Evaluación del potencial de datos espectrales para el diagnóstico de Marchitez Letal (ML) en Palma de Aceite (Elaeis guineensis Jacq)

dc.contributor.advisorMartínez Martínez, Luis Joelspa
dc.contributor.advisorTorres León, Jorge Luisspa
dc.contributor.authorGiraldo Betancourt, Cristhianspa
dc.date.accessioned2022-03-22T20:56:50Z
dc.date.available2022-03-22T20:56:50Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLa Marchitez Letal (ML) es el problema fitosanitario más importantes para la palmicultura colombiana en zona Oriental, generando pérdidas económicas de más de 146 millones de dólares y la erradicación de más de 5.000 ha. Las técnicas tradicionales de diagnóstico y detección de la enfermedad no funcionan apropiadamente y son limitantes en grandes extensiones de tierra debido a la subjetividad, consumen mucho tiempo y requieren de un gran esfuerzo humano. El objetivo de este trabajo fue evaluar el potencial de las respuestas espectrales de sensores remotos (imágenes del sensor multiespectral Red-Edge M) y proximales (respuestas hiperespectrales del sensor FieldSpec4), para la discriminación de plantas sanas y enfermas en el cultivo de palma de aceite. El área de estudio se ubicó en el municipio de San Carlos de Guaroa (Meta-Colombia) en un cultivo comercial (cultivar IRHO), donde se tomaron datos en campo e imágenes con un vehículo aéreo no tripulado (UAV) a 60 m durante dos años. La metodología propuesta incluye, adquisición de imágenes, corrección radiométrica, generación de ortomosaicos e índices multiespectrales, extracción de datos y la clasificación supervisada mediante algoritmos de Machine Learning; los datos de referencia se obtuvieron a partir de variables fisiológicas, respuestas hiperespectrales y observaciones en campo de palmas sanas y enfermas. Se propone el uso de índices de vegetación como índice de clorofila terrestre MERIS (MTCI), longitud de onda del punto de inflexión (Lp), índice de Maccioni (MI), entre otros, como indicadores de palmas sanas y palmas enfermas en el cultivo; así mismo, se plantea el uso de índices de vegetación a partir de sensores multiespectrales como índice de diferencia normalizado del borde rojo (NDRE), NDVI modificado a 705 (mND705), índice de Vogelmann (VOG), entre otros, para clasificar palmas sanas y enfermas en imágenes de alta resolución. Los resultados mostraron que el algoritmo de Random Forest (RF) tuvo el mejor rendimiento en términos de métrica de Precision, Recall, F1, OA e índice Kappa, con valores superiores al 80%. El proyecto de investigación demostró que por medio de respuestas espectrales se pueden discriminar entre plantas con presencia o ausencia de síntomas de ML en el cultivo de palma de aceite. (Texto tomado de la fuente).spa
dc.description.abstractLethal Wilt (LW) is the most important phytosanitary problem for Colombian palm cultivation in the eastern zone, generating economic losses of more than US$146 million and the eradication of more than 5,000 ha. Traditional techniques for diagnosis and detection of the disease do not work properly and are limited in large extensions of land due to subjectivity, are time-consuming and require great human effort. The objective of this work was to evaluate the potential of spectral responses from remote sensors (images from the Red-Edge M multispectral sensor) and proximal sensors (hyperspectral responses from the FieldSpec4 sensor), for the discrimination of healthy and diseased plants in oil palm cultivation. The study area was located in the municipality of San Carlos de Guaroa (Meta-Colombia) in a commercial crop (IRHO cultivar), where field data and images were taken with an unmanned aerial vehicle (UAV) at 60 m during two years. The proposed methodology includes image acquisition, radiometric correction, generation of orthomosaics and multispectral indices, data extraction and supervised classification using Machine Learning algorithms; reference data were obtained from physiological variables, hyperspectral responses and field observations of healthy and diseased palms. The use of vegetation indices such as MERIS terrestrial chlorophyll index (MTCI), wavelength of the inflection point (Lp), Maccioni index (MI), among others, is proposed as indicators of healthy and diseased palms in the crop; Likewise, the use of vegetation indices from multispectral sensors such as normalized difference red edge (NDRE), modified NDVI to 705 (mND705), Vogelmann index (VOG), among others, is proposed to classify healthy and diseased palms in high resolution images. The results showed that the Random Forest (RF) algorithm had the best performance in terms of Precision, Recall, F1, OA and Kappa index metrics, with values above 80%. The research project demonstrated that by means of spectral responses it is possible to discriminate between plants with presence or absence of ML symptoms in the oil palm crop.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaGeo-información para el uso sostenible de los recursos naturalesspa
dc.format.extentxvii, 124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81322
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAbu Saria, N., Ahmada, A., Abu Saria, M., Sahiba, S., & Rasib, A. (2015). Development of Rapid Low-Cost Lars Platform for. Jurnal Teknologi, 1, 99–105.spa
dc.relation.referencesAgisoft Metashape. (n.d.). Retrieved February 10, 2021, from https://www.agisoft.com/spa
dc.relation.referencesAl-Saddik, H., Simon, J. C., & Cointault, F. (2017). Development of spectral disease indices for ‘flavescence dorée’ grapevine disease identification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122772spa
dc.relation.referencesAlvarez, E., Mejía, J. F., Contaldo, N., Paltrinieri, S., Duduk, B., & Bertaccini, A. (2014). ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Disease, 98, 311–318spa
dc.relation.referencesAucique-Perez, C. E., Daza, E. S., Ávila-Diazgranados, R. A., & Romero, H. M. (2020). Chlorophyll a fluorescence and leaf temperature are early indicators of oil palm diseases. Scientia Agricola, 77(2), 1–6. https://doi.org/10.1590/1678-992x-2018-0106spa
dc.relation.referencesAucique-Pérez, C. E., Hormaza-Martinez, A., & Romero, H. M. (2012). Uso de la temperatura foliar como indicador fisiológico temprano de la Marchitez letal ( ML ) en palma de aceite ( Elaeis guineensis , Jacq .) Introducción Notas del Director N ° 170 Materiales y métodos. 43, 1–4.spa
dc.relation.referencesAvtar, R., Suab, S. A., Syukur, M. S., Korom, A., Umarhadi, D. A., & Yunus, A. P. (2020). Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sensing, 12(18), 1–21. https://doi.org/10.3390/RS12183030spa
dc.relation.referencesBaer, N., Morillo, E., & Bernal, G. (2013). Mediante Tecnicas De Pcr Y Metagenomica. 1–5.spa
dc.relation.referencesBekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications, 3(10), 27–38. http://www.iiste.org/Journals/index.php/JIEA/article/view/7633spa
dc.relation.referencesBivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Baston, D., Rouault, E., Warmerdam, F., Ooms, J., & Rundel, C. (2021). Package ‘rgdal.’spa
dc.relation.referencesBoochs, F., Kupfer, G., Dockter, K., & Kuhbaüch, W. (1990). Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing, 11(10), 1741–1753. https://doi.org/10.1080/01431169008955127spa
dc.relation.referencesBustillo, A. E., & Arango, C. M. (2016). Las mejores prácticas para detener el avance de la Marchitez letal (ML) en plantaciones de palma de aceite en Colombia. Palmas, 37(4), 75–90.spa
dc.relation.referencesButler, H. J., McAinsh, M. R., Adams, S., & Martin, F. L. (2015). Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Analytical Methods, 7(10), 4059–4070. https://doi.org/10.1039/c5ay00377fspa
dc.relation.referencesCarter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15(3), 517–520. https://doi.org/10.1080/01431169408954109spa
dc.relation.referencesCenipalma. (2020). Principios básicos para el manejo de la Marchitez letal (ML) de la palma de aceite (Issue 034).spa
dc.relation.referencesCho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193. https://doi.org/10.1016/j.rse.2005.12.011spa
dc.relation.referencesChuvieco, E. (1990). Fundamentos de teledetection espacial.spa
dc.relation.referencesConvenio Empresarial de Manejo Sanitario. (2021). Informe interno - Subcomité Local. Cenipalma.spa
dc.relation.referencesDangond Lacouture, L. F. (2019). El cultivo de la palma de aceite: oportunidad o amenaza para Colombia. Revista Palmas, 40(2), 44–60.spa
dc.relation.referencesDash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413. https://doi.org/10.1080/0143116042000274015spa
dc.relation.referencesDatt, B. (1999). Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759. https://doi.org/10.1080/014311699211778spa
dc.relation.referencesDatt, Bisun. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111–121. https://doi.org/10.1016/S0034-4257(98)00046-7spa
dc.relation.referencesDaughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey, J. E. (2000). Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 74, 229–239.spa
dc.relation.referencesDe Maesschalck, R., Estienne, F., Verdu-Andres, J., Candolfi, a, Centner, V., Despagne, F., Jouan-Rimbaud, D., Walczak, B., Massart, D. L., De Jong, S., De Noord, O. E., Puel, C., & Vandeginste, B. M. G. (1999). The development of calibration models for spectroscopic data using principal component regression [Review]. Internet Journal of Chemistry, 2(19).spa
dc.relation.referencesDiebel, J., Norda, J., & Kretchmer, O. (2016). The Typical Weather Anywhere on Earth - Weather Spark. https://weatherspark.com/spa
dc.relation.referencesFedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, Figura 1, 8. http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdfspa
dc.relation.referencesFedepalma, F. N. de C. de P. de A. (2019). La agroindustria de la Palma de Aceite en Colombia. 1. http://web.fedepalma.org/sites/default/files/files/Infografía CESAR.pdfspa
dc.relation.referencesGiraldo-Betancourt, C., Velandia-Sánchez, E. A., Fischer, G., Gómez-Caro, S., & Martínez, L. J. (2020). Hyperspectral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. physali for vascular wilt detection. Revista Colombiana de Ciencias Hortícolas, 14(3), 301–313. https://doi.org/10.17584/rcch.2020v14i3.10938spa
dc.relation.referencesGiraldo, R., Molina, A., Torres-León, J., Acosta, M., & Martínez, S. (2016). Study of the Spectral Signatures of Oil Palms Affected with Lethal Wilt, Using Functional Data Statistic Analysis. 37, 131–139.spa
dc.relation.referencesGitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 148(3–4), 501–508. https://doi.org/10.1016/S0176-1617(96)80285-9spa
dc.relation.referencesGlinskis, E. A., & Gutiérrez-Vélez, V. H. (2019). Quantifying and understanding land cover changes by large and small oil palm expansion regimes in the Peruvian Amazon. Land Use Policy, 80(September 2018), 95–106. https://doi.org/10.1016/j.landusepol.2018.09.032spa
dc.relation.referencesGriffith, D. M., & Anderson, T. M. (2019). The ‘plantspec’ r package: A tool for spectral analysis of plant stoichiometry. Methods in Ecology and Evolution, 10(5), 673–679. https://doi.org/10.1111/2041-210X.13143spa
dc.relation.referencesGuyot, G., & Baret, F. (1988). Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. ESA Special Publication, 278, 278–286.spa
dc.relation.referencesHasmadi, M., Pakhriazad, H., & Shahrin, M. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia: Malaysian Journal of Society and Space, 5(1), 1–10.spa
dc.relation.referencesHernandez, R. (2017). Metodología para discriminación de malezas basada en la respuesta espectral de la vegetación. 130.spa
dc.relation.referencesHijmans, R., Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Greenberg, J., Hiemstra, P., Karney, C., & Mattiuzzi, M. (2021). Package ‘raster.’spa
dc.relation.referencesHijmans, R., Phillips, S., Leathwick, J., & Elith, J. (2021). Package ‘dismo.’spa
dc.relation.referencesJones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: principles, techniques and applications. In University Press Oxford, United Kingdom, 1 edition. https://doi.org/10.1111/j.1654-1103.2011.01319.xspa
dc.relation.referencesKüng, O., Strecha, C., Beyeler, A., Zufferey, J.-C., Floreano, D., Fua, P., & Gervaix, F. (2011). The Accuracy of Automatic Photogrammetric Techniques on Ultra-Light Uav Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-125-2011spa
dc.relation.referencesLehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., Thies, B., & Bendix, J. (2019). Hyperspectral data analysis in R: The hsdar package. Journal of Statistical Software, 89(12). https://doi.org/10.18637/jss.v089.i12spa
dc.relation.referencesLeón-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2021). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 0123456789. https://doi.org/10.1007/s40858-021-00460-2spa
dc.relation.referencesLiang, S. (2004). Quantitative Remote Sensing of Land Surfaces. In Wiley Series on Remote Sensing. https://doi.org/10.1002/047172372Xspa
dc.relation.referencesMaccioni, A., Agati, G., & Mazzinghi, P. (2001). New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 61(1–2), 52–61. https://doi.org/10.1016/S1011-1344(01)00145-2spa
dc.relation.referencesMahlein, A.-K. (2016). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2), 1–11. https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesMalvern Panalytical. (n.d.). Retrieved February 8, 2021, from https://www.malvernpanalytical.com/es/products/product-range/asd-range/fieldspec-range/fieldspec-4-standard-res-spectroradiometerspa
dc.relation.referencesMamaghani, B., & Salvaggio, C. (2019). Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland), 19(20). https://doi.org/10.3390/s19204453spa
dc.relation.referencesMartínez, G., Arango, C. M., Rairán, N., Cadena, W., Castiblanco R, J. S., Sierra M, L. J., Aldana de la Torre, R. C., & Tovar M, J. P. (2017). GUÍA DE BOLSILLO PARA EL MANEJO DE LA MARCHITEZ LETAL (ML) DE LA PALMA DE ACEITE. Ml, 32.spa
dc.relation.referencesMartínez, G., Arango, M., Torres, G. A., Sarria, G. A., Vélez, D. C., Rodríguez, J., Mestizo, Y., Aya- Castañeda, H. A., Noreña, C., Varón, F. H., Drenth, A., & Guest, D. I. (2013). Avances en la investigación sobre las dos enfermedades mas importantes de la palma de aceite en Colombia: la pudrición del cogollo y la marchitez letal. Palmas, 34(1), 39–47.spa
dc.relation.referencesMartínez, L. J. (2017). Relationship between crop nutritional status, spectral measurements and Sentinel 2 images. Agronomia Colombiana, 35(2), 205–215. https://doi.org/10.15446/agron.colomb.v35n2.62857spa
dc.relation.referencesMeyer, H., & Lehnert, L. W. (2020). Introduction to “ hsdar “. 1–52.spa
dc.relation.referencesMicaSense Multispectral Sensors. (n.d.). Retrieved February 8, 2021, from https://micasense.com/spa
dc.relation.referencesMilborrow, S. (2021). Package ‘rpart.plot.’spa
dc.relation.referencesMission Planner Documentation. (n.d.). Retrieved February 8, 2021, from https://ardupilot.org/planner/index.htmlspa
dc.relation.referencesMontero, D., & Rueda, C. (2018). Detection of palm oil bud rot employing artificial vision. IOP Conference Series: Materials Science and Engineering, 437(1). https://doi.org/10.1088/1757-899X/437/1/012004spa
dc.relation.referencesMurillo, P. J., & Carbonell, J. A. (2012). Principios y aplicaciones de Ia percepción remota en el cultivo de Ia caña de azücar en Colombia.spa
dc.relation.referencesOrtiz, N. (2014). Plataforma Hardware para la detección de la Pudrición de Cogollo en Palma Africana.spa
dc.relation.referencesOse, K., Corpetti, T., & Demagistri, L. (2016). Multispectral Satellite Image Processing. Optical Remote Sensing of Land Surface: Techniques and Methods, 58–124. https://doi.org/10.1016/B978-1-78548-102-4.50002-8spa
dc.relation.referencesPardo, L., & Ocampo-Peñuela, N. (2019). Contexto actual del impacto ambiental de la palma de aceite en Colombia*. Palmas, 40(3), 79–88.spa
dc.relation.referencesPerdomo, N. Á. (2019). Método para la identificación temprana de la Pudrición del Cogollo en palma de aceite a partir de sensores remotos no tripulados. 96.spa
dc.relation.referencesPerpiñan, O., & Hijmans, R. (2021). Package ‘rasterVis.’spa
dc.relation.referencesR Core Team : The R Project for Statistical Computing. (2019). https://www.r-project.org/spa
dc.relation.referencesRincón-Romero, V., Camperos-Reyes, F. R., Anaya, M., Martínez, M. A., Sarria, G. A., Mestizo, Y. A., & Torres, J. L. (2019). ¿Las Fotografías aéreas permiten la deteccíon temprana de pudricíon del cogollo en palma de aceite?spa
dc.relation.referencesRocha, P. J. (2007). Sanidad de la palma de aceite : diagnóstico e investigación integral liderada por el gremio palmero colombiano. Revista Palmas, 28(2), 87–98. http://publicaciones.fedepalma.org/index.php/palmas/article/view/1215spa
dc.relation.referencesRodríguez, J. (2015). Georreferenciación y Caracterización Multiespectral de Especies de Vegetación Usando un Sistema Aéreo de Percepción Remota No Tripulado. Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesRodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184(March). https://doi.org/10.1016/j.compag.2021.106061spa
dc.relation.referencesSandak, J., Sandak, A., & Meder, R. (2016). Assessing trees, wood and derived products with near infrared spectroscopy: Hints and tips. Journal of Near Infrared Spectroscopy, 24(6), 485–505. https://doi.org/10.1255/jnirs.1255spa
dc.relation.referencesSankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, R. R. N., & Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112–123. https://doi.org/10.1016/j.eja.2015.07.004spa
dc.relation.referencesSavitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047spa
dc.relation.referencesShafri, H. Z. M., Anuar, M. I., Seman, I. A., & Noor, N. M. (2011). Spectral discrimination of healthy and ganoderma-infected oil palms from hyperspectral data. International Journal of Remote Sensing, 32(22), 7111–7129. https://doi.org/10.1080/01431161.2010.519003spa
dc.relation.referencesSims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-Xspa
dc.relation.referencesSISPA. (2021). Sistema de Información Estadística del Sector Palmero. http://sispa.fedepalma.org/sispaweb/spa
dc.relation.referencesSkolik, P., McAinsh, M. R., & Martin, F. L. (2018). Biospectroscopy for Plant and Crop Science. In Comprehensive Analytical Chemistry (1st ed., Vol. 80). Elsevier B.V. https://doi.org/10.1016/bs.coac.2018.03.001spa
dc.relation.referencesStuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications. https://doi.org/10.1002/0470011149spa
dc.relation.referencesSylvain, T., & Cecile, L. (2018). Disease Identification : A Review of Vibrational Spectroscopy Applications. In Vibrational Spectroscopy for Plant Varieties and Cultivars Characterization (1st ed., Vol. 80). Elsevier B.V. https://doi.org/10.1016/bs.coac.2018.03.005spa
dc.relation.referencesTawfik, O. H., Mohd Shafri, H. Z., & Mohammed, A. A. (2013). Disease Detection From Field Spectrometer Data. IIUM Engineering Journal, 14(2), 133–143. https://doi.org/10.31436/iiumej.v14i2.409spa
dc.relation.referencesTharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/j.aci.2018.08.003spa
dc.relation.referencesTherneau, T., Atkinson, B., & Ripley, B. (2019). Package ‘rpart.’ https://cran.r-project.org/package=rpartspa
dc.relation.referencesTu, Y. H., Phinn, S., Johansen, K., Robson, A., & Wu, D. (2020). Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS Journal of Photogrammetry and Remote Sensing, 160(December 2019), 83–96. https://doi.org/10.1016/j.isprsjprs.2019.12.006spa
dc.relation.referencesTugi, A., Rasib, A. W., Suri, M. A., Zainon, O., Mohd Yusoff, A. R., Abdul Rahman, M. Z., Sari, N. A., & Darwin, N. (2015). Oil palm tree growth monitoring for smallholders by using unmanned aerial vehicle. Jurnal Teknologi, 77(26), 17–27. https://doi.org/10.11113/jt.v77.6855spa
dc.relation.referencesViera-Torres, M., Sinde-González, I., Gil-Docampo, M., Bravo-Yandún, V., & Toulkeridis, T. (2020). Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. Remote Sensing, 12(19), 1–21. https://doi.org/10.3390/rs12193229spa
dc.relation.referencesVogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563–1575. https://doi.org/10.1080/01431169308953986spa
dc.relation.referencesWright, M., Wager, S., & Probst, P. (2021). Package ‘ranger.’spa
dc.relation.referencesZarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M. R., & De Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271–287. https://doi.org/10.1016/j.rse.2005.09.002spa
dc.relation.referencesZarco-Tejada, P. J., Pushnik, J. C., Dobrowski, S., & Ustin, S. L. (2003). Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment, 84(2), 283–294. https://doi.org/10.1016/S0034-4257(02)00113-Xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembWilt diseaseseng
dc.subject.lembMarchitez (Patología vegetal)spa
dc.subject.lembOil-palmeng
dc.subject.lembPalma africanaspa
dc.subject.lembBotanyeng
dc.subject.lembBotánicaspa
dc.subject.proposalRespuestas hiperespectralesspa
dc.subject.proposalImágenes multiespectralesspa
dc.subject.proposalEnfermedadspa
dc.subject.proposalÍndices de vegetaciónspa
dc.subject.proposalClasificación supervisadaspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalHyperspectral responseseng
dc.subject.proposalMultispectral imageseng
dc.subject.proposalDiseaseeng
dc.subject.proposalVegetation índicesspa
dc.subject.proposalSupervised classificationeng
dc.subject.proposalMachine learningeng
dc.titleEvaluación del potencial de datos espectrales para el diagnóstico de Marchitez Letal (ML) en Palma de Aceite (Elaeis guineensis Jacq)spa
dc.title.translatedEvaluation of the potential of spectral data for the diagnosis of Lethal Wilt (LW) in Oil Palm (Elaeis guineensis Jacq)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014250233.2021.pdf
Tamaño:
7.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: