referencesJ. Cohen, K. Kim, P. King, M. Seibert, and K. Schulten, “Finding gas diffusion pathways in proteins: Application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects,” Structure, vol. 13, no. 9, pp. 1321–1329, 2005, doi: 10.1016/j.str.2005.05.013.spa
dc.relation.referencesM. Seibert, “Oxygen Sensitivity of Algal H 2 -Production,” vol. 63, pp. 141–142,1997.spa
dc.relation.referencesP. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad, “Hydrogenases and Hydrogen Metabolism of Cyanobacteria,” Microbiol. Mol. Biol. Rev., vol. 66, no. 1, pp. 1–20, 2002, doi: 10.1128/mmbr.66.1.1-20.2002.spa
dc.relation.referencesG. Boison, O. Schmitz, L. Mikheeva, S. Shestakov, and H. Bothe, “Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans,” FEBS Lett., vol. 394, no. 2, pp. 153–158, 1996, doi: 10.1016/0014-5793(96)00936-2.spa
dc.relation.referencesJ. P. Houchins, “The physiology and biochemistry of hydrogen metabolism in cyanobacteria,” BBA Rev. Bioenerg., vol. 768, no. 3–4, pp. 227–255, 1984, doi: 10.1016/0304-4173(84)90018-1.spa
dc.relation.referencesY. Zhang and V. N. Gladyshev, “Molybdoproteomes and Evolution of Molybdenum Utilization,” J. Mol. Biol., vol. 379, no. 4, pp. 881–899, 2008, doi: 10.1016/j.jmb.2008.03.051.spa
dc.relation.referencesV. K. Shah and W. J. Brill, “Isolation of an iron-molybdenum cofactor from nitrogenase,” Proc. Natl. Acad. Sci. U. S. A., vol. 74, no. 8, pp. 3249–3253, 1977, doi: 10.1073/pnas.74.8.3249.spa
dc.relation.referencesR. V. Hageman and R. H. Burris, “Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle,” Proc. Natl. Acad. Sci. U. S. A., vol. 75, no. 6, pp. 2699–2702, 1978, doi: 10.1073/pnas.75.6.2699.spa
dc.relation.referencesJ. W. Peters, K. Fisher, and D. R. Dean, “Nitrogenase structure and function: A biochemical-genetic perspective,” Annu. Rev. Microbiol., vol. 49, pp. 335–366, 1995, doi: 10.1146/annurev.mi.49.100195.002003.spa
dc.relation.referencesB. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, and L. C. Seefeldt, “Mechanism of nitrogen fixation by nitrogenase: The next stage,” Chem. Rev., vol. 114, no. 8, pp. 4041–4062, 2014, doi: 10.1021/cr400641x.spa
dc.relation.referencesF. W. Larimer et al., “Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris,” Nat. Biotechnol., vol. 22, no. 1, pp. 55–61, 2004, doi: 10.1038/nbt923.spa
dc.relation.referencesP. Castillo Moreno, “Evaluación experimental de la producciónn de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter Capsulatus,” Universidad Nacional de Colombia, 2012. [Online]. Available: http://www.bdigital.unal.edu.co/8156/.spa
dc.relation.referencesK. R. Khalilpour, R. Pace, and F. Karimi, “Retrospective and prospective of the hydrogen supply chain: A longitudinal techno-historical analysis,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.02.099.spa
dc.relation.referencesA. M. Ela Eroglu a, “Photobiological hydrogen production: recent advances and state of the art,” Bioresour. Technol., no. 102, pp. 8403–8413, 2011, doi: 10.1016/j.biortech.2011.03.026.spa
dc.relation.referencesS. Al-Azad, T. K. Soon, and J. Ransangan, “Effects of light intensities and photoperiods on growth and proteolytic activity in purple non-sulfur marine bacterium, <i>Afifella marina</i> strain ME (KC205142),” Adv. Biosci. Biotechnol., 2013, doi: 10.4236/abb.2013.410120.spa
dc.relation.referencesR. Munir and D. B. Levin, “Enzyme systems of anaerobes for biomass conversion,” Adv. Biochem. Eng. Biotechnol., vol. 156, pp. 113–138, 2016, doi: 10.1007/10_2015_5002.spa
dc.relation.referencesE. B. Sydney et al., “Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source,” Bioresour. Technol., vol. 159, pp. 380–386, 2014, doi: 10.1016/j.biortech.2014.02.042.spa
dc.relation.referencesX. M. Guo, E. Trably, E. Latrille, H. Carrre, and J. P. Steyer, “Hydrogen production from agricultural waste by dark fermentation: A review,” Int. J. Hydrogen Energy, vol. 35, no. 19, pp. 10660–10673, 2010, doi: 10.1016/j.ijhydene.2010.03.008.spa
dc.relation.referencesC. Hamilton et al., “Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009,” Int. J. Hydrogen Energy, vol. 43, no. 11, pp. 5451–5462, 2018, doi: 10.1016/j.ijhydene.2017.12.162.spa
dc.relation.referencesC. D. Boiangiu et al., “Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria,” J. Mol. Microbiol. Biotechnol., vol. 10, no. 2–4, pp. 105–119, 2006, doi: 10.1159/000091558.spa
dc.relation.referencesA. Kanazawa and D. M. Kramer, “In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 20, pp. 12789–12794, 2002, doi: 10.1073/pnas.182427499.spa
dc.relation.referencesP. Hillmer and H. Gest, “H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures,” J. Bacteriol., vol. 129, no. 2, pp. 724–731, 1977.spa
dc.relation.referencesT. Happe, A. Hemschemeier, M. Winkler, and A. Kaminski, “Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems?,” Trends Plant Sci., vol. 7, no. 6, pp. 246–250, 2002, doi: 10.1016/S1360-1385(02)02274-4.spa
dc.relation.referencesM. Sakarika et al., “Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment,” Microb. Biotechnol., vol. 13, no. 5, pp. 1336–1365, 2020, doi: 10.1111/1751-7915.13474.spa
dc.relation.referencesT. K. Soon, S. Al-Azad, and J. Ransangan, “Isolation and characterization of purple non-sulfur bacteria, Afifella marina, producing large amount of carotenoids from mangrove microhabitats,” J. Microbiol. Biotechnol., vol. 24, no. 8, pp. 1034–1043, 2014, doi: 10.4014/jmb.1308.08072.spa
dc.relation.referencesMerck, “Microbiology Introduction,” 2021. https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/microbiological-testing/microbial-culture-media-preparation/microbiology-introduction (accessed Oct. 06, 2021).spa
dc.relation.referencesR. Gutiérrez Pulido, Humberto; De la Vara Salazar, Análisis y diseño de experimentos. Mc GrawHill, 2005.spa
dc.relation.referencesP. Moreno, “Evaluación experimental de la producción de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter capsulatus,” Universidad Nacional de Colombia, 2012.spa
dc.relation.referencesF. R. Ortiz Rodriguez, “Evaluación de la producción de hidrógeno en reactores bioelectroquímicos de asistencia microbial (beamr),” 2019.spa
dc.relation.referencesM. S. Kim, D. H. Kim, and J. Cha, “Culture conditions affecting H2 production by phototrophic bacterium Rhodobacter sphaeroides KD131,” Int. J. Hydrogen Energy, vol. 37, no. 19, pp. 14055–14061, 2012, doi: 10.1016/j.ijhydene.2012.06.085.spa
dc.relation.referencesY. E. Martínez Saldaña, “Determinación de biomasa-Labo2. PESO HÚMEDO, PESO SECO, TURBIDIMETRÍA- Laboratorio de biotecnología de los productos agroindustriales,” Trujillo, Dec. 2012. Accessed: Oct. 10, 2021. [Online]. Available: https://es.slideshare.net/yuricomartinez/labo2-peso-hmedo-peso-seco-turbidimetra.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.otherEquilibrio ácido-basespa
dc.subject.otherBiomasasspa
dc.subject.proposalAfifella marinaspa
dc.subject.proposalHidrógenospa
dc.subject.proposalFotofermentaciónspa
dc.subject.proposalÁcidos orgánicosspa
dc.subject.proposalBóraxspa
dc.subject.proposalKPIspa
dc.subject.proposalHydrogeneng
dc.subject.proposalPhotofermentationeng
dc.subject.proposalOrganic acidseng
dc.subject.proposalKPIeng
dc.subject.proposalBoraxeng
dc.subject.proposalAfifella marinaeng
dc.titleEvaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentaciónspa
dc.title.translatedEvaluation of growth conditions and hydrogen production of Afifella marina using industrial waste as a substrate through photofermentationeng
dc.title.translatedÉvaluation des conditions de croissance et de la production d'hydrogène d'Afifella marina en utilisant des déchets industriels comme substrat par photofermentationfra
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014238643.2022.pdf
Tamaño:
4.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: