Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)

dc.contributor.advisorCastañeda Colorado, Leonardospa
dc.contributor.authorRivera Amezquita, Marlon Zamihirspa
dc.contributor.researchgroupGrupo de Astronomía Galáctica, Gravitación y Cosmologíaspa
dc.date.accessioned2023-08-01T16:49:44Z
dc.date.available2023-08-01T16:49:44Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas ondas gravitacionales predichas por Albert Einstein [1], han tomado gran importancia desde su detección en el año 2015 [2]. Además de las fuentes astrofísicas, las ondas gravitacionales también pueden producirse en escenarios cosmológicos y pueden servir como pruebas para estudiar la viabilidad de las teorías de gravedad modificada [3]. En el formalismo covariante e invariante de gauge 1 + 3 [4] , la propagación de ondas gravitacionales esta descrita por la parte eléctrica y magnética del tensor de Weyl, o equivalentemente por el tensor de shear [5] . En este trabajo se realiza un calculo detallado de las diferentes ecuaciones que gobiernan las cantidades cinemáticas y dinámicas del formalismo 1 + 3, luego estudiando la teoría de perturbaciones para llegar a las ecuaciones de Onda para RG y para las teorías de gravedad modificada f(R). Se hallan soluciones para las épocas de radiación y materia en RG, y se estudian posibles soluciones de la ecuaciones de campo de onda para el modelo de Hu-Sawicki [6] , siguiendo las propuestas para la solución de las ecuaciones de campo dadas en [7, 8]. (Texto tomado de la fuente)spa
dc.description.abstractGravitational waves, predicted by Albert Einstein [1], have gained great importance since their detection in 2015 [2]. Besides astrophysical sources, gravitational waves can also be produced in cosmological scenarios and can serve as tests to study the viability of modified gravity theories [3]. In the covariant and gauge-invariant 1 + 3 formalism [4], the propagation of gravitational waves is described by the electric and magnetic part of the Weyl tensor, or equivalently by the shear tensor [5]. In this work, a detailed calculation of the different equations governing the kinematic and dynamic quantities of the 1+ 3 formalism is carried out, followed by the study of perturbation theory to obtain the Wave Equations for GR and for modified gravity theories f(R). Solutions are found for the radiation and matter epochs in GR, and possible solutions of the wave field equations are studied for the Hu-Sawicki model [6], following the proposals for solving the field equations given in [7, 8].eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaGravedad Modificadaspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84392
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[1] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, pp. 844–847, Jan. 1915.spa
dc.relation.references[2] Abbott.;et.al, “Observation of gravitational waves from a binary black hole merger,” Phys. Rv. Lett., vol. 116, p. 061102, Feb 2016. [Online]. Available: https://link.aps.org/doi/10. 1103/PhysRevLett.116.061102spa
dc.relation.references[3] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M. Zumalacárregui, “Speed of gravitational waves and the fate of scalar-tensor gravity,” Phys. Rev. D, vol. 95, p. 084029, Apr 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.95.084029spa
dc.relation.references[4] G. F. R. Ellis, R. Maartens, and M. A. H. MacCallum, Relativistic Cosmology. Cambridge University Press, 2012.spa
dc.relation.references[5] G. F. R. Ellis, “Republication of: Relativistic cosmology,” General Relativity and Gravitation, vol. 41, no. 3, pp. 581–660, Mar. 2009.spa
dc.relation.references[6] I. S. W, Hu., “Model of f(r) cosmic acceleration that evade solar system test.phys.rev.d.76,064004.2007.”spa
dc.relation.references[7] A. de la Cruz-Dombriz, P. K. S. Dunsby, V. C. Busti, and S. Kandhai, “Tidal forces in f(r) theories of gravity,” Phys. Rev. D, vol. 89, p. 064029, Mar 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.89.064029spa
dc.relation.references[8] S. Basilakos, S. Nesseris, and L. Perivolaropoulos, “Observational constraints on viable f(r) parametrizations with geometrical and dynamical probes,” Phys. Rev. D, vol. 87, p. 123529, Jun 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.87.123529spa
dc.relation.references[9] A. G. Riess and A. V. F. .;et al, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, sep 1998. [Online]. Available: https://doi.org/10.1086%2F300499spa
dc.relation.references[10] T. S. A, De Felipe., “f(r) theories.living rev.relativity.2010.”spa
dc.relation.references[11] Y. Fujii and K.-i. Maeda, The Scalar-Tensor Theory of Gravitation, ser. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2003.spa
dc.relation.references[12] M. Warkentin, “Modification of the laws of gravity in the dgp model by the presence of a second dgp brane,” Journal of High Energy Physics, vol. 2020, no. 3, Mar 2020. [Online]. Available: http://dx.doi.org/10.1007/JHEP03(2020)015spa
dc.relation.references[13] S. Tsujikawa, K. Uddin, and R. Tavakol, “Density perturbations in f(r) gravity theories in metric and palatini formalisms,” Phys. Rev. D, vol. 77, p. 043007, Feb 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.043007spa
dc.relation.references[14] T. P. Sotiriou and V. Faraoni, “f(r) theories of gravity,” Rev. Mod. Phys., vol. 82, pp. 451–497, Mar 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.451spa
dc.relation.references[15] L. Yang, C.-C. Lee, and C.-Q. Geng, “Gravitational waves in viablef(r) models,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 08, pp. 029–029, aug 2011. [Online]. Available: https://doi.org/10.1088%2F1475-7516%2F2011%2F08%2F029spa
dc.relation.references[16] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal newtonian gauges,” The Astrophysical Journal, vol. 455, p. 7, dec 1995. [Online]. Available: https://doi.org/10.1086%2F176550spa
dc.relation.references[17] S. Carloni, P. K. S. Dunsby, and A. Troisi, “Evolution of density perturbations in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024024, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024024spa
dc.relation.references[18] J. Ehlers, “Beiträge zur relativistischen Mechanik kontinuierlicher Medien,” Mainz Akademie Wissenschaften Mathematisch Naturwissenschaftliche Klasse, vol. 11, pp. 792–837, Jan. 1961.spa
dc.relation.references[19] W. Kundt and M. Trümper, “Republication of: Contributions to the theory of gravitational radiation fields. Exact solutions of the field equations of the general theory of relativity V,” Gen. Rel. Grav., vol. 48, no. 4, p. 44, 2016.spa
dc.relation.references[20] R. Maartens, G. F. R. Ellis, and S. T. C. Siklos, “Local freedom in the gravitational field,” Classical and Quantum Gravity, vol. 14, no. 7, pp. 1927–1936, jul 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/7/025spa
dc.relation.references[21] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings, 2003. [Online]. Available: http://www.amazon.com/Spacetime-GeometryIntroduction-General-Relativity/dp/0805387323spa
dc.relation.references[22] J. D. Barrow, R. Maartens, and C. G. Tsagas, “Cosmology with inhomogeneous magnetic fields,” Physics Reports, vol. 449, no. 6, pp. 131–171, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157307001925spa
dc.relation.references[23] E. Bertschinger, “Cosmological dynamics,” 1995. [Online]. Available: https://arxiv.org/abs/ astro-ph/9503125spa
dc.relation.references[24] K. N. Ananda, S. Carloni, and P. K. S. Dunsby, “Evolution of cosmological gravitational waves in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024033, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024033spa
dc.relation.references[25] S. W. Hawking, “Gravitational radiation in an expanding universe,” Journal of Mathematical Physics, vol. 9, no. 4, pp. 598–604, 1968. [Online]. Available: https: //doi.org/10.1063/1.1664615spa
dc.relation.references[26] L. Herrera, N. O. Santos, and J. Carot, “Gravitational radiation, vorticity and the electric and magnetic part of weyl tensor,” Journal of Mathematical Physics, vol. 47, no. 5, p. 052502, 2006. [Online]. Available: https://doi.org/10.1063/1.2199027spa
dc.relation.references[27] R. Maartens, “Is the universe homogeneous?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1957, pp. 5115–5137, 2011. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0289spa
dc.relation.references[28] C. Clarkson and R. Maartens, “Inhomogeneity and the foundations of concordance cosmology,” Classical and Quantum Gravity, vol. 27, no. 12, p. 124008, may 2010. [Online]. Available: https://doi.org/10.1088/0264-9381/27/12/124008spa
dc.relation.references[29] A. Abebe, M. Abdelwahab, A. Cruz-Dombriz, and P. Dunsby, “Covariant gauge-invariant per turbations in multifluid f(r) gravity,” Classical and Quantum Gravity - CLASS QUANTUM GRAVITY, vol. 29, 07 2012.spa
dc.relation.references[30] Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., and Ashdown, M. et.al, “Planck 2015 results - xiii. cosmological parameters,” A&A, vol. 594, p. A13, 2016. [Online]. Available: https://doi.org/10.1051/0004-6361/201525830spa
dc.relation.references[31] A. A. Coley, “Dynamical systems in cosmology,” 1999. [Online]. Available: https: //arxiv.org/abs/gr-qc/9910074spa
dc.relation.references[32] S. Dodelson, Modern Cosmology. Academic Press, Elsevier Science, 2003.spa
dc.relation.references[33] E. Lifshitz, “Republication of: On the gravitational stability of the expanding universe,” J. Phys. (USSR), vol. 10, no. 2, p. 116, 1946.spa
dc.relation.references[34] K. Nakamura, “Gauge Invariant Variables in Two-Parameter Nonlinear Perturbations,” Progress of Theoretical Physics, vol. 110, no. 4, pp. 723–755, 10 2003. [Online]. Available: https://doi.org/10.1143/PTP.110.723spa
dc.relation.references[35] J. M. Bardeen, “Gauge-invariant cosmological perturbations,” Phys. Rev. D, vol. 22, pp. 1882– 1905, Oct 1980. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.22.1882spa
dc.relation.references[36] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Progress of Theoretical Physics Supplement, vol. 78, pp. 1–166, 01 1984. [Online]. Available: https: //doi.org/10.1143/PTPS.78.1spa
dc.relation.references[37] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological pertur bations,” , vol. 215, no. 5-6, pp. 203–333, Jun. 1992spa
dc.relation.references[38] G. F. R. Ellis and M. Bruni, “Covariant and gauge-invariant approach to cosmological density fluctuations,” Phys. Rev. D, vol. 40, pp. 1804–1818, Sep 1989. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.40.1804spa
dc.relation.references[39] K. A. Malik and D. R. Matravers, “A concise introduction to perturbation theory in cosmology,” Classical and Quantum Gravity, vol. 25, no. 19, p. 193001, sep 2008. [Online]. Available: https://doi.org/10.1088/0264-9381/25/19/193001spa
dc.relation.references[40] K. A. Malik and D. Wands, “Cosmological perturbations,” Physics Reports, vol. 475, no. 1-4, pp. 1–51, may 2009. [Online]. Available: https://doi.org/10.1016%2Fj.physrep.2009.03.001spa
dc.relation.references[41] T. Gebbie and G. Ellis, “1+3 covariant cosmic microwave background anisotropies i: Algebraic relations for mode and multipole expansions,” Annals of Physics, vol. 282, no. 2, pp. 285–320, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0003491600960330spa
dc.relation.references[42] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, 10 2007. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780198570745.001. 0001spa
dc.relation.references[43] P. K. S. Dunsby, B. A. C. C. Bassett, and G. F. R. Ellis, “Covariant analysis of gravitational waves in a cosmological context,” Classical and Quantum Gravity, vol. 14, no. 5, pp. 1215–1222, may 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/5/023spa
dc.relation.references[44] A. Challinor, “Microwave background anisotropies from gravitational waves: the 1 3 covariant approach,” Classical and Quantum Gravity, vol. 17, no. 4, pp. 871–889, jan 2000. [Online]. Available: https://doi.org/10.1088/0264-9381/17/4/309spa
dc.relation.references[45] “744Bibliography,” in Gravitational Waves: Volume 2: Astrophysics and Cosmology. Oxford University Press, 03 2018.spa
dc.relation.references[46] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev., vol. 124, pp. 925–935, Nov 1961. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRev.124.925spa
dc.relation.references[47] V. Faraoni, Cosmology in scalar tensor gravity, 2004.spa
dc.relation.references[48] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys., vol. 10, pp. 363–384, 1974.spa
dc.relation.references[49] A. Guarnizo, L. Castaneda, and J. M. Tejeiro, “Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism,” Gen. Rel. Grav., vol. 42, pp. 2713–2728, 2010.spa
dc.relation.references[50] A. M. Nzioki, R. Goswami, and P. K. S. Dunsby, “Vibrating Black Holes in f(R) gravity,” 8 2014.spa
dc.relation.references[51] T. Chiba, “1/r gravity and scalar-tensor gravity,” Physics Letters B, vol. 575, no. 1, pp. 1–3, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0370269303014126spa
dc.relation.references[52] S. Kandhai and P. K. S. Dunsby, “Cosmological dynamics of viable f(r) theories of gravity,” 2015. [Online]. Available: https://arxiv.org/abs/1511.00101spa
dc.relation.references[53] R. Arjona, W. Cardona, and S. Nesseris, “Unraveling the effective fluid approach for f(r) models in the subhorizon approximation,” Phys. Rev. D, vol. 99, p. 043516, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.043516spa
dc.relation.references[54] H. Bourhrous, “Cmb tensor anisotropies in f(r) gravity,” 2013. [Online]. Available: https://arxiv.org/abs/1302.1887spa
dc.relation.references[55] J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” 2011. [Online]. Available: https://arxiv.org/abs/1104.2932spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lccGravitational waveseng
dc.subject.lembRadiación gravitacionalspa
dc.subject.lembGravitational radiationeng
dc.subject.proposalOndas Gravitacionalesspa
dc.subject.proposalGravitational waveseng
dc.subject.proposalTensor de Weylspa
dc.subject.proposalWeyl Tensoreng
dc.subject.proposalTeorías de gravedad modificada f(R)spa
dc.subject.proposalModified gravity theories f(R)eng
dc.subject.proposalFormalismo 1+3spa
dc.subject.proposal1 + 3 formalismeng
dc.subject.proposalHu-Sawickispa
dc.subject.proposalHu-Sawickieng
dc.titleRadiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)spa
dc.title.translatedCosmological gravitational radiation in the 1+3 formalism for f(R) gravity theorieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014253545.2023.pdf
Tamaño:
1.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: