Modelo lito-geofísico del Cratón Amazónico en el Oriente Colombiano a partir de la integración de información geofísica

dc.contributor.advisorPrieto Gómez, Germán Andrés
dc.contributor.authorMoyano Nieto, Ismael Enrique
dc.date.accessioned2023-01-12T15:02:34Z
dc.date.available2023-01-12T15:02:34Z
dc.date.issued2021-11-19
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractEl Cratón Amazónico es una de las áreas cratónicas más grandes del mundo. El modelo geológico del Cratón en Colombia es poco conocido, principalmente porque una gran porción de las rocas asociadas a este cratón se encuentra cubiertas por secuencias sedimentarias y depósitos recientes, sumado a poca accesibilidad y densa cobertura selvática. Los modelos más aceptados para el Cratón amazónico indican que este evolucionó por acreción múltiple de cinturones/terrenos alrededor de un núcleo antiguo, pero estudios recientes sugieren que la evolución de la porción Noroccidental puede haber sido diferente de las áreas en donde se formularon dichos modelos. En el presente trabajo utilizamos datos geofísicos (magnéticos/gravimétricos), aplicando metodologías de detección multi-escala de bordes y modelado 3D que permitieron identificar y delinear las principales discontinuidades corticales para el Cratón amazónico en territorio colombiano, además de otras características geológicas. Se identificaron lineamientos geofísicos primarios (PGL), interpretados como posibles límites de la corteza. A partir de la interpretación geofísica, integrada con información geológica, geocronológica e isotópica, se proponen cinco dominios tectónicos: Ventuari-Tapajós, Cinturón de Atabapo, Cinturón de Vaupés, Rift Apaporis y Putumayo. Se presenta una nueva edad de cristalización de circón U-Pb para la Formación Piraparaná, que indica que es significativamente más antigua de lo que se pensaba anteriormente, implicando que la extensión en el Rift de Apaporis comenzó al menos en el Mesoproterozoico tardío, transformando así por completo su significado tectónico. Los límites estructurales propuestos corroboran y proporcionan una ubicación más precisa de los límites sugeridos previamente y que estaban difusamente delineados a partir de la información geológica y geocronológica disponible. Este trabajo presenta por primera vez un modelo geológico regional a escala cortical para el noroeste del Cratón Amazónico en Suramérica a partir de la integración de información geofísica, mejorando la comprensión de la estructura regional de esta parte del continente (Texto tomado de la fuente)spa
dc.description.abstractThe Amazon Craton is one of the largest cratonic areas in the world. The geological evolution of the Craton in Colombia is not well constrained, mainly because a large portion of the rocks associated with this craton are covered by sedimentary sequences and recent deposits, in addition to low accessibility and dense forest cover. The most accepted models for the Amazon Craton indicate that it evolved by multiple accretion of belts / terrains around an ancient nucleus. Recent studies suggest that the evolution of the Northwestern portion may have been different from the areas where these models were formulated. In the present work geophysical data (magnetic / gravimetric) were used, applying multi-scale edge detection methodology and 3D modeling that allowed to identify and delineate the main cortical discontinuities for the Amazon Craton in Colombia and other geological characteristics. Primary geophysical lineaments (PGL) were identified, interpreted as possible crustal boundaries. From geophysical interpretation, integrated with geology, geochronology and isotopic information, five tectonic domains are proposed: Ventuari-Tapajós, Atabapo Belt, Vaupés Belt, Apaporis Rift and Putumayo. A new U-Pb zircon crystallization age is presented for the Piraparaná Formation, indicating that it is significantly older than previously thought, and that the extension into the Apaporis Rift began at least in the late Mesoproterozoic, thus transforming its full tectonic significance. The proposed structural boundaries are in agreement and provide a more precise location of the previously suggested boundaries, loosely constrained to available geological and geochronological information. This work presents the first regional geological model at a cortical scale for the northwest of the Amazon Craton in South America using geophysical methods, improving the understanding of the regional structure of this part of the continent.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Geocienciasspa
dc.description.researchareaGeofísica aplicada a modelos geológicos regionalesspa
dc.format.extentxviii, 117 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82891
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Geocienciasspa
dc.relation.referencesAlfonso, M., Herrera, J., Alzate, L., Arciniegas, E., Casas, R., Duarte, P., Marín, E., Méndez, C., Montaña, J., 2014. Memoria explicativa de la plancha 220 Río Tuparro. Servicio Geológico Colombiano. Bogotá, 222 pp.spa
dc.relation.referencesAllaby, M., 2013. A Dictionary of Geology & Earth Sciences. Oxford University Press. Oxford, UK.spa
dc.relation.referencesAmaya López, C., Restrepo Álvarez, J. J., Weber Scharff, M., Cuadros Jiménez, F. A., Botelho, N. F., Ibáñez Mejía, M., Maya Sánchez, M., Pérez Parra, O. M., &Ramírez Cárdenas, C. (2020). The Guaviare Complex: new evidence of Mesoproterozoic (ca. 1.3 Ga) crust in the Colombian Amazonian Craton. Boletín Geológico, 47, 5-34, https://doi.org/10.32685/0120-1425/boletingeo.47.2020.502.spa
dc.relation.referencesArminio, J., Yoris, F., Quijada, C., Lugo, J., Shaw, D., Keegan, J., Marshall, J., (2013). Evidence for Precambrian Stratigraphy in Graben Basins below the Eastern Llanos Foreland, Colombia. Search and Discovery Article #50874spa
dc.relation.referencesBaines, G., Giles, D., Betts, P., Backe, G. 2009. Geophysically imaging Paleoproterozoic terrane boundaries in the unexposed northern Gawler Craton, Marla region. ASEG Extended abstracts – 20th Geophysical Conference, pp 1-5.spa
dc.relation.referencesBaines, G., Giles, D., Betts, P., Backe, G., (2009). Geophysically imaging Paleoproterozoic terrane boundaries in the unexposed northern Gawler Craton, Marla region. ASEG Extended abstracts – 20th Geophysical Conference, pp 1-5.spa
dc.relation.referencesBaines, G., Giles, D., Betts, P., (2010). 3D Geophysical modelling of the northern Gawler Craton, South Australia. Geoscience Australia, Record, 39, 95-107.spa
dc.relation.referencesBaranov, V., 1964. Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, Vol. XXIX, No. 1, pp. 6i-79.spa
dc.relation.referencesBarrios, F., Cordani, U. & Kawashita, K. (1985). Caracterización geocronológica del Territorio Federal de Amazonas, Venezuela. Memorias VI Congreso Geológico Venezolano. Tomo III, 1432-1480.spa
dc.relation.referencesBettencourt, J. S., Leite, W. B., Jr., Ruiz, A. S., Matos, R., Payolla, B. L., & Tosdal, R. M. (2010). The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences, 29(1), 28–46. http://doi.org/10.1016/j.jsames.2009.08.006.spa
dc.relation.referencesBird, D., 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The leading edge, February 2001, pp 150-159.spa
dc.relation.referencesBlakely, R., Simpson, R., (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics. Vol. I. No. 7. pp 1494- 1498.spa
dc.relation.referencesBonilla, A., (2019). Origen y evolución de los granitoides proterozoicos del oriente colombiano, noroeste del Cratón Amazónico. Tesis de Doctorado en Geociencias. Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Geociencias. Bogotá, Colombia.spa
dc.relation.referencesBonilla-Perez, A., Frantz, J.C., Char˜ao-Marques, J., Cramer, T., Franco-Victoria, J.A., Mulocher, E., Amaya-Perea, Z., (2013). Petrografía, Geoquímica y Geocronología del Granito de Parguaza en Colombia. Boletin de Geología 35 (2), 83–104. https://doi.org/10.18273/revbol.spa
dc.relation.referencesBonilla, A., Frantz, J.C., Charão-Marques, J., Cramer, T., Franco, J.A., Amaya, Z. (2016). Magmatismo rapakivi en la cuenca media del río Inírida, departamento de Guainía, Colombia. Boletín de Geología, 38 (1): 17-32.spa
dc.relation.referencesBonilla A., Franco, J., Cramer, T., Poujol, M., Cogné, N., Nachtergaele, S., De Gravé, J., (2020). Apatite LA-ICP-MS U–Pb and fission-track geochronology of the Caño Viejita gabbro in E-Colombia: Evidence for Grenvillian intraplate rifting and Jurassic exhumation in the NW Amazonian Craton. Journal of South American Earth Sciences 98 102438. https://doi.org/10.1016/j.jsames.2019.102438.spa
dc.relation.referencesBonilla, A., Cramer, T., De Grave, K., Alessio, B., Glorie, S., Kroonenberg, S. (2021). The NW Amazonian Craton in Guainía and Vaupes departments, Colombia: Transition between orogenic to anorogenic environments during the Paleo-Mesoproterozoic. Precambrian Research 360 (2021) 106223. https://doi.org/10.1016/j.precamres.2021.106223.spa
dc.relation.referencesBlakely, R., Simpson, R., 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics I (7), 1494–1498.spa
dc.relation.referencesBlakely, R, Connard, G., Curto, J., 2016. Tilt Derivative Made Easy. Geosoft. www.geosoft.com/media/uploads/resources/tilt_derivative_made_easy_07-2016.pdfspa
dc.relation.referencesBrito, B., (2011). The Paleoproterozoic in the South American continent: Diversity in the geologic time. Journal of South American Earth Sciences, 32, 270-286.spa
dc.relation.referencesBruneton, P.; Pallard, B.; Duselier, E.; Varney, E.; Bogotá, J.; Rodríguez, E. & Martín, E., (1983). Contribución a la geología del oriente de las comisarías del Vichada y del Guainía (Colombia). Geología Norandina, (6), 3-12.spa
dc.relation.referencesCardozo, A., Cubides, J., Zárate, A., Melo, L., (2009). Memoria explicativa de las planchas 162, 162 bis, 182 y 182 bis Puerto Carreño, Vichada. Instituto Colombiano de Geología y Minería- INGEOMINAS. 107 pp.spa
dc.relation.referencesCawood, P. A., & Pisarevsky, S. A. (2017). Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, 292, 386–397. http://doi.org/10.1016/j.precamres.2017.01.031.spa
dc.relation.referencesCediel, F., (2019). Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. In: Cediel F., & Shaw R. (Ed.), Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction (pp 3-95). Switzerland. Springer.spa
dc.relation.referencesCelada C., Garzón M., Gómez E., Khurama S., López J., Mora M., Navas O., Pérez R., Vargas O., Westerhof A., (2006). Potencial de recursos minerales en el Oriente colombiano: compilación y análisis de la información geológica disponible fase 0 versión 1.0. Ingeominas, 233 pp.spa
dc.relation.referencesClark, D., 1997. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 17(2), 83–103.spa
dc.relation.referencesCordani, U & Teixeira, W., (2007). Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher Jr, R.D., Carlson, M.P., McBride, J.H. & Martínez–Catalá, J.R. (editors), 4–D Framework of continental crust. Geological Society of America, Memoir 200, p. 297–320. https://doi.org/10.1130/2007.1200(14).spa
dc.relation.referencesCordani U., Fraga, L., Reis, N., Tassinari, C. & Brito-Neves, B. (2010). On the origin and tectonic significance of the intra-plate events of Grenvillian-type age in South America: A discussion. Journal of South American Earth Sciences 29 (2010) 143–159.spa
dc.relation.referencesCordani, U., Ramos, V., Fraga, L., Cegarra, M., Delgado, I., De Souza, K., Gomes, F., Schobenhaus, C., (2016a). Explanatory Notes: Tectonic Map of South America, Second Edition scale 1:5 000 000. CGMW.spa
dc.relation.referencesCordani, H., Sato, K., Sproessner, W., Santos, F., (2016b). U-Pb zircon ages of rocks from the Amazonas Territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazil. J. Geol. 46, 5–35.spa
dc.relation.referencesCordell, L. (1979) Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin, New Mexico. In: Ingersoll, R.V., Ed., Guidebook to Santa Fe Country, New Mexico Geological Society, Socorro, 59-64.spa
dc.relation.referencesCrawford, B., Betts, P., Ailleres, L., 2010. A Potential Field Approach to Defining Major Lithospheric Structures along the Margin of the West Australian Craton. ASEG 2010. Sydney, Australia.spa
dc.relation.referencesDe Boorder H., (1981) Structural-geological interpretation of SLAR imagery of the Colombian Amazones. Trans Inst Min Metall 90, B145–B152.spa
dc.relation.referencesDe Boorder, H., (2019). The La Trampa wedge (SE Colombia) revisited. 11th Inter Guiana Geological Conference, Paramaribo, 19-20 February 2019.spa
dc.relation.referencesDe Castro, D, et ál. 2013. Using airborne gravity and magnetic data to recognize crustal domains concealed un-derneath the Parnaíba basin. 13th International Congress of the Brazilian Geophysical Society, Brazil, August 26-29, 2013.spa
dc.relation.referencesDe Castro, D. L., Fuck, R. A., Phillips, J. D., Vidotti, R. M., Bezerra, F. H. R., & Dantas, E. L. (2014). Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics, 614, 128–145. http://doi.org/10.1016/j.tecto.2013.12.009.spa
dc.relation.referencesDe la Espriella, R., Flórez, R., Galvis, J., González, C.F., Mariño, J. & Pinto, H., (1990). Geología Regional del Norte de la Comisaría del Vichada. Geología Colombiana, (17), 93-106.spa
dc.relation.referencesDenith, M & Mudge, S. 2014. Geophysics for the mineral exploration geoscientist. Cambridge University Press. ISBN 9780521809511.spa
dc.relation.referencesDobrin, M.B. and Savit, C.H. (1998) Introduction to Geophysical Prospecting. 4th Edition, McGraw Hill, New York. ISBN 0-07-01719-3.spa
dc.relation.referencesEllis, R., Wet, B., Macleod, I. (2012). Inversion of Magnetic Data from Remanent and Induced Sources. ASEG Extended Abstracts, 1-4. doi:10.1071/ASEG2012ab117.spa
dc.relation.referencesENCAL S.A. - Consultoria e Aerolevantamentos, (1988). "Projeto Extremo Noroeste do Brasil (Levantamento Aeromagnético e Aerogamaespectrométrico)". Ministério das Minas e Energia, Departamento Nacional da Produção Mineral - DNPM, Companhia de Pesquisa de Recursos Minerais – CPRM. Convênio DNPM/CPRM, Relatório Final de Aquisição e Processamento de Dados, Fase II, 7 vol., texto e anexos, Rio de Janeiro.spa
dc.relation.referencesEtayo, F., Barrero, D., Lozano, H., Espinoza, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano, F., Duque-Caro, H., Vargas, R., Nuñez, A., Alvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Albers, J., Case, J., Greenwood, W., Singer, R., Berger, B., Cox, D., Hodges, C. (1983). Mapa de Terrenos Geológicos de Colombia. Publ. Geol. Esp. INGEOMINAS, pp 139.spa
dc.relation.referencesEtayo, F., Buenaventura, J., Vargas, R., Espinosa, A., Nuñez, A., González, H., Orrego, A. (1986). Mapa Geológico de Colombia, scale 1:1’000,000. INGEOMINAS. Bogotáspa
dc.relation.referencesFerreira, M., Dantas, E., Nogueira, M., Vitória, R., (2011). Aeromagnetometria na Caracterização do rifte intracontinental na Faixa Paraguai. Twelfth International Congress of the Brazilian Geophysical Society, pp 709-714.spa
dc.relation.referencesFitzGerald, D., Milligan, P. 2013. Defining a deep fault network for Australia, using 3D “worming”. SEG annual meeting. Houston (TX), USA. pp 1126-1130.spa
dc.relation.referencesFörste, C; Bruinsma, S., Abrikosov, O., Lemoine, J., Marty, J., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., (2014). EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://doi.org/10.5880/icgem.2015.1.spa
dc.relation.referencesGalvis J, Huguett A, Ruge P (1979) Geología de la Amazonia Colombiana. Boletín Geológico INGEOMINAS 22(3):3–86.spa
dc.relation.referencesGeng, M., Welford, J., Farquharson, C., Hu, X., (2019). Gravity modeling for crustal-scale models of rifted continental margins using a constrained 3D inversion method. Geophysics, Vol. 84, No. 4 (July-August 2019); pp. G25–G39.spa
dc.relation.referencesGernigon, L., Fichler, C., Marello, L., Olesen, O., 2011. Magnetic expression of salt diapir-related structures in the Nordkapp Basin, western Barents Sea. Geology 39(2):135-138.spa
dc.relation.referencesGómez, J., Montes, N., Nivia, A., Diederix, H., (compiladores). (2015). Atlas Geológico de Colombia 2015. Escala 1:500 000. Servicio Geológico Colombiano, Bogotá.spa
dc.relation.referencesGómez, J., Schobbenhaus, C., Montes, N., (2019). Geological Map of South America 2019. Scale 1:5 000 000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and Geological Survey of Brazil, Paris.spa
dc.relation.referencesGonzález C., Pinto H., (1990). Petrografía del Granito de Parguaza y otras rocas precámbricas en el Oriente de Colombia. Geología Colombiana 17, 107–121.spa
dc.relation.referencesGonzález, H., Escobar, A., Cáceres, C., Correa, R., Ayala, L., Fernández, F., Villada, I., López, F., (2014). Plancha 219 – Parque nacional natural El Tuparro: Memoria explicative. Servicio Geológico Colombiano, 113 pp.spa
dc.relation.referencesGonzález, W., Sigismondi, M., Graterol, V., Jácome, M., Izarra, C., (2017). Magnetic characterization and signature of the basement of Eastern Venezuela: Espino Graben. SEG International Exposition and 87th Annual Meeting. Houston. pp 1589-1864.spa
dc.relation.referencesGraterol, V, Vargas, A., (2010). Mapa de Anomalía de Intensidad Magnética Total y de Intensidad Magnética Total Reducida al Polo de la República de Colombia y Mapa de Anomalía de Bouguer total de la República de Colombia. Agencia Nacional de Hidrocarburos (ANH).spa
dc.relation.referencesGraterol, V., 2009. Levantamiento Aerogravimétrico y Aeromagnético de los sectores Norte y Oriental de la Cuenca de los llanos Orientales, Colombia Contrato No.034-2008. Informe final de Interpretación. Agencia Nacional de Hidrocarburos (ANH) (51 pp.).spa
dc.relation.referencesGusmao, R, De Medeiros, W., Pessoa, A.. 2005. Expressão gravimétrica e aeromagnética dos compartimentos e limites tectônicos da Província Borborema, Nordeste do Brasil. 9th International Congress of the Brazilian Geophysical Society, Brazil, September 11-14, 2005.spa
dc.relation.referencesGusmao, R., Freitas, J., 2014. Interpretação geofísica dos principais domínios tectônicos brasileiros. In: Serviço Geológico do Brasil (CPRM), Metalogênese das províncias tectônicas brasileiras (pp 21-40). Belo Horizonte.spa
dc.relation.referencesHackley, P., Urbani, F., Karlsen, A., Garrity, C., (2005). Geologic shaded relief map of Venezuela. USGS Open-file report 2005-1038.spa
dc.relation.referencesHeath, P, Dhu, T., Reed, G., Fairclough, M. (2009). Geophysical modelling of the Gawler Craton,SA - interpreting geophysics with geology. ASEG Extended abstracts – 20th Geophysical Conference.spa
dc.relation.referencesHolden, D., Archibald, N., Boschetti, F., Jessell, M., 2000. Inferring geological structures using wavelet-based multiscale edge analysis and forward models. Explor. Geophys. 31, 67–71.spa
dc.relation.referencesHornby, P., Boschetti, F., Horowitz, F., (1999). Analysis of potential field data in the wavelet domain. Geophys. J. Int. 137, pp 175–196.spa
dc.relation.referencesHorowitz, F., Strykowski, G., Boschetti, F., Hornby, P., Archibald, N., Holden, D., Ketelaar, P., Woodcock, R., (2000). Earthworms; “multiscale” edges in the EGM96 global gravity field. SEG expanded abstracts. Alberta, Canadá.spa
dc.relation.referencesIbáñez-Mejía M., Ruiz J., Valencia V., Cardona A., Gehrels G., Mora A., (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: new U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Res, 191, 58–77.spa
dc.relation.referencesIbañez–Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M. & Ruiz, J. (2015). Unraveling crustal growth and reworking processes in complex zircons from orogenic lower–crust: The Proterozoic Putumayo Orogen of Amazonia. Precambrian Research, 267: 285–310. http://doi.org/10.1016/j.precamres.2015.06.014.spa
dc.relation.referencesIbañez-Mejia, M., Bloch, E. M., & Vervoort, J. D. (2018). Timescales of collisional metamorphism from Sm-Nd, Lu-Hf and U-Pb thermochronology: A case from the Proterozoic Putumayo Orogen of Amazonia. Geochimica Et Cosmochimica Acta, 235, 103–126. http://doi.org/10.1016/j.gca.2018.05.017spa
dc.relation.referencesIbañez-Mejia, M. (2020). The Putumayo Orogen of Amazonia: A synthesis. In J. Gomez & D. Mateus-Zabala (Eds.), The Geology of Colombia (Vol. 1, pp. 101–131). Bogotá: Servicio Geológico Colombiano. http://doi.org/10.32685/pub.esp.35.2019.06.spa
dc.relation.referencesIbañez–Mejia, M. & Cordani, U.G. (2020). Zircon U–Pb geochronology and Hf–Nd–O isotope geochemistry of the Paleo– to Mesoproterozoic basement in the westernmost Guiana Shield. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.04.spa
dc.relation.referencesIsles, D., Rankin, L. (2013). Geological interpretation of aeromagnetic data. Australian society of Exploration Geophysicist. ISBN 0-521-33938-3.spa
dc.relation.referencesJacoby, W., Smilde, P. 2009. Gravity Interpretation: Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer. ISBN: 978-3-540-85328-2.spa
dc.relation.referencesJackson, D., 1972. Interpretation of inaccurate, Insufficient and Inconsistent data. Geophys, J. R. astr. Soc., 28, 97-109.spa
dc.relation.referencesKearey, P., Brooks, M. 1991. An Introduction to Geophysical Exploration, 2nd Edition. Blackwell scientific publications. Oxford.spa
dc.relation.referencesKohanpour, F., Lindsay, M., Occhipinti, S., Gorczyyk, W. (2018). Structural controls on proterozoic nickel and gold mineral systems identified from geodynamic modelling and geophysical interpretation, east Kimberley, Western Australia. Ore Geology Reviews 95 (2018), pp 552-568. Elsevier.spa
dc.relation.referencesKroonemberg, S., De Roever E., (2010). Geological Evolution of the Amazonian Craton, in: Amazonia, Landscape and Species Evolution. Edited by C. Hoorn and F Wesselingh. Wiley, p. 9-28.spa
dc.relation.referencesKroonenberg, S., Reeves, C., 2012. Geology and petroleum potential, Vaupés-Amazonas Basin, Colombia. In: Cediel, F. (Ed.), Petroleum Geology of Colombia, 15. Universidad EAFIT, Medellín (92 pp.).spa
dc.relation.referencesKroonenberg, S., 2019. The Proterozoic basement of the Western Guiana shield and the Northern Andes. In: Cediel, F., Shaw, R. (Eds.), Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction. Springer, Switzerland, pp. 115–192spa
dc.relation.referencesKumar, K. (2008) Potential Theory in Applied Geophysics. Springer, New York. ISBN 978-3-540-72089-8.spa
dc.relation.referencesLahti, I. & Karinen, T. 2010. Tilt derivative multiscale edges of magnetic data. The Leading Edge. Volume 29, issue 1. DOI 10.1190/1.3284049.spa
dc.relation.referencesLi, Y., Melo, A., Martinez, C., Sun, J., (2019). Geology differentiation: A new frontier in quantitative geophysical interpretation in mineral exploration. The Leading Edge, January 2019, p 60-66. https://doi.org/10.1190/tle38010060.1.spa
dc.relation.referencesLópez J., Mora B., Jiménez D., Khurama S., Marín E., Obando G., Páez T., Carrillo L., Bernal V., Celada C., (2010). Cartografía geológica y muestreo geoquímico de las Planchas 297 – Puerto Inírida, 297 Bis – Merey Y 277 Bis – Amanaven, Departamento del Guainia. Ingeominas, Bogotá. 158 pp.spa
dc.relation.referencesMacLeod, I., Ellis, R., (2013). Magnetic Vector Inversion, a simple approach to the challenge of varying direction of rock magnetization. ASEG-PESA 23rd International Geophysical Conference and Exhibition. Melbourne, Australia.spa
dc.relation.referencesMeyer, B., Saltus, R., Chulliat, A., (2017). EMAG2: Earth Magnetic Anomaly Grid (2-arc-minute resolution) Version 3. National Centers for Environmental Information, NOAA. Model. doi:10.7289/V5H70CVX.spa
dc.relation.referencesMiller, H., Singh, V. 1994. Potential field tilt – a new concept for the location of potential field sources. Journal of Applied Geophysics, 32, 213–217.spa
dc.relation.referencesMoyano, I., Lara, N., Ospina, D., Salamanca, A., Arias, H., Gómez E., Puentes, M., Rojas, O., (2018). Mapa de anomalías Geofísicas de Colombia para Recursos Minerales, Versión 2018. Bogotá: Servicio Geológico Colombiano.spa
dc.relation.referencesMoyano, I, Cordani, R., Cárdenas, L., Lara, N., Rojas, O, Puentes, M., Ospina, D., Salamanca, A. & Prieto, G. (2020). Contribution of new airborne geophysical information to the geological knowledge of eastern Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 17–36. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.02spa
dc.relation.referencesMoyano, I & Prieto, G. (2021a). Structural signatures of the Amazonian Craton in eastern Colombia from gravity and magnetometry data interpretation. Tectonophysics 800(2021) 228705. https://doi.org/10.1016/j.tecto.2020.228705.spa
dc.relation.referencesMoyano, I, Prieto, G., Ibáñez-Mejía, M. (2021b). Tectonic domains in the NW Amazonian Craton from geophysical and geological data. Precambrian Research (en revision)spa
dc.relation.referencesNabighian, M, 1972. The analytic signal of two - dimensional magnetic bodies with polygonal cross - sections: it´s properties and use for automated anomaly interpretation. Geophysics, 507-517.spa
dc.relation.referencesOchoa, A., Ríos, P., Cardozo, A., Cubides, J., Giraldo, D., Rincón, H., Mendivelso, D., (2012). Cartografia geologica y muestreo geoquimico de las planchas 159, 160, 161, 179, 180 y 181 Puerto Carreño, Vichada. Memoria explicativa. Servicio Geológico Colombiano. Bogotá. 127 pp.spa
dc.relation.referencesOchoa, A., Ríos, P., Oviedo, J., Cardozo, A., Cubides, J., (2014). “Cartografía geológica y muestreo geoquimico de las planchas 237 y 256 Departamento de Vichada”: Memoria explicativa. Memoria explicativa. Servicio Geológico Colombiano. Bogotá. 85 pp.spa
dc.relation.referencesPark, Y., Rim, H., Lim, M., Hong, Y, Jeon, T., (2013). Magnetic characteristics of tectonic provinces of Korea. Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan. pp 146-149.spa
dc.relation.referencesParker, R., 1977. Understanding inverse theory. Ann. Rev. Earth Planet. Sci., 5, 35-64.spa
dc.relation.referencesRodríguez G, Sepúlveda J, Ortiz F., Ramírez C, Ramos K, Bermúdez J., Sierra M., (2010). Mapa Geológico Plancha 443 Mitú – Vaupés. Ingeominas.spa
dc.relation.referencesPérez-Aguirre, X., Chávez-Cabello, G., Ramírez-Peñaa, C., Méndez-Delgado, S., Romero-de la Cruz, O. (2021). Geophysical modeling of the crustal boundary between the Central and Oaxaquia terranes in northern Mexico. Journal of South American Earth Sciences 110 (2021) 103288. https://doi.org/10.1016/j.jsames.2021.103288.spa
dc.relation.referencesPessano, P. C., Ganade, C. E., Tupinambá, M., & Teixeira, W. (2021). Updated map of the mafic dike swarms of Brazil based on airborne geophysical data. Journal of South American Earth Sciences, 107(1–2), 103076. http://doi.org/10.1016/j.jsames.2020.103076.spa
dc.relation.referencesPriem HNA, Andriessen PAM, Boelrijk NAIM, De Boorder H, Hebeda EH, Huguett A et al (1982). Geochronology of the precambrian in the Amazonas region of southwestern Colombia western Guiana shield. Geologie & Mijnbouw:229–242spa
dc.relation.referencesReeves, C. 2005. Aeromagnetic Surveys: Principles, Practice & Interpretation. Geosoft. www.geosoft.com/media/uploads/resources/technical-papers/Aeromagnetic_Survey_Reeves.pdfspa
dc.relation.referencesRestrepo, P. & Cediel, F. 2010. Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences 29 (2010) 764–771.spa
dc.relation.referencesRodríguez G, Sepúlveda J, Ortiz F., Ramírez C, Ramos K, Bermúdez J., Sierra M., (2011). Geología de la Plancha 443 Mitú – Vaupés. Escala 1:100.000. Servicio Geológico Colombiano. Bogotá.spa
dc.relation.referencesRodriguez-Corcho, A., Rojas-Agramonte, Y., Barrera-Gonzalez, J., Marroquin-Gomez, M., Bonilla-Correa, S., Izquierdo-Camacho, D., Delgado-Balaguera, S., Cartwright-Buitrago, D., Muñoz-Granados, M., Carantón-Mateus, W., Corrales-García, A., Laverde-Martinez, A., Cuervo-Gómez, A., Rodriguez-Ruiz, M., Marin-Jaramillo, J., Salazar-Cuellar, N., Esquivel-Arenales, L., Daroca, M., Carvajal, S., Perea-Pescador, A., Solano-Acosta, J., Diaz, S., Guillen, A., Bayona, G., Cardona-Molina, A., Eglington, B., Montes, C. (2021): The Colombian geochronological database (CGD), International Geology Review, DOI:10.1080/00206814.2021.1954556spa
dc.relation.referencesSantos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J., Fletcher, I.R. (2000). A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Res. 3, 453–488.spa
dc.relation.referencesSoares, L., Da Costa, M., (2013). New concepts of continental passive margins: gravity and magnetic interpretation in Western Iberia. Thirteenth International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil. pp 344-349.spa
dc.relation.referencesTassinari, C., Cordani, U. G., Nutman, A., van Schmus, W., Bettencourt, J. S., & Taylor, P. (1996). Geochronological systematics on basement rocks from the Rio Negro-Juruena province (Amazonian Craton) and tectonic implications. International Geology Review, 38(2), 161–175.spa
dc.relation.referencesTassinari, C.C.G., Macambira, M.J.B. (1999). Geochronological provinces of the Amazonian Craton. Episodes 22, 174–182.spa
dc.relation.referencesTelford, W., Geldart, L., Sheriff, R. 1990. Applied Geophysics. 2nd edition. Cambridge University Press. ISBN 0-521-33938-3.spa
dc.relation.referencesTeixeira, W., Geraldes, M. C., Matos, R., Ruiz, A. S., Saes, G., & Vargas-Mattos, G. (2010). A review of the tectonic evolution of the Sunsás belt, SW Amazonian Craton. Journal of South American Earth Sciences, 29(1), 47–60. http://doi.org/10.1016/j.jsames.2009.09.007.spa
dc.relation.referencesThébault, E., Finlay, C, Beggan, D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., ; Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J., Lesur, V., Lowes, F., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., Zvereva, T. 2015 International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, 67 (79). https://doi.org/10.1186/s40623-015-0228-9spa
dc.relation.referencesVanDecar, J., Snieder, R., 1994. Obtaining smooth solutions to large, linear, inverse problems. Geophysics, Vol. 59, No. 5; pp 818-829.spa
dc.relation.referencesVeras, R., Nascimento, R., Almeida, M., Paquette, J. & Carneiro, M. 2018. Paleoproterozoic basement of Içana Domain, Rio Negro Province, northwestern Amazonian Craton: Geology, geochemistry and geochronology (U–Pb and Sm–Nd). Journal of South American Earth Sciences, 86: 384–409. http://doi.org/10.1016/j.jsames.2018.07.003.spa
dc.relation.referencesYan, J., Lü, Q., Deng, Z., Meng, G., Liu, Y., Zhao, J. 2011. Gravity and Magnetic Multi-scale Edge Detection and Its Application on Tectonic Framework Research of the Lower and Middle Reaches of the Yangtze River Metallogenic Belt, China. GEM Beijing 2011: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications Beijing, China. October 10-13, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembGEOLOGIA-COLOMBIAspa
dc.subject.lembGeology - Colombiaeng
dc.subject.lembGEOLOGIA-PROCESAMIENTO DE DATOSspa
dc.subject.lembGeology - data processingeng
dc.subject.proposalCratón Amazónicospa
dc.subject.proposalAmazon Cratoneng
dc.subject.proposalIntegración geológica-geofísicaspa
dc.subject.proposalMétodos Magnético y Gravimétricospa
dc.subject.proposalModelos geológicos regionalesspa
dc.subject.proposalGeophysical-geological integrationeng
dc.subject.proposalMagnetic and gravity methodseng
dc.subject.proposalRegional geological modelseng
dc.titleModelo lito-geofísico del Cratón Amazónico en el Oriente Colombiano a partir de la integración de información geofísicaspa
dc.title.translatedLitho-geophysical model of the Amazon Craton in Eastern Colombia based on the integration of geophysical informationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2969017.2021.pdf
Tamaño:
6.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Geociencias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: