Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design

dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.authorCastañeda Parra, Fahir Dario
dc.contributor.orcidCastañeda Parra, Fahir Dario [0000-0002-7191-5940]spa
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2023-04-12T16:26:12Z
dc.date.available2023-04-12T16:26:12Z
dc.date.issued2023-03-31
dc.descriptionilustraciones, fotografías a colorspa
dc.descriptionilustraciones, fotografías principalmente colorspa
dc.description.abstractBone tissue engineering focuses, in addition to other things, on the understanding of bone structures to promote their formation with scaffolds. The manufacturing processes of scaffolds with variable density are complicated for traditional manufacturing methods, where localized holes are drilled in structures to mimic bone architecture. In recent years, tissue engineering has benefited from advances in the development of additive manufacturing, which allows the creation of complex geometries such as scaffolds. To explore this method, the use of image-based design is proposed. In this thesis, a scaffold with variable internal density is developed, which can be fabricated by additive manufacturing by controlling the external and internal geometry of the structure, porosity, and pore size from diagnostic images. (Texto tomado de la fuente)eng
dc.description.abstractLa ingeniería de tejidos ósea se encarga, entre otros, de la comprensión de las estructuras de los huesos para tratar de promover su formación con scaffolds. Los procesos de fabricación de scaffolds con densidad variable se dificultan para métodos tradicionales de manufactura en donde se realizan agujeros localizados en estructuras con el objetivo de lograr imitar la arquitectura del hueso. En los últimos años, la Ingeniería de Tejidos se ha visto beneficiada de los avances que se han realizado en el desarrollo de la manufactura aditiva, la cual permite la creación de geometrías complejas como las de los scaffolds. Para incursionar en este método, se propone el uso del diseño basado en imágenes diagnosticas. En esta tesis se desarrolla un scaffold con densidad interna variable, que puede ser llevado a su fabricación por manufactura aditiva controlando geometría externa e interna de la estructura, porosidad y tamaño de poro a partir de imágenes diagnosticas.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería de tejidosspa
dc.format.extentx, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83700
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesM. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.spa
dc.relation.referencesJ. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I: Structure, blood supply, cells, matrix, and mineralization.,” Instr Course Lect, vol. 45, pp. 371–86, 1996, doi: 10.3390/jfb1010022.spa
dc.relation.referencesJ. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos: una introducción Osseous Regeneration through Tissue Engineering :,” Redalyc.org, p. 13, 2009, [Online]. Available: http://www.redalyc.org/pdf/1792/179214945008.pdfspa
dc.relation.referencesK. a Hing, “Bone repair in the twenty-first century: biology, chemistry or engineering?,” Philos Trans A Math Phys Eng Sci, vol. 362, no. 1825, pp. 2821–50, 2004, doi: 10.1098/rsta.2004.1466.spa
dc.relation.referencesInternational Osteoporosis Foundation, “Osteoporosis en Colombia,” International Osteoporosis Foundation, p. 3, 2012, [Online]. Available: https://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional Audits/2012- Latin_America_Audit-Colombia-ES_0_0.pdfspa
dc.relation.referencesElespectador.com, “En Colombia se realizan 10.000 reemplazos de cadera o rodilla al año - ELESPECTADOR.COM,” El Espectador, Bogotá, 2009. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elespectador.com/noticias/salud/articulo114216- colombia-se-realizan-10000-reemplazos-de-cadera-o-rodilla-al-anospa
dc.relation.referencesN. Ospina Vélez, “Reemplazo articular aumenta en personas jóvenes,” El Colombiano, 2012. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elcolombiano.com/historico/reemplazo_articular_aumenta_en_personas_ jovenes-EBEC_177333spa
dc.relation.referencesD. Z. Amaro, “Regeneración de tejido : Una solución para la deficiencia ósea,” 2012.spa
dc.relation.referencesL. J. Bonassar and C. a Vacanti, “Tissue engineering: the first decade and beyond.,” J Cell Biochem Suppl, vol. 30–31, no. September, pp. 297–303, 1998, doi: 10.1002/(SICI)1097- 4644(1998)72.spa
dc.relation.referencesW. M. Saltzman and T. R. Kyriakides, Cell interactions with polymers_Lanza19.pdf, Third Edit. Elsevier Inc., 2014. doi: 10.1016/B978-0-12-370615-7.50024-Xspa
dc.relation.referencesL. J. Gibson and M. F. Ashby, Cellular Solids, vol. 22, no. 4. Cambridge: Cambridge University Press, 1997. doi: 10.1017/CBO9781139878326.spa
dc.relation.referencesM. Scheffler and P. Colombo, Cellular Ceramics. Wiley, 2005. doi: 10.1002/3527606696.spa
dc.relation.referencesL. J. Gibson, M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff, “The Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency,” Proceedings: Mathematical and Physical Sciences, vol. 450. Royal Society, pp. 141–162. doi: 10.2307/52663.spa
dc.relation.referencesJ. G. Skedros and S. L. Baucom, “Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur,” J Theor Biol, vol. 244, no. 1, pp. 15–45, Jan. 2007, doi: 10.1016/j.jtbi.2006.06.029.spa
dc.relation.referencesC. H. Turner, “On Wolff’s law of trabecular architecture,” J Biomech, vol. 25, no. 1, pp. 1– 9, Jan. 1992, doi: 10.1016/0021-9290(92)90240-2.spa
dc.relation.referencesL. Esteban-Tejeda et al., “Bone tissue scaffolds based on antimicrobial SiO2-Na2OAl2O3-CaO-B2O3 glass,” J Non Cryst Solids, vol. 432, pp. 73–80, 2016, doi: 10.1016/j.jnoncrysol.2015.05.040.spa
dc.relation.referencesQ. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00015-x.spa
dc.relation.referencesY. Kim, J. Y. Lim, G. H. Yang, J.-H. Seo, H.-S. Ryu, and G. Kim, “3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration,” Journal of Industrial and Engineering Chemistry, 2019, doi: 10.1016/j.jiec.2019.06.027.spa
dc.relation.referencesZ. Khurshid et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00018-5.spa
dc.relation.referencesA. M. Deliormanli, “Size-dependent degradation and bioactivity of borate bioactive glass,” Ceram Int, vol. 39, no. 7, pp. 8087–8095, 2013, doi: 10.1016/j.ceramint.2013.03.081.spa
dc.relation.referencesJ. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J Mech Behav Biomed Mater, vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.spa
dc.relation.referencesD. W. Rosen, S. Johnston, M. Reed, and H. Wang, “Design of General Lattice Structures for Lightweight and Compliance Applications,” Rapid Manufacturing Conference, no. March, pp. 1–14, 2006.spa
dc.relation.referencesS. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.spa
dc.relation.referencesM. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.spa
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.spa
dc.relation.referencesY. Wang, “Periodic surface modeling for computer aided nano design,” CAD Computer Aided Design, vol. 39, no. 3, pp. 179–189, Mar. 2007, doi: 10.1016/j.cad.2006.09.005.spa
dc.relation.referencesI. Maskery et al., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing,” Polymer (Guildf), vol. 152, pp. 62–71, Sep. 2018, doi: 10.1016/J.POLYMER.2017.11.049.spa
dc.relation.referencesO. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, Dec. 2013, doi: 10.1007/s00158-013-0978-6.spa
dc.relation.referencesJ. Wang and R. Rai, “Classification of Bio-Inspired Periodic Cubic Cellular Materials Based on Compressive Deformation Behaviors of 3D Printed Parts and FE Simulations,” in Volume 7: 28th International Conference on Design Theory and Methodology, ASME, Aug. 2016, p. V007T06A003. doi: 10.1115/DETC2016-59729.spa
dc.relation.referencesS. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based approach for designing and manufacturing craniofacial scaffolds,” Int J Oral Maxillofac Surg, vol. 29, no. 1, pp. 67–71, 2000, doi: 10.1034/j.1399-0020.2000.290115.x.spa
dc.relation.referencesM. Fantini and M. Curto, “Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 12, no. 2, pp. 585–596, May 2018, doi: 10.1007/s12008-017-0416-x.spa
dc.relation.referencesS. Krish and Sivam, “A practical generative design method,” Computer-Aided Design, vol. 43, no. 1, pp. 88–100, Jan. 2011, doi: 10.1016/j.cad.2010.09.009.spa
dc.relation.referencesG. Marchiori et al., “Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA,” Med Eng Phys, vol. 69, pp. 92–99, 2019, doi: 10.1016/j.medengphy.2019.04.009.spa
dc.relation.referencesA. Di Luca et al., “Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds,” Sci Rep, vol. 6, no. February, pp. 1–13, 2016, doi: 10.1038/srep22898.spa
dc.relation.referencesG. Staffa et al., “Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up,” Journal of Cranio-Maxillofacial Surgery, vol. 40, no. 3, 2012, doi: 10.1016/j.jcms.2011.04.014.spa
dc.relation.referencesA. R. Smith, “Alpha and the history of digital compositing,” Microsoft Tech Memo 7, vol. 24, pp. 1–10, 1995.spa
dc.relation.referencesD.-S. Kim and K. Sugihara, “New trends in Voronoi diagrams for CAD/CAM/CAE,” Computer-Aided Design, vol. 41, no. 5, pp. 325–326, May 2009, doi: 10.1016/J.CAD.2008.10.001.spa
dc.relation.referencesS. Fortune, “Voronoi diagrams and delaunay triangulations,” in Handbook of Discrete and Computational Geometry, Third Edition, 2017, pp. 705–721. doi: 10.1201/9781315119601.spa
dc.relation.referencesFred A. Mettler.r., Essentials of Radiology, vol. 1. 2005. doi: 10.1136/bmj.1.4647.229-a.spa
dc.relation.referencesS. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/j.tibtech.2012.07.005.spa
dc.relation.referencesJ. P. Bilezikian, L. G. Raisz, and T. J. Martin, Principles of Bone Biology 3, vol. 1, no. 9. Academic Press, 2008. doi: 10.3174/ajnr.A1712.spa
dc.relation.referencesD. Alfredo and Q. Rodríguez, “MODELO COMPUTACIONAL DE REMODELAMIENTO ÓSEO MEDIANTE ESTRUCTURAS DISCRETAS,” Universidad Nacional de Colombia, Bogotá, 2021.spa
dc.relation.referencesM. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-05086-6.spa
dc.relation.referencesM. P. Bendsøe, “Optimal shape design as a material distribution problem,” Structural Optimization, vol. 1, no. 4, pp. 193–202, 1989, doi: 10.1007/BF01650949.spa
dc.relation.referencesM. Yliperttula, B. G. Chung, A. Navaladi, A. Manbachi, and A. Urtti, “High-throughput screening of cell responses to biomaterials,” European Journal of Pharmaceutical Sciences, vol. 35, no. 3. pp. 151–160, Oct. 02, 2008. doi: 10.1016/j.ejps.2008.04.012.spa
dc.relation.referencesR. Dimitriou, E. Jones, D. McGonagle, and P. v Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med, vol. 9, no. 1, p. 66, Dec. 2011, doi: 10.1186/1741-7015-9-66.spa
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.spa
dc.relation.referencesS. Hofmann et al., “Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds,” Biomaterials, vol. 28, no. 6, pp. 1152– 1162, Feb. 2007, doi: 10.1016/j.biomaterials.2006.10.019.spa
dc.relation.referencesA. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt, “The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth,” Biomaterials, vol. 30, no. 7, pp. 1440–1451, Mar. 2009, doi: 10.1016/j.biomaterials.2008.10.056.spa
dc.relation.referencesY. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, vol. 26, no. 34, pp. 7082–7094, Dec. 2005, doi: 10.1016/j.biomaterials.2005.05.022.spa
dc.relation.referencesL. Meinel et al., “Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds,” J Biomed Mater Res A, vol. 71, no. 1, pp. 25–34, Oct. 2004, doi: 10.1002/jbm.a.30117.spa
dc.relation.referencesL. Meinel et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005, doi: 10.1016/j.bone.2005.06.010.spa
dc.relation.referencesL. Meinel et al., “Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds,” Biotechnol Bioeng, vol. 88, no. 3, pp. 379–391, Nov. 2004, doi: 10.1002/bit.20252.spa
dc.relation.referencesL. Uebersax et al., “Effect of Scaffold Design on Bone Morphology In Vitro.”spa
dc.relation.referencesX. Liu and P. X. Ma, “Polymeric Scaffolds for Bone Tissue Engineering,” 2004.spa
dc.relation.referencesW. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” 2002.spa
dc.relation.referencesK. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, 2000, doi: 10.1016/S0142- 9612(00)00102-2.spa
dc.relation.referencesD. W. Hutmacher, “Sca!olds in tissue engineering bone and cartilage,” 2000.spa
dc.relation.referencesJ. Raghunath, J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian, “Biomaterials and scaffold design: key to tissue-engineering cartilage,” Biotechnol Appl Biochem, vol. 46, no. 2, p. 73, Feb. 2007, doi: 10.1042/ba20060134.spa
dc.relation.referencesK. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18. pp. 3413–3431, Jun. 2006. doi: 10.1016/j.biomaterials.2006.01.039.spa
dc.relation.referencesY. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, “Stem cell-based tissue engineering with silk biomaterials,” Biomaterials, vol. 27, no. 36. pp. 6064–6082, Dec. 2006. doi: 10.1016/j.biomaterials.2006.07.008.spa
dc.relation.referencesC. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 991–1007, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.013.spa
dc.relation.referencesY. Wang et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24–25, pp. 3415–3428, Aug. 2008, doi: 10.1016/j.biomaterials.2008.05.002.spa
dc.relation.referencesL. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 762–798, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.017.spa
dc.relation.referencesE. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2. pp. 215–228, Jan. 14, 2008. doi: 10.1016/j.addr.2007.08.037.spa
dc.relation.referencesC. A. Gersbach, J. E. Phillips, and A. J. García, “Genetic engineering for skeletal regenerative medicine,” Annual Review of Biomedical Engineering, vol. 9. pp. 87–119, 2007. doi: 10.1146/annurev.bioeng.9.060906.151949.spa
dc.relation.referencesS. Cartmell, “Controlled release scaffolds for bone tissue engineering,” J Pharm Sci, vol. 98, no. 2, pp. 430–441, 2009, doi: 10.1002/jps.21431.spa
dc.relation.referencesF. Ben-Hatira, K. Saidane, and A. Mrabet, “A finite element modeling of the human lumbar unit including the spinal cord,” J Biomed Sci Eng, vol. 05, no. 03, pp. 146–152, 2012, doi: 10.4236/jbise.2012.53019.spa
dc.relation.referencesF. A. Pintar N Yoganandan M Pesigan J Reinartz A Sances and J. J. F Cusick, “Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading,” 1995. [Online]. Available: http://biomechanical.asmedigitalcollection.asme.org/spa
dc.relation.referencesM. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat Biotechnol, vol. 23, no. 1, pp. 47–55, 2005.spa
dc.relation.referencesB. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996.spa
dc.relation.referencesB. A. C. Harley, H.-D. Kim, M. H. Zaman, I. V Yannas, D. A. Lauffenburger, and L. J. Gibson, “Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,” Biophys J, vol. 95, no. 8, p. 4013—4024, 2008, doi: 10.1529/biophysj.107.122598.spa
dc.relation.referencesS.-W. Choi, Y. Zhang, M. R. Macewan, and Y. Xia, “Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes,” Adv Healthc Mater, vol. 2, no. 1, p. 145—154, 2013, doi: 10.1002/adhm.201200106.spa
dc.relation.referencesS. J. Hollister, “Porous scaffold design for tissue engineering,” vol. 4, no. July, 2005.spa
dc.relation.referencesL. R. Madden et al., “Proangiogenic scaffolds as functional templates for cardiac tissue engineering,” Proc Natl Acad Sci U S A, vol. 107, no. 34, p. 15211—15216, 2010, doi: 10.1073/pnas.1006442107.spa
dc.relation.referencesF. Bai et al., “The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo Biomed.” Mater, 2011.spa
dc.relation.referencesA. P. Roberts and E. J. Garboczi, “ELASTIC MODULI OF MODEL RANDOM THREEDIMENSIONAL CLOSED-CELL CELLULAR SOLIDS,” 2001. [Online]. Available: www.elsevier.com/locate/actamatspa
dc.relation.referencesY. X. Gan, C. Chen, and Y. P. Shen, “Three-dimensional modeling of the mechanical property of linearly elastic open cell foams,” Int J Solids Struct, vol. 42, no. 26, pp. 6628– 6642, Dec. 2005, doi: 10.1016/j.ijsolstr.2005.03.002.spa
dc.relation.referencesB. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, p. 110224, 2021, doi: 10.1016/j.matdes.2021.110224.spa
dc.relation.referencesS. Gómez, M. D. Vlad, J. López, and E. Fernández, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater, vol. 42, no. June, pp. 341–350, 2016, doi: 10.1016/j.actbio.2016.06.032.spa
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27. Elsevier BV, pp. 5474–5491, 2005. doi: 10.1016/j.biomaterials.2005.02.002.spa
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.spa
dc.relation.referencesN. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering : A Geometric Evaluation,” vol. 2012, 2012, doi: 10.1155/2012/407805.spa
dc.relation.referencesM. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.decsMatriz extracelularspa
dc.subject.decsExtracellular Matrixeng
dc.subject.decsIngeniería de tejidosspa
dc.subject.decsTissue Engineeringeng
dc.subject.proposalCellular materialseng
dc.subject.proposalGenerative designeng
dc.subject.proposalFinite element methodeng
dc.subject.proposalBone scaffoldeng
dc.subject.proposalMateriales celularesspa
dc.subject.proposalDiseño generativospa
dc.subject.proposalMétodo de elementos finitosspa
dc.subject.proposalAndamio óseospa
dc.titleDesign of scaffolds for bone tissue regeneration through diagnostic imaging and generative designeng
dc.title.translatedDiseño de scaffolds para regeneración de tejido óseo mediante imágenes diagnósticas y diseño generativospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032457113_2023.pdf
Tamaño:
9.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: