Efecto de la variabilidad climática en producción y calidad en pera variedad triunfo de Viena (Pyrus communis L.)
dc.contributor.advisor | Vélez Sánchez, Javier Enrique | spa |
dc.contributor.advisor | Ospina Noreña, Jesús Efren | spa |
dc.contributor.author | Bayona Penagos, Lady Viviana | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001763296 | spa |
dc.contributor.educationalvalidator | Darghan Contreras, Aquiles Enrique | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=unhAopkAAAAJ&hl=es&authuser=1 | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-8880-3286 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Lady-Bayona-Penagos | spa |
dc.date.accessioned | 2025-07-01T20:49:17Z | |
dc.date.available | 2025-07-01T20:49:17Z | |
dc.date.issued | 2025-04-09 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Una técnica para predecir el comportamiento de un cultivo es el uso de funciones matemáticas que describan su crecimiento y producción. La implementación de estos modelos y sus condiciones climáticas cambiantes sigue siendo un desafío para el desarrollo sostenible de la agricultura. Esta investigación se centró en analizar datos de crecimiento y producción en un peral, variedad triunfo de Viena (Pyrus communis L.), durante cinco ciclos de cosecha (2011 al 2016), en Sesquilé (Cundinamarca, Colombia). Se realizó un análisis de variabilidad climática interanual, dada la influencia de los fenómenos de El Niño y La Niña en el predio evaluado, con anomalías de temperatura entre ± 3.6 °C. Se examinaron diversos modelos dinámicos para el crecimiento del fruto en relación con la temperatura y la radiación. Al implementar estos modelos, se tomó en cuenta la temperatura de frío necesaria para romper la dormancia de las plantas. Se eligieron las siguientes ecuaciones: Logística, gamma incompleta, Gompertz, monomolecular y Blumberg. Asimismo, se emplearon funciones transformadoras de temperatura como positive chill units, bidabe model, Jones model, low Chill, Taiwan model y unified model. Las simulaciones fueron realizadas en Vensim, implementando la metodología de diagramas Forrester. La caracterización climática, indicó que es una zona semi árida y fría, con temperatura media, máxima y mínima de 13.90 °C, 21.26 °C y 5.29 °C, respectivamente. El modelo que mejor describió el comportamiento de los datos fue “Logística” con “Jones” y “Taiwan”. Las simulaciones realizadas cubrieron el período de análisis del crecimiento del fruto, evidenciando un comportamiento lineal con una tasa de crecimiento constante, desde la fase II o crecimiento exponencial del desarrollo del fruto. (Texto tomado de la fuente). | spa |
dc.description.abstract | A technique for predicting crop behavior is the use of mathematical functions that describe their growth and production. The implementation of these models under changing climatic conditions remains a challenge for sustainable agricultural development. This research focused on analyzing growth and production data in a pear tree, Vienna Triumph variety (Pyrus communis L.), during five harvest cycles (2011 to 2016), in Sesquilé (Cundinamarca, Colombia). An analysis of interannual climate variability was conducted, given the influence of El Niño and La Niña phenomena on the evaluated property, with temperature anomalies between ± 3.6 °C. Various dynamic models for fruit growth in relation to temperature and radiation were examined. When implementing these models, the cold temperature necessary to break plant dormancy was taken into account. The following equations were chosen: Logistic, incomplete gamma, Gompertz, monomolecular, and Blumberg. Likewise, temperature transforming functions such as positive chill units, bidabe model, Jones model, low Chill, Taiwan model, and unified model were employed. Simulations were performed in Vensim, implementing the Forrester diagram methodology. The climatic characterization indicated that it is a semi-arid and cold zone, with mean, maximum, and minimum temperatures of 13.90 °C, 21.26 °C, and 5.29 °C, respectively. The model that best described the data behavior was "Logistic" with "Jones" and "Taiwan". The simulations carried out covered the analysis period of fruit growth, evidencing a linear behavior with a constant growth rate, from phase II or exponential growth of fruit development. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agrarias | spa |
dc.description.researcharea | Aguas y suelo | spa |
dc.format.extent | 156 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88263 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Abadi, L. S. K., Shamsai, A., & Goharnejad, H. (2015). An analysis of the sustainability of basin water resources using Vensim model. KSCE Journal of Civil Engineering, 19(6), 1941–1949. https://doi.org/10.1007/S12205-014-0570-7 | spa |
dc.relation.references | Africano, K. L., Balaguera, H. . E., Almanza, P. J., Cárdenas, J. F., & Herrera, A. (2016). Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Bastch] cv. Dorado producido bajo condiciones de trópico alto. Revista Colombiana de Ciencias Hortícolas, 10(2), 232–240. https://doi.org/10.17584/RCCH.2016V10I2.5212 | spa |
dc.relation.references | AGRONET. (2022). eporte:Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | spa |
dc.relation.references | Ahmed, M. (2008). BIODIVERSITY IN PEARS (PYRUS SPP.): CHARACTERIZATION AND CONSERVATION OF GERMPLASM FROM AZAD JAMMU AND KASHMIR [Bahauddin Zakariya University.]. http://prr.hec.gov.pk/jspui/handle/123456789/257 | spa |
dc.relation.references | Alate, D., Rojas, E., Mosquera, J., & Ramón, J. (2014). Vista de Cambio climático y variabilidad climática para el periodo 1981-2010 en las cuencas de los ríos Zulia y Pamplonita, Norte de Santander – Colombia. Lna Azul, Unviersidad de Caldas, 40. https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1782/1698 | spa |
dc.relation.references | Allen, R. G., Pereira, L., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo: Guias para la determinación de agua de los cultivos. Fao, 56, 297. https://doi.org/10.1016/j.msea.2011.05.042 | spa |
dc.relation.references | Alonso, J. M., Ansón, J. M., Espiau, M. T., & Socias I Company, R. (2005). Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. Journal of the American Society for Horticultural Science, 130(3), 308–318. https://doi.org/10.21273/JASHS.130.3.308 | spa |
dc.relation.references | Alonso, M. (2011). Caracterización sensorial y físico-química de manzanas Reineta y pera Conferencia, figuras de calidad en Castilla y León [Universidad de León]. https://dialnet.unirioja.es/servlet/tesis?codigo=25774&info=resumen&idioma=SPA | spa |
dc.relation.references | Altieri, M. A., & Nicholls, C. I. (2009). Cambio climático y agricultura campesina: impactos y respuestas adaptativas Sistemas diversificados bajo agroforestería y cultivos de cobertura resilientes al huracán Mitch en Honduras. LEISA, REVISTA DE AGROECOLOGÍA, 5–9. | spa |
dc.relation.references | Alumié, M. (2023). Epidemiología, caracterización y control de Stemphylium vesicarium, agente causal de mancha marrón en perales [Universidad Nacional de Quilmes]. In Mycologia (Vol. 91, Issue 3). https://doi.org/10.2307/3761358 | spa |
dc.relation.references | Alvarado, H., Garcia, H., & Alvarado, V. (2019). REGIONALIZACIÓN CLIMÁTICA DEL VALLE DE QUETZALTENANGO Y TOTONICAPÁN, PARA EL CULTIVO DE FRUTALES CADUCIFOLIOS. Programa de Concsorcio Regionales de Investigación Agropecuario Occdidente. | spa |
dc.relation.references | Alvarado, H., García, H., & Alvarado, V. (2019a). “Regionalización climática del valle de Quetzaltenango y Totonicapán, para el cultivo de frutales caducifolios.” Programa Consorcios Regionales de Investigación Agropecuaria, 1–95. | spa |
dc.relation.references | Alvarado, Héctor., García, Hugo., & Alvarado, V. (2019b). REGIONALIZACIÓN CLIMÁTICA DEL VALLE DE QUETZALTENANGO Y TOTONICAPÁN, PARA EL CULTIVO DE FRUTALES CADUCIFOLIOS. USDA. Programa de Consorcios Regionales de Investigación Agropecuaria, 1–65. | spa |
dc.relation.references | Anderson, W. B., Seager, R., Baethgen, W., Cane, M., & You, L. (2019). Synchronous crop failures and climate-forced production variability. Science Advances, 5(7). https://doi.org/10.1126/SCIADV.AAW1976 | spa |
dc.relation.references | Ardila, G., Fischer, G., & Balaguera, H. (2011). Caracterización del crecimiento del fruto y producción de tres híbridos de tomate (Solanum lycopersicum L.) en tiempo fisiológico bajo invernadero. Revista Colombiana de Ciencias Hortícolas, 5(1), 44 56. https://doi.org/10.17584/RCCH.2011V5I1.1252 | spa |
dc.relation.references | Arenas-Bautista, M. Cristina., Vélez-Sánchez, J. Enrique., & Camacho-Tamayo, J. Hernán. (2013). goteo con una y dos líneas Pear fruit growth in drip irrigation systems with one or two lines. Revista Colombiana De Ciencias Hortícolas, 6(2), 140–151. | spa |
dc.relation.references | Atauri, I. G. C., Brisson, N., Baculat, B., Seguin, B., Calleja, M., Farrera, I., Legave, J. M., & Guedon, Y. (2010). Analysis of the flowering time in apple and pear and bud break in vine, in relation to global warming in France. Acta Horticulturae, 872, 61–68. https://doi.org/10.17660/ACTAHORTIC.2010.872.5 | spa |
dc.relation.references | Atkinson, C. J., Brennan, R. M., & Jones, H. G. (2013). Declining chilling and its impact on temperate perennial crops. Environmental and Experimental Botany, 91, 48–62. https://doi.org/10.1016/J.ENVEXPBOT.2013.02.004 | spa |
dc.relation.references | Balcázar, Y., & Lozano, C. (2019). DETERMINACIÓN DE LA VARIABILIDAD CLIMÁTICA Y CAMBIO CLIMÁTICO MEDIANTE EL ANÁLISIS DE LA TEMPERATURA Y LA PRECIPITACIÓN EN EL DISTRITO DE CONTUMAZÁ DURANTE EL PERÍODO 1965 – 2018 [Universidad Privada Antonio Guillermo Urrelo]. In UPAGU. http://repositorio.upagu.edu.pe/handle/UPAGU/1296 | spa |
dc.relation.references | Baranoa, M., & Sancho, E. (1991). Fruticultura general. San José: Universidad Estatal a Distancia, Segunda ed. | spa |
dc.relation.references | Barceló, J., Rodrigo, G., Sabater, B., & Sánchez, R. (2000). Fisiología vegetal (S.A). Pirámide. https://www.edicionespiramide.es/libro.php?id=297926 | spa |
dc.relation.references | Batlle, I., Iglesias, I., Cantin, C. M., Badenes, M. L., Rios, G., Ruiz, D., Dicenta, F., Egea, J., López-Corrales, M., Guerra, E., Alonso, J. M., So-Cias I Company, R., Rodrigo, J., García-Montiel, F., & Garcia-Brunton, J. (2018). Frutales de hueso y pepita. In Influencia del Cambio Climático en la Mejora Genética de Plantas; Sociedad Española de Ciencias Hortícolas: Madrid, 79–130. | spa |
dc.relation.references | Betancourt, L. A., & Garnica, C. M. (2017). ESTUDIO HIDROLÓGICO Y EVALUACIÓN DE DEMANDA EN LA CUENCA HIDROGRÁFICA DEL EMBALSE TOMINÉ LADY ALEXANDRA BETANCOURT BELTRÁN CLAUDIA MARCELA GARNICA TARAZONA UNIVERSIDAD CATÓLICA DE COLOMBIA [Universidad Católica de Colombia]. https://core.ac.uk/download/pdf/85002775.pdf | spa |
dc.relation.references | Blanco, V., & Kalcsits, L. (2023). Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations. Agricultural Water Management, 281. https://doi.org/10.1016/j.agwat.2023.108257 | spa |
dc.relation.references | Boshell, F., León, G., & Peña, A. (2011). Metodologías para generar y utilizar información meteorológica a nivel subnacional y local frente al cambio climático. | spa |
dc.relation.references | Breen, K. C., Tustin, D. S., Palmer, J. W., Hedderley, D. I., & Close, D. C. (2016). Effects of environment and floral intensity on fruit set behaviour and annual flowering in apple. Scientia Horticulturae, 210, 258–267. https://doi.org/10.1016/J.SCIENTA.2016.07.025 | spa |
dc.relation.references | Bruna, E. (2007). Curva de crescimento de frutos de pêssego em regiões subtropicais. Revista Brasileira de Fruticultura, 29(3), 685–689. https://doi.org/10.1590/S0100 29452007000300050 | spa |
dc.relation.references | Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J. S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S. W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X. T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment 2021 2:9, 2(9), 628–644. https://doi.org/10.1038/s43017-021-00199-z | spa |
dc.relation.references | Caicedo, J. D., & Montealegre, J. E. (2017). Los fenómenos de El Niño y de La Niña, su efecto climático e impactos socioeconómicos: Vol. I. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. | spa |
dc.relation.references | Calispa, M., Francisco, J., Santamaría, S., & Samaniego, P. (2023). Los suelos de los páramos del Ecuado. https://www.researchgate.net/profile/Marlon Calispa/publication/371736588_Los_suelos_de_los_paramos_del_Ecuador/links/64 96fda195bbbe0c6eeeb3af/Los-suelos-de-los-paramos-del-Ecuador.pdf | spa |
dc.relation.references | Campillay-Llanos, W., Ortega-Farias, S., & Ahumada-Orellana, L. (2023). Development and validation of phenological models for eight varieties of sweet cherry (Prunus avium L.) growing under Mediterranean climate condition. https://doi.org/10.1016/j.scienta.2023.112711 | spa |
dc.relation.references | CAR, C. A. R. (2022). Histórico de series hidrometeorológicas . https://www.car.gov.co/vercontenido/2524 | spa |
dc.relation.references | Chávez, W., & Arata, A. (2009). El cultivo del peral e la provincia de Caravelí. | spa |
dc.relation.references | Collado-González, J., Cruz, Z. N., Rodríguez, P., Galindo, A., Díaz-Baños, F. G., García De La Torre, J., Ferreres, F., Medina, S., Torrecillas, A., & Gil-Izquierdo, A. (2013). Effect of water deficit and domestic storage on the procyanidin profile, size, and aggregation process in pear-jujube (Z. jujuba) fruits. Journal of Agricultural and Food Chemistry, 61(26), 6187–6197. https://doi.org/10.1021/jf4013532 | spa |
dc.relation.references | Córdoba, C. A. (2016). Resiliencia y variabilidad climática en agroecosistemas cafeteros en Anolaima (Cundinamarca - Colombia). Universidad Nacional de Colombia. | spa |
dc.relation.references | Cruz, A., Morillo, Y., Ariel, leonardo, & Ávila, I. (2016). INTERSPECIFIC ANALYSIS OF GENETIC DIVERSITY IN Pyrus spp. and Malus spp. Biotecnología En El Sector Agropecuario y Agroindustria, 69–77. https://doi.org/DOI:10.18684/BSAA(14)69-77 | spa |
dc.relation.references | Delgado, M., Perfetti, J. J., Junguito, R., & Naranjo, J. D. (2019). USO POTENCIAL Y EFECTIVO DE LA TIERRA AGRÍCOLA EN COLOMBIA: RESULTADOS DEL CENSO NACIONAL AGROPECUARIO. | spa |
dc.relation.references | Dequeker, B., Šalagovič, J., Retta, M., Verboven, P., & Nicolaï, B. M. (2024). A biophysical model of apple (Malus domestica Borkh.) and pear (Pyrus communis L.) fruit growth. Biosystems Engineering, 239, 130–146. https://doi.org/10.1016/J.BIOSYSTEMSENG.2024.02.003 | spa |
dc.relation.references | Díaz, D., Vélez, J., & Rodríguez, P. (2016). Efecto de la aplicación de riego controlado en la producción y calidad del fruto de Pyrus communis L., cv. Triunfo de Viena. Acta Agronómica, 65(2), 156–163. https://doi.org/10.15446/ACAG.V65N2.49650 | spa |
dc.relation.references | Díaz Martínez, J., Hernández, I. C., Gurrola Reyes, J. N., Proal Nájera, J. B., González Güereca, M. C., & Castellanos Pérez, E. (2017). GROWTH MODELS OF PEACH FRUIT Prunus persica (L) IN THREE HANDLING SYSTEMS. 597–602. | spa |
dc.relation.references | Drepper, B., Gobin, A., & Van Orshoven, J. (2022). Spatio-temporal assessment of frost risks during the flowering of pear trees in Belgium for 1971–2068. Agricultural and Forest Meteorology, 315. https://doi.org/10.1016/j.agrformet.2022.108822 | spa |
dc.relation.references | Duval, V. S., Benedetti, G. M., Campo, A. M., Duval, V. S., Benedetti, G. M., & Campo, A. M. (2015). Climate-vegetation relationship: adaptations of jarillal community to the semiarid climate. Lihué Calel National Park, province of La Pampa, Argentina. Investigaciones Geográficas, 2015(88), 33–44. https://doi.org/10.14350/RIG.48033 | spa |
dc.relation.references | Ehrendorfer, M. (2006). The Liouville equation and atmospheric predictability. In R. Hagedorn & T. Palmer (Eds.), Predictability of Weather and Climate (pp. 59–98). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511617652.005 | spa |
dc.relation.references | Fadón, E., Espiau, M. T., Errea, P., Alonso Segura, J. M., & Rodrigo, J. (2023). Agroclimatic Requirements of Traditional European Pear (Pyrus communis L.) Cultivars from Australia, Europe, and North America. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020518 | spa |
dc.relation.references | Fallahi, E., Fallahi, B., Peryea, F. J., Neilsen, G. H., & Neilsen, D. (2010). Effects of mineral nutrition on fruit quality and nutritional disorders in apples. Acta Horticulturae, 868, 49–59. https://doi.org/10.17660/ACTAHORTIC.2010.868.3 | spa |
dc.relation.references | FAO. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. Estudio de Riego y Drenaje No 56 | spa |
dc.relation.references | FAO, O. de las N. U. para la alimentación y la agricultura. (2022). Análisis departamental de Vulnerabilidad y riesgo al cambio climático para el sector Agropecuario. 1–33. https://cambioclimatico.fao.org.co/wp content/uploads/2022/11/CUNDINAMARCA_26.11.2022.pdf | spa |
dc.relation.references | FAOSTAT. (2022). FAO statistics database on the world wide web. In: FAOSTAT database. 2022. http://www.fao.org/faostat/en/#data | spa |
dc.relation.references | Feng, Y., Wei, J., Zhang, G., Sun, X., Wang, W., Wu, C., Tang, M., Gan, Z., Xu, X., Chen, S., & Wang, Y. (2018a). Effects of cooling measures on ‘Nijisseiki’ pear (Pyrus pyrifolia) tree growth and fruit quality in the hot climate. Scientia Horticulturae, 238, 318–324. https://doi.org/10.1016/J.SCIENTA.2018.05.002 | spa |
dc.relation.references | Feng, Y., Wei, J., Zhang, G., Sun, X., Wang, W., Wu, C., Tang, M., Gan, Z., Xu, X., Chen, S., & Wang, Y. (2018b). Effects of cooling measures on ‘Nijisseiki’ pear (Pyrus pyrifolia) tree growth and fruit quality in the hot climate. Scientia Horticulturae, 238, 318–324. https://doi.org/10.1016/j.scienta.2018.05.002 | spa |
dc.relation.references | Fernández, M. (2017). Modelo de Forrester para evaluar procesos biológicos, casos de estudio: crecimiento de hongos en medios líquidos y crecimiento de plántulas de pimentón Capsicum annuum L. biofertilizadas. Universidad Nacional Experimental Del Táchira. | spa |
dc.relation.references | Ferreira, A. R. (2011). DIVERSIDAD GENÉTICA DE LA COLECCIÓN DE CULTIVARES DE PERAL DEL CENTRO DE INVESTIGACIONES AGRARIAS DE MABEGONDO (CIAM, XUNTA DE GALICIA) [Universidade de Santiago de Compostela ]. https://frutales.wordpress.com/wp-content/uploads/2011/01/p-05-cultivares-de-peral gallego1.pdf | spa |
dc.relation.references | Ferreira, I. E. P., Zocchi, S. S., & Baron, D. (2017). Reconciling the Mitscherlich’s law of diminishing returns with Liebig’s law of the minimum. Some results on crop modeling R. Mathematical Biosciences, 293, 29–37. https://doi.org/10.1016/j.mbs.2017.08.008 | spa |
dc.relation.references | Ferreyra, R., Selles, G., Burgos, L., Villagra, P., Sepúlveda, P., & Lemus, G. (2010). Manejo del riego en frutales en condiciones de restricción hídrica. Boletín INIA N°214, 100. | spa |
dc.relation.references | Fischer, G. (2016). Comportamiento de los frutales caducifolios en el trópico en el trópico. January 2013. | spa |
dc.relation.references | Fischer, G., Camacho, J., & Parra, A. (2019). Influence of weather conditions of crop on harvest quality and post-harvest behavior of pineapple guava fruit . Tecnología En Marcha, 32, 86–92. https://dialnet.unirioja.es/servlet/articulo?codigo=7446688 | spa |
dc.relation.references | Fischer, G., & Orduz, J. (2012). Manual para el cultivo de frutales en el trópico: Vol. I (Primera 20). Produmedios. https://www.researchgate.net/profile/Gerhard-Fischer 2/publication/257972716_Introduccion_Manual_para_el_cultivo_de_frutales_en_el_t ropico/links/5794cee608aec89db7a2ca5f/Introduccion-Manual-para-el-cultivo-de frutales-en-el-tropico.pdf | spa |
dc.relation.references | Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomia Colombiana, 40(2), 70–85. https://doi.org/10.15446/agron.colomb.v40n2.101854 | spa |
dc.relation.references | Fischer, G., & Pérez, C. P. (2012). Influence of climatic conditions on harvest and post harvest quality of agricultural products-Mathematical modeling View project. Memorias Congreso Internacional de Hortalizas En El Trópico: La Olericultura Colombiana, Nuevos Retos Para Enfrentar Los Tratados de Libre Comercio , 3–16. https://www.researchgate.net/publication/256575856 | spa |
dc.relation.references | Fischer, G., Ramírez, F., & Casierra, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/AGRON.COLOMB.V34N2.56799 | spa |
dc.relation.references | Fischer, Gerhard., & Miranda, D. (2013). los frutales caducifolios en Colombia Situación actual , sistemas de cultivo y plan de desarrollo (Issue May 2016). | spa |
dc.relation.references | Fisher, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/RFNAM.V74N2.91828 | spa |
dc.relation.references | Forrester, J. W. (1961). Industrial dynamics. | spa |
dc.relation.references | Funes, I., Aranda, X., Biel, C., Carbò, J., Camps, F., Molina, A. J., de Herralde, F., Grau, B., & Savé, R. R. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164, 19–27. https://doi.org/10.1016/J.AGWAT.2015.06.013 | spa |
dc.relation.references | Gadella, M., & Nieto, L. M. (2006). MÉTODOS MATEMÁTICOS AVANZADOS PARA CIENCIAS E INGENIERÍA. https://dehesa.unex.es/bitstream/10662/2368/1/84-689 9786-2.pdf | spa |
dc.relation.references | Gaeta, L., Stellacci, A., & Losciale, P. (2018). Evaluation of three modelling approaches for almond blooming in Mediterranean climate conditions. European Journal of Agronomy, 97, 1–10. https://doi.org/10.1016/J.EJA.2018.04.005 | spa |
dc.relation.references | García, M., Piñeros, A., Bernal, F., & Ardila E. (2012). Climate Variability, Climate Change and Water Resources in Colombia. Revista de Ingeniería, Universidad de Los Andes., 60–64. http://www.scielo.org.co/pdf/ring/n36/n36a12.pdf | spa |
dc.relation.references | García, R., Pérez, M. E., Villazón, J. A., & Cruz, M. (2023). Climate zoning of Mayarí municipality based on Lang index. Cultivos Tropicales, 44. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1689/3456 | spa |
dc.relation.references | Garriz, P. I., Alvarez, H. L., & Colavita, G. M. (2005). Growth pattern of “Abbé Fetel” pear fruits. Acta Horticulturae, 674, 321–327. https://doi.org/10.17660/ACTAHORTIC.2005.674.38 | spa |
dc.relation.references | Garriz, P. I., Colavita, G. M., Alvarez, H. L., Spera, N., & Blackhall, V. (2015). A model for predicting diameter of “Red Sensation” pears. Acta Horticulturae, 1068, 147–152. https://doi.org/10.17660/ACTAHORTIC.2015.1068.18 | spa |
dc.relation.references | Gaussen, H., & Bagnouls, F. (1953). Saison sèche et indice xérothermique. Toulouse: Université de Toulouse, Faculté Des Sciences, 29(3). | spa |
dc.relation.references | Glaz, B., Yeater, K., Myrold, D., Angadi, S., Dong, X., Fang, D., Ganjegunte, G., Srirama, Z., Reddy, K., Liu, L., Logsdon, S., Roberts, T., Shawqi, N., & Gurpal Toor, A. (2018). Applied Statistics in Agricultural, Biological, and Environmental Sciences. 401–447. https://doi.org/10.2134/APPLIEDSTATISTICS | spa |
dc.relation.references | Grab, S., & Craparo Alessandri. (2011). Advance of apple and pear tree full bloom dates in response to climate changen the southwestern Cape, South Africa: 1973–2009. Agricultural and Forest Meteorology, 151, 406–413. https://doi.org/10.1016/j.agrformet.2010.11.001 | spa |
dc.relation.references | Gutiérrez-Villamil, D. A., Álvarez-Herrera, J. G., Fischer, G., & Balaguera-López, H. E. (2024). Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agronomía Colombiana, 42(1), e111402. https://doi.org/10.15446/agron.colomb.v42n1.111402 | spa |
dc.relation.references | Haefner, J. W. (2005). Modeling Biological Systems. Springer US. https://doi.org/10.1007/B106568 | spa |
dc.relation.references | Hernández, C. (2011). Índices de madurez relacionados con calidad de fruta. In Universidad de Talca. http://pomaceas.utalca.cl/html/araucania/Docs/pdf/(5)Actividad Frusan 14-07-2011-/Omar Hernandez.pdf | spa |
dc.relation.references | Hidalgo, M. J., Bóbeda, G. R. R., De León, P., Giménez, L. M., Hidalgo, M. J. ;, Bóbeda, G. R. R. ;, Chabbal, M. D. ;, Ponce De León, L. M. ;, & Giménez, L. I. (2021). Modelos de Crecimiento de Frutos de Limonero “Eureka” de la Provincia de Corrientes, Argentina. Agrotecnia, 0(31), 23–30. https://doi.org/10.30972/AGR.0315812 | spa |
dc.relation.references | Horikoshi, H. M., Sekozawa, Y., Kobayashi, M., Saito, K., Kusano, M., & Sugaya, S. (2018). Metabolomics analysis of “Housui” Japanese pear flower buds during endodormancy reveals metabolic suppression by thermal fluctuation. Plant Physiology and Biochemistry, 126, 134–141. https://doi.org/10.1016/J.PLAPHY.2018.02.028 | spa |
dc.relation.references | Huang, W., Hu, H., & Zhang, S. B. (2021). Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species. Journal of Photochemistry and Photobiology B: Biology, 219, 112203. https://doi.org/10.1016/J.JPHOTOBIOL.2021.112203 | spa |
dc.relation.references | Hussain, S., Niu, Q., Yang, F., Hussain, N., & Teng, Y. (2015). The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biologia Plantarum, 59(4), 726–734. https://doi.org/10.1007/S10535-015-0547-5 | spa |
dc.relation.references | Ibáñez, A., Gisbert, J., & Moreno, H. (2011). Histosoles. https://riunet.upv.es/bitstream/handle/10251/12886/Histosoles.pdf?sequence=3 | spa |
dc.relation.references | IDEAM. (2016). Boletín informativo sobre el monitoreo de los Fenómenos de variabilidad climática “El Niño” y “La Niña.” http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/meanrain.sht ml | spa |
dc.relation.references | IDEAM. (2017). BOLETINES FENÓMENOS NIÑO Y NIÑA - IDEAM. http://www.ideam.gov.co/web/sala-de-prensa/boletines-fenomeno-nino-y nina?p_p_id=110_INSTANCE_RSHMphb97qfo&p_p_lifecycle=0&p_p_state=normal &p_p_mode=view&p_p_col_id=column 1&p_p_col_count=1&_110_INSTANCE_RSHMphb97qfo_struts_action=%2Fdocume nt_library_display%2Fview_file_entry&_110_INSTANCE_RSHMphb97qfo_redirect= http%3A%2F%2Fwww.ideam.gov.co%2Fweb%2Fsala-de-prensa%2Fboletines fenomeno-nino-y-nina%2F %2Fdocument_library_display%2FRSHMphb97qfo%2Fview%2F72137292&_110_IN STANCE_RSHMphb97qfo_fileEntryId=2550477 | spa |
dc.relation.references | IDEAM, I. de H. M. y E. A. de C., & UNAL, U. N. de C. (2018). LA VARIABILIDAD CLIMÁTICA Y EL CAMBIO CLIMÁTICO EN COLOMBIA. 1, 1–28. | spa |
dc.relation.references | IGAC, I. geográfico A. C. (2023). Colombia en mapas. https://www.colombiaenmapas.gov.co/ | spa |
dc.relation.references | Jackson, J. (2003). Biology of apples and pears: Vol. I. Cambridge University Press. | spa |
dc.relation.references | Jackson, J. E. (2003). The Biology of Apples and Pears. The Biology of Apples and Pears. https://doi.org/10.1017/CBO9780511542657 | spa |
dc.relation.references | Jahed, K. R. (2023). Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. Frontiers in Plant Science, 14, 1122397. https://doi.org/10.3389/FPLS.2023.1122397/PDF | spa |
dc.relation.references | Jaramillo-Robledo, A., & Chaves-Córdoba, B. (2000a). DISTRIBUCIÓN DE LA PRECIPITACIÓN EN COLOMBIA ANALIZADA MEDIANTE CONGLOMERACIÓN ESTADÍSTICA. Cenicafé, 51(2), 102–113. | spa |
dc.relation.references | Jaramillo-Robledo, A., & Chaves-Córdoba, B. (2000b). DISTRIBUCIÓN DE LA PRECIPITACIÓN EN COLOMBIA ANALIZADA MEDIANTE CONGLOMERACIÓN ESTADÍSTICA. 102 Cenicafé, 51(2), 102–113. | spa |
dc.relation.references | Kalkisim, O., Okcu, Z., Karabulut, B., Ozdes, D., & Duran, C. (2017). Evaluation of Pomological and Morphological Characteristics and Chemical Compositions of Local Pear Varieties (Pyrus communis L.) Grown in Gumushane, Turkey. Erwerbs Obstbau 2017 60:2, 60(2), 173–181. https://doi.org/10.1007/S10341-017-0354-6 | spa |
dc.relation.references | Kay, R. (1988). Fruit culture : its science and art: Vol. I. John Wiley and Sons. | spa |
dc.relation.references | Kumar, A., Mushtaq, M., Kumar, P., Sharma, D. P., & Gahlaut, V. (2024). Insights into flowering mechanisms in apple (Malus × domestica Borkh.) amidst climate change: An exploration of genetic and epigenetic factors. In Biochimica et Biophysica Acta - General Subjects (Vol. 1868, Issue 5). Elsevier B.V. https://doi.org/10.1016/j.bbagen.2024.130593 | spa |
dc.relation.references | Ladino, S., & Arias, N. (2024). Análisis del comportamiento de la intensidad de la lluvia en subzonas palmeras de Colombia durante el periodo 2018-2022. Ceniavances, 197. https://publicaciones.fedepalma.org/index.php/ceniavances/article/view/14200/14070 | spa |
dc.relation.references | Lambers, H., & Oliveira, R. S. (2019). Plant physiological ecology. In Plant Physiological Ecology. Springer International Publishing. https://doi.org/10.1007/978-3-030-29639 1 | spa |
dc.relation.references | Lee, J.-C. ;, Park, Y.-S. ;, Jeong, H.-N. ;, Kim, J.-H. ;, Heo, J.-Y., Lee, J.-C., Park, Y.-S., Jeong, H.-N., Kim, J.-H., & Heo, J.-Y. (2023). Temperature Changes Affected Spring Phenology and Fruit Quality of Apples Grown in High-Latitude Region of South Korea. Horticulturae 2023, Vol. 9, Page 794, 9(7), 794. https://doi.org/10.3390/HORTICULTURAE9070794 | spa |
dc.relation.references | León, A. F., Ramírez, C., Rendón Sáenz, J. R., Imbachi-Quinchua, L. C., Unigarro Martínez, C. A., & Balaguera-López, H. E. (2022). Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agronomía Colombiana, 40(3), 344–353. https://doi.org/10.15446/agron.colomb.v40n3.101333 | spa |
dc.relation.references | L’Heureux, M., Collins, D., & Hu, Z. (2012). Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Climate Dynamics 2012 40:5, 40(5), 1223–1236. https://doi.org/10.1007/S00382 012-1331-2 | spa |
dc.relation.references | Lin, L., Niu, Z., Jiang, C., Yu, L., Wang, H., & Qiao, M. (2022). Influences of open-central canopy on photosynthetic parameters and fruit quality of apples (Malus × domestica) in the Loess Plateau of China. Horticultural Plant Journal, 8(2), 133–142. https://doi.org/10.1016/J.HPJ.2021.03.008 | spa |
dc.relation.references | Manivasagam, V. S., & Rozenstein, O. (2020). Practices for upscaling crop simulation models from field scale to large regions. Computers and Electronics in Agriculture, 175, 105554. https://doi.org/10.1016/J.COMPAG.2020.105554 | spa |
dc.relation.references | Marek, G., Baumhardt, R., Brauer, D., Moorhead, J., Gowda, P. H., & Mauget, S. (2018). Evaluation of the Oceanic Niño Index as a decision support tool for winter wheat cropping systems in the Texas High Plains using SWAT. Computers and Electronics in Agriculture, 151, 331–337. https://doi.org/10.1016/J.COMPAG.2018.06.030 | spa |
dc.relation.references | Marsal, J., Mata, M., Arbonés, A., Rufat, J., & Girona, J. (2002). Regulated deficit irrigation and rectification of irrigation scheduling in young pear trees: an evaluation based on vegetative and productive response. European Journal of Agronomy, 17(2), 111–122. https://doi.org/10.1016/S1161-0301(02)00002-3 | spa |
dc.relation.references | Martínez, J. D., Hernández, I. C., J.N.G., N., Güereca, M. C. G., & Pérez, E. C. (2017). Growth models of peach fruit Prunus pérsica (L) in three handling systems. Interciencia. Interciencia, 42, 597–602. | spa |
dc.relation.references | Martínez, M., Balois, R., Tejaca, I., Cortes, M., Palomino, Y., & Lopez, G. (2017). Postharvest fruits: maturationand biochemical changes. Revista Mexicana de Ciencias Agrícolas, 8(SPE19), 4075–4087. https://doi.org/10.29312/REMEXCA.V0I19.674 | spa |
dc.relation.references | Martínez, P. F., & Alcocer, V. H. (2020). Dynamic modeling of reservoirs operation (in Spanish). UDLAP, 17–27. https://www.researchgate.net/publication/338435154 | spa |
dc.relation.references | McKinnon, K. A., & Deser, C. (2018). Internal variability and regional climate trends in an observational large ensemble. Journal of Climate, 31(17), 6783–6802. https://doi.org/10.1175/JCLI-D-17-0901.1 | spa |
dc.relation.references | Melgarejo, L. (2010). de crecimiento en plantas. Laboratorio de Fisiologia Vegetal. Charlie Ltda. http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Im agenes/Portadas_Libros/Biologia/Experimentos_en_fisiologia_Vegetal/Experimentos EnFisiologiaVegetal.pdf | spa |
dc.relation.references | Melo, S. F., Riveros, L. C., Romero, G., Álvarez, A. C., Díaz, C., & Calcerón, S. L. (2017). Efectos económicos de futuras sequías en Colombia: Estimación a partir del Fenómeno El Niño 2015. https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/466.pdf | spa |
dc.relation.references | Mendoza, I., Peres, C. A., & Morellato, L. P. C. (2017). Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global and Planetary Change, 148, 227–241. https://doi.org/10.1016/J.GLOPLACHA.2016.12.001 | spa |
dc.relation.references | Milech, C., Dini, M., Franzon, R., & do Carmo Bassols Raseira, M. (2022). Chilling requirement of four peach cultivars estimated by changes in flower bud weights. Revista Ceres, 69(1), 22–30. https://doi.org/10.1590/0034-737X202269010004 | spa |
dc.relation.references | Milech, C., Dini, M., Scariotto, S., Santos, J., Herter, F., & Raseira, M. (2018). Chilling Requirement of Ten Peach Cultivars Estimated by Different Models. Journal of Experimental Agriculture International, 20(4), 1–9. https://doi.org/10.9734/jeai/2018/39204 | spa |
dc.relation.references | Milech, C. G., Dini, M., Franzon, R. C., & do Carmo Bassols Raseira, M. (2022). Chilling requirement of four peach cultivars estimated by changes in flower bud weights. Revista Ceres, 69(1), 22–30. https://doi.org/10.1590/0034-737X202269010004 | spa |
dc.relation.references | Milech, C., Scariotto, S., Dini, M., Herter, F., & Raseira, M. (2018). MODELS TO ESTIMATE CHILLING ACCUMULATION UNDER SUBTROPICAL CLIMATIC CONDITIONS IN BRAZIL. Revista Brasileira de Climatologia, 23. https://doi.org/10.5380/abclima.v23i0.53086 | spa |
dc.relation.references | Molina, M. J., Vélez, J. E., & Rodríguez, P. (2015). Efecto del riego deficitario controlado en las tasas de crecimiento del fruto de pera (Pyrus communis L.), var. Triunfo de Viena. Revista Colombiana de Ciencias Hortícolas, 9(2), 234–246. https://doi.org/10.17584/RCCH.2015V9I2.4179 | spa |
dc.relation.references | Montealegre, J., & Pabon, J. (2000). La variabilidad climática interanual asociada al ciclo el niño-la niña– oscilación del sur y su efecto en el patrón pluviométrico de Colombia. Meteorología Colombiana , 2, 7–21. | spa |
dc.relation.references | Morandi, B., Losciale, P., Manfrini, L., Zibordi, M., Anconelli, S., Pierpaoli, E., & Corelli Grappadelli, L. (2014). Leaf gas exchanges and water relations affect the daily patterns of fruit growth and vascular flows in Abbé Fétel pear (Pyrus communis L.) trees. Scientia Horticulturae, 178, 106–113. https://doi.org/10.1016/j.scienta.2014.08.009 | spa |
dc.relation.references | Moreno, A., Vélez, J., & Intrigliolo, S. (2017). Effect of deficit irrigation on yield and quality of pear (Pyrus communis cv. Triumph of Vienna). Agronomía Colombiana, 35, 350 356. https://revistas.unal.edu.co/index.php/agrocol/article/view/64313/68399 | spa |
dc.relation.references | Morón, M. A. (2024). Efecto del cambio climático en la acumulación de frío y en el desarrollo fenológico del peral [Unviersidad Nacional Autónoma de México]. https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000864736/3/0864736.pdf | spa |
dc.relation.references | Musacchi, S., & Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409–430. https://doi.org/10.1016/J.SCIENTA.2017.12.057 | spa |
dc.relation.references | Naor, A., Klein, I., & Doron, I. (1995). Stem Water Potential and Apple Size. Journal of the American Society for Horticultural Science, 120, 577–582. | spa |
dc.relation.references | Navarro, E., Arias, P., & Vieira, S. (2019). El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 120–132. https://doi.org/10.18257/RACCEFYN.704 | spa |
dc.relation.references | Nicholls, C., & Altieri, Migue. (2019). Agro-ecological bases for the adaptation of agriculture to climate change. Cuadernos de Investigación UNED, 11(1), 729–730. https://doi.org/10.2134/JEQ2005.0729 | spa |
dc.relation.references | Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., & Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO Journal, 20(20), 5587–5594. https://doi.org/10.1093/EMBOJ/20.20.5587 | spa |
dc.relation.references | Noriega, L., Navarrete, R., Salazar-Moreno, J., & Lorenzo López-Cruz, I. (2021). Review: corn growth and yield models under climate change scenarios. Revista Mexicana Ciencias Agrícolas, 12(1), 1–14. https://www.scopus.com | spa |
dc.relation.references | Nur, W., & Darmawati, D. (2023). Parameter Estimation of The Blumberg Model Using Simulated Annealing Algorithm: Case Study of Broiler Body Weight. Journal of Mathematics: Theory and Applications, 5, 7–10. https://doi.org/10.31605/jomta.v5i1.1762 | spa |
dc.relation.references | Nurul Syaza, A. L., Noor Asma Mohd, A. M., & Norin Syerina, M. A. (2020). Agriculture Management Strategies Using Simple Logistic Growth Model. IOP Conference Series: Earth and Environmental Science, 596(1). https://doi.org/10.1088/1755 1315/596/1/012076 | spa |
dc.relation.references | NWS, N. wether service. (2022). The Oceanic Niño Index (ONI). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php | spa |
dc.relation.references | OLIVEIRA, I. V. D. M., LOPES, P. R. C., & SILVA-MATOS, R. R. S. DA. (2017). Phenological characterization of pear trees (Pyrus communis L.) ‘princesinha’ under semiarid conditions in the northeastern Brazil. Revista Brasileira de Fruticultura, 39(3). https://doi.org/10.1590/0100-29452017598 | spa |
dc.relation.references | Ortiz, A. L., Ruiz, M., & Rodríguez, J. P. (2017). Planning and management of water resources: a review of the importance of climate variability. Logos, Ciencia y Tecnología. https://www.redalyc.org/pdf/5177/517754057010.pdf | spa |
dc.relation.references | Panta, S., Zhou, B., Zhu, L., Maness, N., Rohla, C., Costa, L., Ampatzidis, Y., Fontainer, C., Kaur, A., & Zhang, L. (2023). Selecting non-linear mixed effect model for growth and development of pecan nut. Scientia Horticulturae, 309, 304–4238. https://doi.org/10.1016/j.scienta.2022.111614 | spa |
dc.relation.references | Paredes, A., Rivera, H., & Tolentino, I. (2012). Dynamic model for academic school systems engineering professional. Investigación Valdizana, 6(2), 68–73. http://www.redalyc.org/articulo.oa?id=586061883015 | spa |
dc.relation.references | Park, Y., & Park, H. S. (2019). Heat unit model for classifying the environmentally controlled period during ecodormancy. Scientia Horticulturae, 256. https://doi.org/10.1016/j.scienta.2019.05.063 | spa |
dc.relation.references | Parra, A. (2014). Efecto de las condiciones climáticas en el crecimiento y calidad poscosecha del fruto de la feijoa (Acca sellowiana (O. Berg) Burret). Universidad Nacional de Colombia. | spa |
dc.relation.references | Parra, A., Hernandez, J., & Camacho, J. (2006). Estudio de algunas propiedades físicas y fisiológicas precosecha de la pera variedad Triunfo de Viena. Revista Brasileira de Fruticultura, 28(ISSN 0100-2945On-line version ISSN 1806-9967). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452006000100017 | spa |
dc.relation.references | Parra, C., & Hernández, H. (2000). Manejo poscosecha de la pera variedad Triunfo de Viena. | spa |
dc.relation.references | Pertille, R. H., Sachet, M. R., Guerrezi, M. T., & Citadin, I. (2019). An R package to quantify different chilling and heat models for temperate fruit trees. Computers and Electronics in Agriculture, 167, 105067. https://doi.org/10.1016/J.COMPAG.2019.105067 | spa |
dc.relation.references | Pineda, E., & Téllez, F. R. (2018). Modelling and simulation of the Colombian cocoa production chain. INGE CUC, 14(1), 141–150. https://doi.org/10.17981/ingecuc.14.1.2018.13 | spa |
dc.relation.references | Pinzón, H., Pineda, W., & Serrano, P. (2021). Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Revista Colombiana de Ciencias Hortícolas, 15(3), e13259–e13259. https://doi.org/10.17584/RCCH.2021V15I3.13259 | spa |
dc.relation.references | Pinzón-Sandoval, E. H., Pineda-Ríos, W., & Serrano-Cely, P. (2021). Mathematical models for describing growth in peach (Prunus persica [L.] Batsch.) fruit cv. Dorado. Revista Colombiana de Ciencias Horticolas, 15(3). https://doi.org/10.17584/rcch.2021v15i3.13259 | spa |
dc.relation.references | Pio, R., da Hora Farias, D., Maranha Peche, P., Barcelos Bisi, R., Henrique Vote Fazenda, L., & Dias da Silva, A. (2023). Production stability of pear cultivars for cultivation in the subtropical altitude climate. Bragantina, 82, 1–12. https://doi.org/10.1590/1678-4499-2023-0167 | spa |
dc.relation.references | Polla, G. (2020). METHODOLOGY TO IMPROVE IRRIGATION EFFICIENCY APPLICATION IN A DISTRICT OF THE HIGH VALLEY OF RÍO NEGRO KEYWORDS: surface irrigation; application efficiency; mathematical models;. SEMIÁRIDA Revista de La Facultad de Agronomía UNLPam, 30(1), 41–48. https://doi.org/10.19137/semiarida.2020(01).4148 | spa |
dc.relation.references | Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1 | spa |
dc.relation.references | Raffo, M. D., Castro, A., Curetti, M., Villarreal, P., Lago, J., & Calvo, G. (2021). Resultados preliminares con el uso de Mallas Multipropósito en perales cv Forelle en el Alto Valle. EEA Alto Valle, INTA, 5–9. https://repositorio.inta.gob.ar/handle/20.500.12123/11093 | spa |
dc.relation.references | Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). https://doi.org/10.3390/plants9060790 | spa |
dc.relation.references | Rasteiro, C. M., & Isidoro, N. (2008). A model for predicting fruit growth of “Rocha” pear. Acta Horticulturae, 800 PART 1, 325–330. https://doi.org/10.17660/ACTAHORTIC.2008.800.40 | spa |
dc.relation.references | Rau, P. (2013). El Fenómeno El Niño y su influencia sobre las precipitaciones en Peru, nuevas perspectivas. Hidráulica y Geotecnia. | spa |
dc.relation.references | Reeves, L. A., Garratt, M. P. D., Fountain, M. T., & Senapathi, D. (2022). Climate induced phenological shifts in pears – A crop of economic importance in the UK. Agriculture, Ecosystems and Environment, 338. https://doi.org/10.1016/j.agee.2022.108109 | spa |
dc.relation.references | Rezaei, E. E., Rojas, L. V., Zhu, W., & Cammarano, D. (2022). The potential of crop models in simulation of barley quality traits under changing climates: A review. Field Crops Research, 286, 108624. https://doi.org/10.1016/J.FCR.2022.108624 | spa |
dc.relation.references | Rodríguez, A. B., Muñoz, A. R., Curetti, M., Raffo, M. D., Rodríguez, A. B., Muñoz, A. R., Curetti, M., & Raffo, M. D. (2020). IMPACTO DE LA VARIABILIDAD CLIMÁTICA ESTACIONAL EN LA FENOLOGÍA DE PERA (Pyrus communis L.) CV. WILLIAMS EN RÍO NEGRO-ARGENTINA. Chilean Journal of Agricultural & Animal Sciences, 36(2), 129–139. https://doi.org/10.29393/CHJAAS36-HIA40011 | spa |
dc.relation.references | Rodríguez, A., & Muñoz, Á. (2022). Variabilidad agroclimática en el Alto Valle de Río Negro y Neuquén Análisis de los últimos 50 años. Ministerio de Agricultura, Ganadería y Pesca, 1–71. | spa |
dc.relation.references | Rosado, R. D. S., Penso, G. A., Serafini, G. A. D., Magalhães dos Santos, C. E., Picoli, E. A. de T., Cruz, C. D., Barreto, C. A. V., Nascimento, M., & Cecon, P. R. (2022). Artificial neural network as an alternative for peach fruit mass prediction by non destructive method. Scientia Horticulturae, 299, 111014. https://doi.org/10.1016/J.SCIENTA.2022.111014 | spa |
dc.relation.references | Ruiz-Ochoa, M. A., Torres-Corredor, J. S., Vargas-Corredor, Y. A., & Orduz-Amaya, L. P. (2023). Variabilidad climática (precipitación, temperatura y humedad relativa) para la gestión hídrica del departamento del Casanare, Colombia. Información Tecnológica, 34(5), 47–60. https://doi.org/10.4067/s0718-07642023000500047 | spa |
dc.relation.references | Sabine, A. (2017). Perspectivas mundiales de las principales frutas tropicales . FAO, 1 15. | spa |
dc.relation.references | Samaniego, H. (2019). Un modelo para el control de inventarios utilizando dinámica de sistemas. Estudios de La Gestión: Revista Internacional de Administración, 6, 134 154. https://doi.org/10.32719/25506641.2019.6.6 | spa |
dc.relation.references | Sánchez, J. M. (2021). EVALUACIÓN DEL TRANSPORTE DE HUMEDAD ATMOSFÉRICA DESDE EL OCÉANO ATLÁNTICO HACIA LAS CUENCAS DEL ORINOCO Y EL NORTE DEL AMAZONAS DURANTE EL AÑO 2010 MEDIANTE EL MODELO WRF-TRACERS. Universidad de Antioquia. | spa |
dc.relation.references | Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & Luis García-Martínez, J. (2017). Gibberellin Regulation of Fruit Set and Growth in Tomato . https://doi.org/10.1104/pp.107.098335 | spa |
dc.relation.references | Silveira, M., Faoro, I. D., Herter, G., Pandolfo, C., Rodrigues, I., Almeida, D. E., Alba, M. F., Francisco, J., & Pereira, M. (2017). Agroclimatic zoning of european and asian pear cultivars with potential for commercial planting in southern Brazil. Revista Brasileira de Fruticultura, 39(2). https://doi.org/10.1590/0100-29452017312 | spa |
dc.relation.references | Sosa, M., & Lutz, M. (2020). ENFERMEDADES DEL PERAL (Pyrus communis) EN MONTES COMERCIALES DE LA NORPATAGONIA ARGENTINA. Boletín de La Asociación de Argentina de Fitopatólogos, 6. http://aafitopatologos.com.ar | spa |
dc.relation.references | Sugar, D., Righetti, T. L., Sanchez, E. E., & Khemira, H. (2018). Management of Nitrogen and Calcium in Pear Trees for Enhancement of Fruit Resistance to Postharvest Decay. HortTechnology, 2(3), 382–387. https://doi.org/10.21273/HORTTECH.2.3.382 | spa |
dc.relation.references | Sun, H., Hou, Y., Mei, Y., Hao, P., Wang, X., & Lyu, D. (2022). Role of NADPH oxidase mediated hydrogen peroxide in 5-aminolevulinic acid induced photooxidative stress tolerance in pear leaves. Scientia Horticulturae, 294, 110771. https://doi.org/10.1016/J.SCIENTA.2021.110771 | spa |
dc.relation.references | Sun, M. D., Wu, Y., Liang, Z. X., Liu, J., Wang, W. J., & Liu, S. Z. (2022). The response of pear tree and fruit growth to the water stress applied during different growing stages of pear tree. Acta Horticulturae, 1335, 527–532. https://doi.org/10.17660/ACTAHORTIC.2022.1335.66 | spa |
dc.relation.references | Takemura, Y., Kuroki, K., Matsumoto, K., & Tamura, F. (2013a). Cultivar and areal differences in the breaking period of bud endodormancy in pear plants. Scientia Horticulturae, 154, 20–24. https://doi.org/10.1016/j.scienta.2013.02.011 | spa |
dc.relation.references | Takemura, Y., Kuroki, K., Matsumoto, K., & Tamura, F. (2013b). Cultivar and areal differences in the breaking period of bud endodormancy in pear plants. Scientia Horticulturae, 154, 20–24. https://doi.org/10.1016/J.SCIENTA.2013.02.011 | spa |
dc.relation.references | Thornthwaite, & Mather. (1957). Instructions and tables for computer potential evapotranspiration and the water balance. Thornthwaite Associates. Thornthwaite Associates. | spa |
dc.relation.references | Tominaga, A., Ito, A., Sugiura, T., & Yamane, H. (2022). How Is Global Warming Affecting Fruit Tree Blooming? “Flowering (Dormancy) Disorder” in Japanese Pear (Pyrus pyrifolia) as a Case Study. Frontiers in Plant Science, 12, 787638. https://doi.org/10.3389/FPLS.2021.787638/BIBTEX | spa |
dc.relation.references | Tropicos.org. (2024). Tropicos - Home. https://www.tropicos.org/home | spa |
dc.relation.references | Urbina, V. (2007). DAÑOS POR HELADAS EN FRUTALES. SINTOMATOLOGÍA Y EVALUACIÓN . Valoració de Danys Climatològics i Incendis. https://core.ac.uk/download/pdf/70290173.pdf | spa |
dc.relation.references | Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316 | spa |
dc.relation.references | Velasco, M., Morales, T., Bernal, R., & Zagoya, J. (2021). Relación del Índice ENOS (El Niño-Oscilación del Sur) en Ciclos Agrícolas del Estado de Tlaxcala, México: 1980 2016. Regiones y Desarrollo Sustentable, 21(40), 205–220. http://www.coltlax.edu.mx/openj/index.php/ReyDS/article/view/119 | spa |
dc.relation.references | Vélez, J., Balaguera, H., & Alvarez, J. (2021). Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Scientia Horticulturae, 278, 109880. https://doi.org/10.1016/J.SCIENTA.2020.109880 | spa |
dc.relation.references | Vélez, J. E., Balaguera, H. E., & Rodríguez, P. (2021). The water status of pear (Pyrus communis L.) under application of regulated deficit irrigation in high tropical latitudinal conditions. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/J.JSSAS.2021.12.003 | spa |
dc.relation.references | VENSIM. (2022). Software Vensim . https://vensim.com/vensim-software/ | spa |
dc.relation.references | Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222. https://doi.org/10.1146/ANNUREV-ENVIRON-020411-130608 | spa |
dc.relation.references | Villamizar, G., & Calderón, Y. (2005). Proyecto compilación y levantamiento de la información geomecánica. Instituto Colombiano de Geología y Minería (Ingeominas). | spa |
dc.relation.references | Wang, J., & Guo, X. (2024). The Gompertz model and its applications in microbial growth and bioproduction kinetics: Past, present and future. Biotechnology Advances, 72, 108335. https://doi.org/10.1016/j.biotechadv.2024.108335 | spa |
dc.relation.references | Wu, Y., Zhao, Z., Wang, W., Ma, Y., & Huang, X. (2013). Yield and growth of mature pear trees under water deficit during slow fruit growth stages in sparse planting orchard. Scientia Horticulturae, 164, 189–195. https://doi.org/10.1016/j.scienta.2013.09.025 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.agrovoc | Variabilidad del clima | spa |
dc.subject.agrovoc | climate variability | eng |
dc.subject.agrovoc | Producción vegetal | spa |
dc.subject.agrovoc | crop production | eng |
dc.subject.agrovoc | Pyrus communis | spa |
dc.subject.agrovoc | Pyrus communis | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.proposal | Caducifolios | spa |
dc.subject.proposal | Diagramas de Forrester | spa |
dc.subject.proposal | Grados frío | spa |
dc.subject.proposal | Variabilidad climática | spa |
dc.subject.proposal | Deciduous trees | eng |
dc.subject.proposal | Forrester diagrams | eng |
dc.subject.proposal | Chill hours | eng |
dc.subject.proposal | Climatic variability | eng |
dc.title | Efecto de la variabilidad climática en producción y calidad en pera variedad triunfo de Viena (Pyrus communis L.) | spa |
dc.title.translated | Effect of climate variability on yield and fruit quality in pear (Pyrus communis l.) cultivar Triunfo de Viena | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020748713.2025.pdf
- Tamaño:
- 3.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: