Identificación del estado fenológico del cultivo del arroz a partir de imágenes de radar Sentinel-1

dc.contributor.advisorLizarazo Salcedo, Iván Alberto
dc.contributor.authorMartínez Alayón, Fredy Alberto
dc.date.accessioned2023-07-04T21:37:33Z
dc.date.available2023-07-04T21:37:33Z
dc.date.issued2023-01-30
dc.descriptionilustraciones, fotografías a color, mapasspa
dc.description.abstractLa disponibilidad de información oportuna y exacta sobre la fenología del arroz es esencial para diversas actividades de manejo de un cultivo que es esencial para la seguridad agroalimentaria. Aunque la recopilación directa de datos en el campo proporciona información confiable, esa tarea requiere mucho tiempo y trabajo. Como alternativa tecnológica, la teledetección óptica satelital recopila datos de reflectancia cada 5 días. Sin embargo, en ambientes tropicales, la cobertura de nubes obstruye la vista desde arriba. Debido a su capacidad de ver a través de las nubes, las imágenes obtenidas mediante sensores de radar de apertura sintética (SAR) tienen potencial para el monitoreo de las etapas fenológicas del arroz. Este estudio implementa un flujo de trabajo técnico para procesar y analizar datos SAR polarimétricos para el mapeo de la fenología del arroz. Un conjunto multitemporal de imágenes Sentinel-1 de banda C adquiridas en dos zonas de arroz en Colombia se utilizaron para validar el flujo de trabajo. En este estudio, se realizó la clasificación fenológica utilizando índices polarimétricos e interferométricos como variables explicativas. Se obtuvo una buena exactitud de clasificación general para las etapas de fenología del cultivo utilizando polarizaciones VH y VV, junto con el índice DpRVI y una exactitud deficiente para los resultados con la variable coherencia. Esta diferencia en la calidad de los resultados podría deberse a que tanto las polarizaciones como el índice logran describir el crecimiento del cultivo de manera satisfactoria mientras que la coherencia está enfocada en la detección de cambios que no se pudieron caracterizar en coberturas vegetales. Se demuestra la utilidad de las imágenes Sentinel-1 para el monitoreo de la fenología del arroz, así como los desafíos técnicos que deben resolverse para tener éxito con estas imágenes. (Texto tomado de la fuente)spa
dc.description.abstractAccurate and timely information on rice phenology is crucial for ensuring agrifood security and effective crop management. While direct data collection in the field is reliable, it can be labor-intensive and time-consuming. In tropical environments, cloud cover often obstructs satellite optical remote sensing, which collects reflectance data every 5 days. However, synthetic aperture radar (SAR) sensors have the potential to monitor rice phenology, as they can see through clouds. This study implements a technical workflow to process and analyze polarimetric SAR data for mapping rice phenology. A multi-temporal set of C-band Sentinel-1 images acquired in two rice areas in Colombia were used to validate the workflow. Phenological classification was performed using polarimetric and interferometric indices as explanatory variables. The results show that VH and VV polarizations, together with the DpRVI index, produced good overall classification accuracy for crop phenology stages, while coherence variable had poor accuracy. This difference in the quality of the results could be due to the fact that both polarizations and the index satisfactorily describe crop growth, while coherence is focused on detecting changes that cannot be characterized in vegetation coverages.The usefulness of Sentinel-1 imagery for monitoring rice phenology is demonstrated, along with the technical challenges that need to be resolved for successful use of these images.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxix, 157 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84138
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAnderson, F., Ixmuca, A., Herndon, K. E., y Kucera, L. M. (2019). Sar handbook: Background. En Global Forest Observations Initiative (GFOI) Plenary 2019.spa
dc.relation.referencesArgenti, F., Lapini, A., Bianchi, T., y Alparone, L. (2013). A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geoscience and remote sensing magazine, 1(3):6– 35.spa
dc.relation.referencesBenes, R. y Riha, K. (2012). Medical image denoising by improved kuan filter. Advances in Electrical and Electronic Engineering, 10(1):43–49.spa
dc.relation.referencesBhattacharya, A., Rao, Y. S., y Mandal, D. (2021). Radar remote sensing for crop biophysical parameter estimation. Springer.spa
dc.relation.referencesBhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., López-Martı́nez, C., y Rao, Y. S. (2021). Dual-polarimetric descriptors from sentinel-1 grd sar data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178:20–35.spa
dc.relation.referencesBourbigot, M., Johnsen, H., Piantanida, R., y Hajduch, G. (2016). Sentinel-1 Product Definition.spa
dc.relation.referencesBraun, A. (2019). Radar satellite imagery for humanitarian response. Bridging the gap between technology and application, 10.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45(1):5–32.spa
dc.relation.referencesBruce, P., Bruce, A., y Gedeck, P. (2020). Practical statistics for data scientists: 50+ essential concepts using R and Python. O’Reilly Media.spa
dc.relation.referencesBuitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., y Varoquaux, G. (2013). API design for machine learning software: experiences from the scikit-learn project. En ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.spa
dc.relation.referencesCCRS (2019). Remote sensing tutorials. Technical report, Canada Centre for Remote Sensing.spa
dc.relation.referencesChen, K.-S. (2016). Principles of synthetic aperture radar imaging: a system simulation approach, volumen 2. CRC Press.spa
dc.relation.referencesChen, X. (2017). Spatiotemporal processes of plant phenology: simulation and prediction. Springer.spa
dc.relation.referencesCihlar, J. (2000). Land cover mapping of large areas from satellites: status and research priorities. International journal of remote sensing, 21(6-7):1093–1114.spa
dc.relation.referencesCloude, S. (2009). Polarisation: applications in remote sensing. OUP Oxford.spa
dc.relation.referencesCongalton, R. G. y Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data Principles and Practices, Second Edition, volumen 1.spa
dc.relation.referencesCongalton, R. G. y Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data Principles and Practices, Third Edition, volumen 1.spa
dc.relation.referencesCounce, P. A., Keisling, T. C., y Mitchell, A. J. (2000). A uniform, objectives, and adaptive system for expressing rice development. Crop Sci., 40(2):436–443.spa
dc.relation.referencesDANE (2018). Manual de uso del marco geoestadı́stico nacional en el proceso estadı́stico.spa
dc.relation.referencesDANE y FEDEARROZ (2017). Boletín técnico encuesta nacional de arroz mecanizado. Technical report, Departamento Nacional de estadísticas - Federación Nacional de Arroceros.spa
dc.relation.referencesDANE y FEDEARROZ (2018). Boletín técnico encuesta nacional de arroz mecanizado. Technical report, Departamento Nacional de estadísticas - Federación Nacional de Arroceros.spa
dc.relation.referencesDANE y FEDEARROZ (2019). Boletín técnico encuesta nacional de arroz mecanizado. Technical report, Departamento Nacional de estadı́sticas - Federación Nacional de Arroceros.spa
dc.relation.referencesDANE y FEDEARROZ (2020). Boletín técnico encuesta nacional de arroz mecanizado. Technical report, Departamento Nacional de estadísticas - Federación Nacional de Arroceros.spa
dc.relation.referencesDANE y FEDEARROZ (2021). Boletín técnico encuesta nacional de arroz mecanizado. Technical report, Departamento Nacional de estadísticas - Federación Nacional de Arroceros.spa
dc.relation.referencesDANE, D. (2014). Censo nacional agropecuario 2014.spa
dc.relation.referencesDavidson, A., Fisette, T., McNairn, H., y Daneshfar, B. (2014). Handbook on remote sensing for agricultural statistics. Número August.spa
dc.relation.referencesDey, S., Bhogapurapu, N., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J. M., McNairn, H., y Frery, A. C. (2021). Rice phenology mapping using novel target characterization parameters from polarimetric sar data. International Journal of Remote Sensing, 42(14):5515–5539.spa
dc.relation.referencesDong, J. y Xiao, X. (2016). Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 119:214–227.spa
dc.relation.referencesDong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar, C., y Moore, B. (2016). Mapping paddy rice planting area in northeastern asia with landsat 8 images, phenology-based algorithm and google earth engine. Remote Sensing of Environment, 185:142–154.spa
dc.relation.referencesEIU (2021). Global economics world commodity forecasts. Technical report, The Economist Intelligence Unit.spa
dc.relation.referencesESA (2007). ASAR Product Handbook. European Space Agency.spa
dc.relation.referencesESA (2012). ESA’s radar observatory mission for GMES operational services, volumen 1.spa
dc.relation.referencesESA (2013a). Sentinel-1 sar technical guide. Último acceso: 16 de NOVIEMBRE de 2021.spa
dc.relation.referencesESA (2013b). Sentinel-1 user guides. Último acceso: 16 de NOVIEMBRE de 2021.spa
dc.relation.referencesEuropean Space Agency (2013). Sentinel-1 User Handbook, Issue 1 Revision 2. (1):1–64.spa
dc.relation.referencesFAO (2018). Fao rice market monitor (rmm). Technical report, Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesFEDEARROZ-FNA, editor (2014). Manejo integrado del cultivo de arroz. FEDERACIÓN NACIONAL DE ARROCEROS FONDO NACIONAL DEL ARROZ, Área Técnica, Bogotá D. C., Colombia.spa
dc.relation.referencesFEDEARROZ-FNA, editor (2017). IV CENSO NACIONAL ARROCERO 2016. FEDERACIÓN NACIONAL DE ARROCEROS FONDO NACIONAL DEL ARROZ, División de Investigaciones Económicas, Bogotá D. C., Colombia.spa
dc.relation.referencesFilipponi, F. (2019). Sentinel-1 grd preprocessing workflow. En Multidisciplinary Digital Publishing Institute Proceedings, volumen 18, p. 11.spa
dc.relation.referencesGarcés, G. y Medina, J. (2017). LA FISIOLOGÍA DEL CULTIVO DEL ARROZ EN EL PROGRAMA AMTEC. Technical report, FEDEARROZ - Fondo Nacional del Arroz, Bogotá.spa
dc.relation.referencesGarcı́a, S. A. y Martı́nez, L. J. (2010). Método para identificación de cultivos de arroz (Oryza sativa L.) con base en imágenes de satélite. Agronomı́a Colombiana., 28(2):281–290.spa
dc.relation.referencesGareth, J., Daniela, W., Trevor, H., y Robert, T. (2013). An introduction to statistical learning: with applications in R. Spinger.spa
dc.relation.referencesGirón, Girón, R. y Hernández, Torrez, F. (2017). Identificación de cultivos de arroz empleando imágenes Sentinel-1. Análisis Geográficos, 53:57–67.spa
dc.relation.referencesGislason, P. O., Benediktsson, J. A., y Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern recognition letters, 27(4):294–300.spa
dc.relation.referencesGobernación-Tolima, editor (2019). PLAN DEPARTAMENTAL DE EXTENSIÓN AGROPECUARIA-PDEA. Gobernación del Tolima, Ibagué, Colombia.spa
dc.relation.referencesGSARS, editor (2017). Handbook on Remote Sensing for Agricultural Statistics. Global Strategy to improve Agricultural and Rural Statistics (GSARS), Roma - Italia.spa
dc.relation.referencesHajduch, G., Bourbigot, M., Johnsen, H., y Piantanida, R. (2021). Sentinel-1 Product Specification.spa
dc.relation.referencesHarrison, B., Jupp, D., Coppa, I., Grant, I., Hudson, D., Phinn, S., Smith, C., Mueller, N., Forster, B., y Lewis, M. (2016). Earth Observation: Data, Processing and Applications. data-basics and acquisition. volume 1A. Australia and New Zealand CRC for Spatial Information.spa
dc.relation.referencesHarrison, B., Jupp, D., Coppa, I., Grant, I., Hudson, D., Phinn, S., Smith, C., Mueller, N., Forster, B., y Lewis, M. (2017). Earth Observation: Data, Processing and Applications. data-image interpretation. volume 1B. Australia and New Zealand CRC for Spatial Information.spa
dc.relation.referencesIGAC (2005). Interpretación visual de imágenes de sensores remotos y su aplicación en levantamientos de cobertura y uso de la tierra. Instituto Geográfico Agustı́n Codazzi. Centro de Investigación y Desarrollo de Información Geográfica.spa
dc.relation.referencesJarvis, A., Rubiano Mejı́a, J. E., Nelson, A., Farrow, A., y Mulligan, M. (2004). Practical use of srtm data in the tropics: Comparisons with digital elevation models generated cartographic data.spa
dc.relation.referencesJensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.spa
dc.relation.referencesJensen, J. R. (2015). Introductory digital image processing: a remote sensing perspective.spa
dc.relation.referencesJin, Y.-Q. y Xu, F. (2013). Polarimetric scattering and SAR information retrieval. John Wiley & Sons.spa
dc.relation.referencesKhabbazan, S., Vermunt, P., Steele-Dunne, S., Ratering Arntz, L., Marinetti, C., van der Valk, D., Iannini, L., Molijn, R., Westerdijk, K., y van der Sande, C. (2019). Crop monitoring using sentinel-1 data: A case study from the netherlands. Remote Sensing, 11(16):1887.spa
dc.relation.referencesKim, Y. y van Zyl, J. J. (2009). A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8):2519– 2527.spa
dc.relation.referencesKordi, F. y Yousefi, H. (2022). Crop classification based on phenology information by using time series of optical and synthetic-aperture radar images. Remote Sensing Applications: Society and Environment, 27:100812.spa
dc.relation.referencesKrishnakumar, V., Monserrat, O., Crosetto, M., y Crippa, B. (2018). Atmospheric phase delay in sentinel sar interferometry.spa
dc.relation.referencesLee, J.-S., Jurkevich, L., Dewaele, P., Wambacq, P., y Oosterlinck, A. (1994). Speckle filtering of synthetic aperture radar images: A review. Remote sensing reviews, 8(4):313–340.spa
dc.relation.referencesLopez-Sanchez, J. M., Cloude, S. R., y Ballester-Berman, J. D. (2011). Rice phenology monitoring by means of sar polarimetry at x-band. IEEE Transactions on Geoscience and Remote Sensing, 50(7):2695–2709.spa
dc.relation.referencesLopez-Sanchez, J. M., Vicente-Guijalba, F., Ballester-Berman, J. D., y Cloude, S. R. (2014). Influence of incidence angle on the coherent copolar polarimetric response of rice at x-band. IEEE Geoscience and Remote Sensing Letters, 12(2):249–253.spa
dc.relation.referencesLuo, Y. y Flett, D. (2018). Sentinel-1 data border noise removal and seamless synthetic aperture radar mosaic generation. En Multidisciplinary Digital Publishing Institute Proceedings, volumen 2, p. 330.spa
dc.relation.referencesMa, L., Li, M., Ma, X., g, L., Du, P., y Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130:277–293.spa
dc.relation.referencesMa, L., Li, M., Ma, X., g, L., Du, P., y Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130:277–293.spa
dc.relation.referencesMandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., McNairn, H., y Rao, Y. S. (2020a). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 sar data. Remote Sensing of Environment, 247:111954.spa
dc.relation.referencesMandal, D., Ratha, D., Bhattacharya, A., Kumar, V., McNairn, H., Rao, Y. S., y Frery, A. C. (2020b). A radar vegetation index for crop monitoring using compact polarimetric sar data. IEEE Transactions on Geoscience and Remote Sensing, 58(9):6321–6335.spa
dc.relation.referencesMandal, D., Vaka, D. S., Bhogapurapu, N. R., Vanama, V., Kumar, V., Rao, Y. S., y Bhattacharya, A. (2019). Sentinel-1 slc preprocessing workflow for polarimetric applications: A generic practice for generating dual-pol covariance matrix elements in snap s-1 toolbox.spa
dc.relation.referencesMaxwell, A. E. y Warner, T. A. (2020). Thematic classification accuracy assessment with inherently uncertain boundaries: An argument for center-weighted accuracy assessment metrics. Remote Sensing, 12(12).spa
dc.relation.referencesMeier, U. (1997). Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag.spa
dc.relation.referencesMestre-Quereda, A., Lopez-Sanchez, J. M., Vicente-Guijalba, F., Jacob, A. W., y Engdahl, M. E. (2020). Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:4070–4084.spa
dc.relation.referencesMosleh, M. K., Hassan, Q. K., y Chowdhury, E. H. (2015). Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors, 15(1):769–791.spa
dc.relation.referencesNwanganga, F. y Chapple, M. (2020). Practical Machine Learning in R, volumen 148.spa
dc.relation.referencesOlofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., y Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148:42–57.spa
dc.relation.referencesOuchi, K. (2013). Recent trend and advance of synthetic aperture radar with selected topics. Remote Sensing, 5(2):716–807.spa
dc.relation.referencesPalakuru, M., Khadar Babu, S., y Chaube, N. R. (2021). Exploring potential of c band synthetic aperture radar imagery to investigate rice crop growth mechanism and productivity. Environmental Science and Pollution Research, 28:42001–42013.spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., y Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.spa
dc.relation.referencesPérez, N. y Ortı́z, U. (2009). Imágenes Aster en la discriminación de áreas de uso agrı́cola en Colombia. Rev. Fac. Nac. Agron., 62(1):4923–4935.spa
dc.relation.referencesPiantanida, R., Miranda, N., y Hadjduch, G. (2017). Thermal denoising of products generated by the s-1 ipf. Sentinel-1 Mission Perform. Centre, Ramonville-Saint-Agne, France, Tech. Rep. MPC-0392.spa
dc.relation.referencesPohl, C. y Van Genderen, J. (2016). Remote sensing image fusion: A practical guide. Crc Press.spa
dc.relation.referencesQiu, B., Li, W., Tang, Z., Chen, C., y Qi, W. (2015). Mapping paddy rice areas based on vegetation phenology and surface moisture conditions. Ecological Indicators, 56:79–86.spa
dc.relation.referencesQuiñones, J. (2011). Clasificación automática de los estados de desarrollo del arroz a partir de imágenes de RADARSAT-2. Tesis de máster, Universidad Nacional de Colombia.spa
dc.relation.referencesRaschka, S. y Mirjalili, V. (2019a). Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd.spa
dc.relation.referencesRaschka, S. y Mirjalili, V. (2019b). Python Machine Learning Third Edition (3nd Edition).spa
dc.relation.referencesRichards, J. (2009). Remote Sensing with Imaging Radar.spa
dc.relation.referencesSakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., y Ohno, H. (2005). A crop phenology detection method using time-series modis data. Remote sensing of environment, 96(3-4):366–374.spa
dc.relation.referencesShang, Jiali and Liu, Jiangui and Poncos, Valentin and Geng, Xiaoyuan and Qian, Budong and Chen, Qihao and Dong, Taifeng and Macdonald, Dan and Martin, Tim and Kovacs, John and others (2020). Detection of crop seeding and harvest through analysis of time-series sentinel-1 interferometric sar data. Remote Sensing, 12(10):1551.spa
dc.relation.referencesShimada, M. (2018). Imaging from Spaceborne and Airborne SARs, Calibration, and Applications. SAR Remote Sensing. CRC Press.spa
dc.relation.referencesSingh, S. y Gupta, P. (2014). Comparative study id3, cart and c4. 5 decision tree algorithm: a survey. International Journal of Advanced Information Science and Technology (IJAIST), 27(27):97–103.spa
dc.relation.referencesSzigarski, C., Jagdhuber, T., Baur, M., Thiel, C., Parrens, M., Wigneron, J.-P., Piles, M., y Entekhabi, D. (2018). Analysis of the radar vegetation index and potential improvements. Remote Sensing, 10(11):1776.spa
dc.relation.referencesTouzi, R., Lopes, A., niquel, J., y Vachon, P. (1999). Coherence estimation for sar imagery. IEEE Transactions on Geoscience and Remote Sensing, 37(1):135–149.spa
dc.relation.referencesWaldini, H., Ash Shidiq, I., Rokhmatuloh, R., y Supriatna, S. (2021). Rice crop phenology model to monitor rice planting and harvesting time using remote sensing approach. E3S Web of Conferences, 232:03020.spa
dc.relation.referencesWaske, B., Benediktsson, J. A., y Sveinsson, J. R. (2012). Random forest classification of remote sensing data. Signal and Image Processing for Remote Sensing, p. 365.spa
dc.relation.referencesWibowo, A and Shidiq, IPA and others (2020). Spatial analysis of rice phenology using sentinel-1 and sentinel-2 in karawang regency. En IOP Conference Series: Earth and Environmental Science, volumen 500, p. 012033. IOP Publishing.spa
dc.relation.referencesWoodhouse, I. H. (2017). Introduction to microwave remote sensing. CRC press.spa
dc.relation.referencesYamaguchi, Y. (2020). Polarimetric SAR Imaging: Theory and Applications. SAR Remote Sensing. CRC Press.spa
dc.relation.referencesYang, H., Pan, B., Li, N., Wang, W., Zhang, J., y Zhang, X. (2021). A systematic method for spatio-temporal phenology estimation of paddy rice using time series sentinel-1 images. Remote Sensing of Environment, 259:112394.spa
dc.relation.referencesYe, S., Pontius, R. G., y Rakshit, R. (2018). A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 141.spa
dc.relation.referencesZhang, M. y Lin, H. (2019). Object-based rice mapping using time-series and phenological data. Advances in Space Research, 63(1):190–202.spa
dc.relation.referencesZheng, H., Cheng, T., Yao, X., Deng, X., Tian, Y., Cao, W., y Zhu, Y. (2016). Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Research, 198:131–139.spa
dc.relation.referencesZhu, J., Wen, J., y Zhang, Y. (2013). A new algorithm for sar image despeckling using an enhanced lee filter and median filter. En 2013 6th International congress on image and signal processing (CISP), volumen 1, pp. 224–228. IEEE.spa
dc.relation.referencesZhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., y Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4):8–36.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.lembRecursos naturalesspa
dc.subject.lembNatural resourceseng
dc.subject.lembFenologíaspa
dc.subject.lembPhenologyeng
dc.subject.proposalRadar de apertura sintética (SAR)spa
dc.subject.proposalImágenes Sentinel-1spa
dc.subject.proposalFenología del arrozspa
dc.subject.proposalDatos polarimétricosspa
dc.subject.proposalExactitud de clasificaciónspa
dc.titleIdentificación del estado fenológico del cultivo del arroz a partir de imágenes de radar Sentinel-1spa
dc.title.translatedIdentification of the phenological state of rice cultivation from Sentinel-1 radar imageseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11232581.2023.pdf
Tamaño:
24.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: