Fractional Brownian motion applied to the study of the dynamics associated with non-stationary time series

dc.contributor.advisorQuimbay Herrera, Carlos José
dc.contributor.authorAbril Bermúdez, Felipe Segundo
dc.contributor.cvlacFelipe Segundo Abril Bermúdezspa
dc.contributor.googlescholarFelipe Segundo Abril Bermúdezspa
dc.contributor.orcidFelipe Segundo Abril Bermúdez [0000-0002-2512-4929]spa
dc.contributor.researchgateFelipe Segundo Abril Bermúdezspa
dc.contributor.researchgroupEconofisica y Sociofisicaspa
dc.date.accessioned2024-01-30T15:09:12Z
dc.date.available2024-01-30T15:09:12Z
dc.date.issued2024-01-29
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractEn esta tesis doctoral se propone extender los procesos fraccionales estables, como el movimiento browniano fraccionario, haciendo uso del formalismo de la integral de camino de tal manera que tenga asociada una distribución de Levy truncada, estableciendo un vínculo entre el exponente de Hurst y el exponente del escalamiento temporal de Theil, y verificando este vínculo en series de tiempo no estacionarias empíricas. Para ello, como punto de referencia de la correcta construcción de una integral de camino estocástica, se propone primero explicar la existencia del escalamiento de la fluctuación temporal y la variación temporal de su exponente introduciendo una contribución estocástica dependiente del tiempo en la función generadora de cumulantes de la probabilidad de transición entre dos tiempos de una variable estocástica descrita en términos de un kernel de Feynman. Así, la función generadora de cumulantes se identifica como el hamiltoniano del sistema y la integral de trayectoria estocástica se inscribe en el contexto de la teoría supersimétrica de la dinámica estocástica. Con base en estos resultados y utilizando el índice de Shannon, se encuentra un nuevo escalamiento temporal denominado escalamiento temporal del índice de Theil en series de tiempo de trayectorias difusivas. De hecho, la existencia del escalamiento temporal del Theil se muestra en una amplia variedad de series de tiempo empíricas que utilizan el algoritmo de trayectoria difusiva. Además, el escalamiento temporal del Theil puede describirse como una transición de fase asociada con un funcional de energía con exponentes fraccionales y con un parámetro de orden asociado con el índice de Shannon normalizado a su valor máximo. Luego, se investiga la dependencia del exponente de Hurst generalizado con el exponente del escalamiento temporal del Theil en series de tiempo, estableciendo una relación teórica desde el enfoque de la función de partición multifractal. Finalmente, la generalización de la fórmula de Feynman-Kac se realiza en procesos fraccionales estables independiente del tipo de ruido subyacente en el sistema y teniendo en cuenta el formalismo de la integral de camino estocástica. Así, el formalismo de la integral de camino estocástica fraccional se define en términos de la función generadora de cumulantes del ruido del sistema y se aplica al caso particular de una distribución de Levy truncada. (Texto tomado de la fuente)spa
dc.description.abstractIn this doctoral thesis, it is proposed to extend the fractional stable processes, such as the fractional Brownian motion, making use of the path integral formalism in such a way that they have an associated truncated Levy distribution, establishing a link between the Hurst exponent and the temporal Theil scaling exponent and verifying this link in non-stationary empirical time series. To do this, as a benchmark of the correct construction of a stochastic path integral, it is first proposed to explain the existence of the temporal fluctuation scaling and the temporal variation of its exponent by introducing a time-dependent stochastic contribution in the cumulant generating function of the probability of change between two times of a stochastic variable described in terms of a Feynman kernel. Thus, the cumulant generating function is identified as the Hamiltonian of the system and the stochastic path integral is inscribed in the context of the supersymmetric theory of stochastic dynamics. Based on these results and using the Shannon index, a new time scaling called temporal Theil scaling is found in time series of diffusive trajectories. Indeed, the existence of temporal Theil scaling is shown in a wide variety of empirical time series using the diffusive path algorithm. Furthermore, the temporal Theil scaling can be described as a phase transition associated with an energy functional with fractional exponents and with an order parameter associated with the Shannon index normalized to its maximum value. Then, the temporal dependence of the generalized Hurst exponent with the temporal Theil scaling exponent in time series is investigated, establishing a theoretical relationship from the multifractal partition function approach. Finally, the generalization of the Feynman-Kac formula is made in fractional stable processes independent of the type of underlying noise in the system and taking into account the formalism of the stochastic path integral. Thus, the formalism of the fractional stochastic path integral is defined in terms of the cumulant generating function of the noise of the system and it is applied to the particular case of a truncated Levy distribution.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extentxviii, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85513
dc.language.isoengspa
dc.publisherDepartamento de Física - Universidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Temporal fluctuation scaling in non-stationary time series using the path integral formalism. Phys. Rev. E, 103(4), 04 2021. doi: https://doi.org/10.1103/PhysRevE.103.042126.spa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Temporal Theil scaling in diffusive trajectory time series. Phys. Rev. E, 106(1), 07 2022. doi: https://doi.org/10.1103/PhysRevE.106.014117.spa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Evolution of temporal fluctuation scaling exponent in nonstationary time series using supersymmetric theory of stochastic dynamics. Manuscript accepted to be published on Phys. Rev. E at: https://journals.aps.org/pre/accepted/02074Rb1Xe31ac2a727e1f49be6f73c21dba65baf, 01 2024.spa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Temporal fluctuation scaling and temporal Theil scaling in financial time series. In Advances in quantitative methods for economics and business. Springer, 07 2024. Manuscript accepted to be published as a chapter (forthcoming).spa
dc.relation.referencesF. S. Abril, J. E. Trinidad-Segovia, M. A. Sánchez-Granero, and C. J. Quimbay. Generalized Shannon index as a multifractal measure in financial time series. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 01 2024.spa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Feynman-Kac formula driven by an arbitrary fractional noise. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 11 2023.spa
dc.relation.referencesF. S. Abril and C. J. Quimbay. Universality on the Spatial and Temporal Spread of Covid-19. Manuscript on webpage at: https://dx.doi.org/10.2139/ssrn.4511708, 2023.spa
dc.relation.referencesV. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley. Econophysics: financial time series from a statistical physics point of view. Physica A, 279(1-4):443–456, 05 2000. doi: https://doi.org/10.1016/s0378-4371(00)00010-8.spa
dc.relation.referencesH. E. Stanley, S. V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, and T. Preis. Correlated randomness and switching phenomena. Physica A, 389(15):2880–2893, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.02.023.spa
dc.relation.referencesH. E. Stanley, V. Afanasyev, L. A. N. Amaral, S. V. Buldyrev, A. L. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. N. Mantegna, C. K. Peng, P. A. Prince, M. A. Salinger, M. H. R. Stanley, and G. M. Viswanathan. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A, 224(1-2):302–321, 02 1996. doi: https://doi.org/10.1016/0378-4371(95)00409-2.spa
dc.relation.referencesR. N. Mantegna and H. E. Stanley. Scaling behavior in the dynamics of an economic index. Nature, 376(6535):46–49, 05 1993. doi: https://doi.org/10.1038/376046a0.spa
dc.relation.referencesH. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight for systems with power-law distributions. Physica A, 268(1-2):231–239, 06 1999. doi: https://doi.org/10.1016/S0378-4371(99)00028-X.spa
dc.relation.referencesR. N. Mantegna and H. E. Stanley. Ultra-slow convergence to a Gaussian: The truncated Lévy flight. In Lévy Flights and Related Topics in Physics, pages 300–312. Springer, Berlin Heidelberg, Germany, 2005. doi: https://doi.org/10.1007/3-540-59222-9_42.spa
dc.relation.referencesA. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. Eur. Phys. J. B, 17(4):723–729, 10 2000. doi: https://doi.org/10.1007/s100510070114.spa
dc.relation.referencesM. Patriarca, A. Chakraborti, and K. Kaski. Statistical model with a standard Gamma distribution. Phys. Rev. E, 70(1), 07 2004. doi: https://doi.org/10.1103/PhysRevE.70.016104.spa
dc.relation.referencesA. C. Silva, R. E. Prange, and V. M. Yakovenko. Exponential Distribution of Financial Returns at Mesoscopic Time Lags: A New Stylized Fact. Physica A, 344(1-2):227–235, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.122.spa
dc.relation.referencesJ. P. Bouchaud. Elements for a theory of financial risks. Physica A, 263(1-4):415–426, 02 1999. doi: https://doi.org/10.1016/s0378-4371(98)00486-5.spa
dc.relation.referencesH. Kleinert. Stochastic calculus for assets with non-Gaussian price fluctuations. Physica A, 311(3-4):536–562, 08 2002. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.spa
dc.relation.referencesT. Lix and F. Westerhoff. Economics crisis. Nature Phys., 5(1):2–3, 01 2009. doi: https://doi.org/10.1038/nphys1163.spa
dc.relation.referencesJ. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460(7256):685–686, 08 2009. doi: https://doi.org/10.1038/460685a.spa
dc.relation.referencesC. Schinckus. Economic uncertainty and econophysics. Physica A, 388(20):4415–4423, 10 2009. doi: https://doi.org/10.1016/j.physa.2009.07.008.spa
dc.relation.referencesC. Schinckus. Between complexity of modelling and modelling of complexity: An essay on econophysics. Physica A, 392(17):3654–3665, 09 2013. doi: https://doi.org/10.1016/j.physa.2013.04.005.spa
dc.relation.referencesA. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I. Empirical facts. Quant. Finance, 11(7):991–1012, 06 2011. doi: https://doi.org/10.1080/14697688.2010.539248.spa
dc.relation.referencesJ. M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, and A. Marchand. Louis Bachelier on the Centenary of Theorie de la Speculation. Math. Financ., 10(3):339–353, 07 2000. doi: https://doi.org/10.1111/1467-9965.00098.spa
dc.relation.referencesA. Einstein. über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys., 322(8):549–560, 07 1905. doi: https://doi.org/10.1002/andp.19053220806.spa
dc.relation.referencesN. G. van Kampen. Itô versus Stratonovich. J. Stat. Phys., 24(1):175–187, 01 1981. doi: https://doi.org/10.1007/bf01007642.spa
dc.relation.referencesM. F. M. Osborne. Brownian Motion in the Stock Market. Oper. Res., 7(2):145–173, 04 1959. doi: https://doi.org/10.1287/opre.7.2.145.spa
dc.relation.referencesF. Black and M. Scholes. The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance, pages 3–21. World Scientific Publishing Company, 03 2019. doi: https://doi.org/10.1142/9789814759588_0001.spa
dc.relation.referencesH. Föllmer and A. Schied. Stochastic Finance. De Gruyter, 12 2004. doi: https://doi.org/10.1515/9783110212075.spa
dc.relation.referencesB. Mandelbrot. The Pareto–Levy law and the distribution of income. Intl. Econ. Rev., 1(2):79–106, 05 1960. doi: https://doi.org/10.2307/2525289.spa
dc.relation.referencesB. Mandelbrot. The variation of certain speculative prices. J. Bus., 36(4):394–419, 10 1963. https://www.jstor.org/stable/2351623.spa
dc.relation.referencesS. L. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud., 6(2):327–343, 04 1993. https://doi.org/10.1093/rfs/6.2.327.spa
dc.relation.referencesP. Tankov and R. Cont. Financial modelling beyond Brownian motion 1. In Financial Modelling with Jump Processes. Chapman and Hall/CRC, 12 2003.spa
dc.relation.referencesB. B. Mandelbrot and J. W. Van Ness. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10(4):422–437, 10 1968. doi: https://doi.org/10.1137/1010093.spa
dc.relation.referencesZ. Jiang, W. Xie, W. Zhou, and D. Sornette. Multifractal analysis of financial markets: a review. Rep. Prog. Phys., 82(12), 11 125901. doi: https://doi.org/10.1088/1361-6633/ab42fb.spa
dc.relation.referencesJ. Rosiński. Tempering stable processes. Stoch. Process. Their Appl., 117(6):677–707, 06 2007. doi: https://doi.org/10.1016/j.spa.2006.10.003.spa
dc.relation.referencesM. A. Sánchez-Granero, J. E. Trinidad-Segovia, and J. García-Pérez. Some comments on Hurst exponent and the long memory processes on capital markets. Physica A, 387(22):5543–5551, 09 2008. doi: https://doi.org/10.1016/j.physa.2008.05.053.spa
dc.relation.referencesM. Fernández-Martínez, M. A. Sánchez-Granero, and J. E. Trinidad-Segovia. Measuring the self-similarity exponent in Lévy stable processes of financial time series. Physica A, 392(21):5330 – 5345, 11 2013. doi: https://doi.org/10.1016/j.physa.2013.06.026.spa
dc.relation.referencesM. Fernández-Martínez, M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and I. M. Román-Sánchez. An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A, 378(32-33):2355–2362, 06 2014. doi: https://doi.org/10.1016/j.physleta.2014.06.018.spa
dc.relation.referencesH. Lotfalinezhad and A. Maleki. TTA, a new approach to estimate Hurst exponent with less estimation error and computational time. Physica A, 553:124093, 09 2020. doi: https://doi.org/10.1016/j.physa.2019.124093.spa
dc.relation.referencesA. Gómez-Águila, J. E. Trinidad-Segovia, and M. A. Sánchez-Granero. Improvement in Hurst exponent estimation and its application to financial markets. Financial Innov., 8(1), 09 2022. doi: https://doi.org/10.1186/s40854-022-00394-x.spa
dc.relation.referencesH. E. Hurst. Long-Term Storage Capacity of Reservoirs. ASCE Trans., 116(1):770–799, 01 1951. doi: https://doi.org/10.1061/taceat.0006518.spa
dc.relation.referencesL. A. Martín-Montoya, N. M. Aranda-Camacho, and C. J. Quimbay. Long-range correlations and trends in Colombian seismic time series. Physica A, 421:124–133, 03 2015. doi: https://doi.org/10.1016/j.physa.2014.10.073.spa
dc.relation.referencesM. Tokeshi. On the mathematical basis of the variance-mean power relationship. Popul. Ecol., 37(1):43–48, 06 1995. doi: https://doi.org/10.1007/BF02515760.spa
dc.relation.referencesJ. W. Kirchner, X. Feng, and C. Neal. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature, 403(6769):524–527, 02 2000. doi: https://doi.org/10.1038/35000537.spa
dc.relation.referencesJ. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4):87–114, 12 2002. doi: https://doi.org/10.1016/S0378-4371(02)01383-3.spa
dc.relation.referencesK. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi. LongRange Temporal Correlations and Scaling Behavior in Human Brain Oscillations. J. Neurosci., 21(4):1370–1377, 02 2001. doi: https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001.spa
dc.relation.referencesG. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66(4):1125–1388, 10 1994. doi: https://doi.org/10.1103/RevModPhys.66.1125.spa
dc.relation.referencesG. Paladin and A. Vulpiani. Anomalous scaling laws in multifractal objects. Phys. Rep., 156(4):147–225, 12 1987. doi: https://doi.org/10.1016/0370-1573(87)90110-4.spa
dc.relation.referencesP. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley. Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E, 60(5):5305–5316, 11 1999. doi: https://doi.org/10.1103/PhysRevE.60.5305.spa
dc.relation.referencesV. Plerou and H. E. Stanley. Tests of scaling and universality of the distributions of trade size and share volume: Evidence from three distinct markets. Phys. Rev. E, 76(4), 10 2007. doi: https://doi.org/10.1103/PhysRevE.76.046109.spa
dc.relation.referencesM. A. Sánchez-Granero, J. E. Trinidad-Segovia, J. García, and M. Fernández. The Effect of the Underlying Distribution in Hurst Exponent Estimation. PLoS One, 10(5):e0127824, 05 2015. doi: https://doi.org/10.1371/journal.pone.0127824.spa
dc.relation.referencesJ. Barunik and L. Kristoufek. On Hurst exponent estimation under heavy-tailed distributions. Physica A, 389(18):3844–3855, 09 2010. doi: https://doi.org/10.1016/j.physa.2010.05.025.spa
dc.relation.referencesY. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. Financial market models with Lévy processes and time-varying volatility. J. Bank. Financ., 32(7):1363–1378, 07 2008. doi: https://doi.org/10.1016/j.jbankfin.2007.11.004.spa
dc.relation.referencesP. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9(1-2):189–208, 10 1983. doi: https://doi.org/10.1016/0167-2789(83)90298-1.spa
dc.relation.referencesA. Carbone, G. Castelli, and H. E. Stanley. Time-dependent Hurst exponent in financial time series. Physica A, 344(1-2):267–271, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.130.spa
dc.relation.referencesM. A. de Menezes and A. L. Barabási. Fluctuations in Network Dynamics. Phys. Rev. Lett., 92(2), 01 2004. doi: https://doi.org/10.1103/PhysRevLett.92.028701.spa
dc.relation.referencesZ. Eisler and J. Kertész. Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Phys. Rev. E, 73(4), 04 2006. doi: https://doi.org/10.1103/PhysRevE.73.046109.spa
dc.relation.referencesZ. Eisler, I. Bartos, and J. Kertész. Fluctuation scaling in complex systems: Taylor's law and beyond. Adv. Phys., 57(1):89–142, 01 2008. doi: https://doi.org/10.1080/00018730801893043.spa
dc.relation.referencesA. Fronczak and P. Fronczak. Origins of Taylor’s power law for fluctuation scaling in complex systems. Phys. Rev. E, 81(6), 06 2010. doi: https://doi.org/10.1103/PhysRevE.81.066112.spa
dc.relation.referencesJ. E. Cohen and M. Xu. Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling. Proc. Natl. Acad. Sci., 112(25):7749–7754, 04 2015. doi: https://doi.org/10.1073/pnas.1503824112.spa
dc.relation.referencesZ. Eisler, J. Kertész, S. H. Yook, and A. L. Barabási. Multiscaling and nonuniversality in fluctuations of driven complex systems. Europhys. Lett., 69(4):664–670, 02 2005. doi: https://doi.org/10.1209/epl/i2004-10384-1.spa
dc.relation.referencesL. Blanco, V. Arunachalam, and S. Dharmaraja. Introduction to probability and stochastic processes with applications. John Wiley & Sons, Nashville, TN, 06 2012.spa
dc.relation.referencesN. Scafetta and P. Grigolini. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E, 66(3), 09 2002. doi: https://doi.org/10.1103/PhysRevE.66.036130.spa
dc.relation.referencesG. Trefán, E. Floriani, B. J. West, and P. Grigolini. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. Phys. Rev. E, 50(4):2564–2579, 11 1994. doi: https://doi.org/10.1103/PhysRevE.50.2564.spa
dc.relation.referencesJ. Qi and H. Yang. Hurst exponents for short time series. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/PhysRevE.84.066114.spa
dc.relation.referencesI. F. Spellerberg and P. J. Fedor. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ShannonWiener Index. Glob. Ecol. Biogeogr., 12(3):177–179, 04 2003. doi: https://doi.org/10.1046/j.1466-822x.2003.00015.x.spa
dc.relation.referencesJ. Johnston and H. Theil. Economics and information theory. Econ. J., 79(315):601, 09 1969. doi: https://doi.org/10.2307/2230396.spa
dc.relation.referencesJ. M. Sarabia, V. Jordá, and L. Remuzgo. The Theil Indices in Parametric Families of Income Distributions—A Short Review. Rev. Income Wealth, 63(4):867–880, 11 2016. doi: https://doi.org/10.1111/roiw.12260.spa
dc.relation.referencesF. Cowell. Theil, Inequality and the Structure of Income Distribution. Theil, Inequality and the Structure of Income Distribution, 2003.spa
dc.relation.referencesD. Schertzer, M. Larchev, J. Duan, V. V. Yanovsky, and S. Lovejoy. Fractional Fokker–Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises. arXiv, 09 2004. doi: https://doi.org/10.48550/arXiv.math/0409486.spa
dc.relation.referencesI. Calvo, R. Sánchez, and B. A. Carreras. Fractional Lévy motion through path integrals. J. Phys. A Math. Theor., 42(5):055003, 01 2009. doi: https://doi.org/10.1088/1751-8113/42/5/055003.spa
dc.relation.referencesC. Ma, Q. Ma, H. Yao, and T. Hou. An accurate european option pricing model under fractional stable process based on Feynman path integral. Physica A, 494:87–117, 03 2018. doi: https://doi.org/10.1016/j.physa.2017.11.120.spa
dc.relation.referencesR. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys., 20(2):367–387, 04 1948. doi: https://doi.org/10.1103/RevModPhys.20.367.spa
dc.relation.referencesL. C. Fai. Feynman path integrals in quantum mechanics and statistical physics. CRC Press, London, England, 04 2021.spa
dc.relation.referencesH. S. Wio. Path Integrals for Stochastic Processes. World Scientific Publishing Company, 11 2012. doi: https://doi.org/10.1142/8695.spa
dc.relation.referencesN. Laskin. Fractional Nonlinear Quantum Mechanics. In Fractional Quantum Mechanics, pages 184–185. World Scientific Publishing Company, 03 2018. doi: https://doi.org/10.1142/10541.spa
dc.relation.referencesM. G. Tsionas. Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility. Physica A, 567:125647, 04 2021. doi: https://doi.org/10.1016/j.physa.2020.125647.spa
dc.relation.referencesM. Kac. On distributions of certain Wiener functionals. Trans. Am. Math. Soc., 65(1):1–13, 01 1949. doi: https://doi.org/10.1090/s0002-9947-1949-0027960-x.spa
dc.relation.referencesX. Wu, W. Deng, and E. Barkai. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E, 93(3), 03 2016. doi: https://doi.org/10.1103/physreve.93.032151.spa
dc.relation.referencesH. F. Smith. An empirical law describing heterogeneity in the yields of agricultural crops. J. Agri. Sci., 28(1):1–23, 01 1938. doi: https://doi.org/10.1017/S0021859600050516.spa
dc.relation.referencesL. R. Taylor. Aggregation, Variance and the Mean. Nature, 189(4766):732–735, 03 1961. doi: https://doi.org/10.1038/189732a0.spa
dc.relation.referencesA. G. Zawadowski, J. Kertész, and G. Andor. Large price changes on small scales. Physica A, 344(4):221–226, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.121.spa
dc.relation.referencesP. C. Ivanov, A. Yuen, and P. Perakakis. Impact of Stock Market Structure on Intertrade Time and Price Dynamics. PLoS ONE, 9(4), 04 2014. doi: https://doi.org/10.1371/journal.pone.0092885.spa
dc.relation.referencesA. L. Barabasi and T. Vicsek. Multifractality of self-affine fractals. Phys. Rev. A, 44(4):2730–2733, 08 1991. doi: https://doi.org/10.1103/PhysRevA.44.2730.spa
dc.relation.referencesJ. Kwapień, P. Oświęcimka, and S. Drożdż. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E, 92(5), 11 2015. doi: https://doi.org/10.1103/PhysRevE.92.052815.spa
dc.relation.referencesF. Benassi, A. Naccarato, and M. Xu. Taylor's law detects and interprets temporal trends of the spatial distribution of Covid-19 daily infection density across Italian provinces. Research Square, 14, 07 2021. doi: https://doi.org/10.21203/rs.3.rs-626505/v1.spa
dc.relation.referencesZ. S. Ma. Coupling power laws offers a powerful method for problems such as biodiversity and COVID-19 fatality predictions. Front. Appl. Math. Stat., 8, 03 2022. doi: https://doi.org/10.3389/fams.2022.801830.spa
dc.relation.referencesJ. Choloniewski. Modelling dynamics of news media, 10 2022.spa
dc.relation.referencesD. Valenti, B. Spagnolo, and G. Bonanno. Hitting time distributions in financial markets. Physica A, 382(1):311–320, 08 2007. doi: https://doi.org/10.1016/j.physa.2007.03.044.spa
dc.relation.referencesB. Spagnolo and D. Valenti. Volatility Effects on the Escape Time in Financial Market Models. Int. J. Bifurc. Chaos Appl. Sci. Eng., 18(9):2775 – 2786, 09 2008. doi: https://doi.org/10.1142/S0218127408022007.spa
dc.relation.referencesD. Valenti, G. Fazio, and B. Spagnolo. Stabilizing effect of volatility in financial markets. Phys. Rev. E, 97(6), 06 2018. doi: https://doi.org/10.1103/PhysRevE.97.062307.spa
dc.relation.referencesA. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, and A. Panebianco. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food. Res. Technol., 228(5):767–775, 12 2008. doi: https://doi.org/10.1007/s00217-008-0988-6.spa
dc.relation.referencesN. Pizzolato, A. Fiasconaro, D. P. Adorno, and B. Spagnolo. Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol., 7(3):034001, 08 2010. doi: https://doi.org/10. 1088/1478-3975/7/3/034001.spa
dc.relation.referencesG. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, and C. Brunet. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecol. Complex., 13:21–34, 03 2013. doi: https://doi.org/10.1016/j.ecocom.2012.10.002.spa
dc.relation.referencesG. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo. Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B, 87(21), 06 2013. doi: https://doi.org/10.1103/PhysRevB.87.214515.spa
dc.relation.referencesB. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Mathematical Association, 08 2021. https://www.jstor.org/stable/i285536.spa
dc.relation.referencesH. Kleinert. Path Integrals and Financial Markets. In Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, chapter 20, pages 1440–1535. World Scientific Publishing Company, 05 2009. doi: https://doi.org/10.1142/7305.spa
dc.relation.referencesK. Taufemback, R. Giglio, and S. Da Silva. Algorithmic complexity theory detects decreases in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis. Econ. Bull., 31(2):1631 – 1647, 6 2011.spa
dc.relation.referencesG. Parisi and N. Sourlas. Random Magnetic Fields, Supersymmetry, and Negative Dimensions. Phys. Rev. Lett., 43(11):744–745, 09 1979. doi: https://doi.org/10.1103/physrevlett.43.744.spa
dc.relation.referencesI. V. Ovchinnikov. Introduction to Supersymmetric Theory of Stochastics. Entropy, 18(4):108, 03 2016. doi: https://doi.org/10.48550/arxiv.1511.03393.spa
dc.relation.referencesA. Stuart. Kendall’s advanced theory of statistics. Wiley-Blackwell, Hoboken, NJ, 6 edition, 06 1994.spa
dc.relation.referencesE. T. Bell. Partition Polynomials. Ann. Math., 29(1-4):38–46, 07 1927. doi: https://doi.org/10.2307/1967979.spa
dc.relation.referencesT. Kim and D. S. Kim. A Note on Central Bell Numbers and Polynomials. Russ. J. Math. Phys., 27(1):76–81, 01 2020. doi: https://doi.org/10.1134/s1061920820010070.spa
dc.relation.referencesS. Roman. The Formula of Faa Di Bruno. Am. Math. Mon., 87(10):805–809, 12 1980. doi: https://doi.org/10.1080/00029890.1980.11995156.spa
dc.relation.referencesH. Kleinert and X. J. Chen. Boltzmann distribution and market temperature. Physica A, 383(2):513–518, 09 2007. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.spa
dc.relation.referencesH. Kleinert and S. V. Shabanov. Supersymmetry in stochastic processes with higherorder time derivatives. Phys. Lett. A, 235(2):105–112, 10 1997. doi: https://doi.org/10.1016/s0375-9601(97)00660-9.spa
dc.relation.referencesJ. J. Sakurai and J. J. Napolitano. Modern Quantum Mechanics. Pearson Education, Philadelphia, PA, 2 edition, 07 2010.spa
dc.relation.referencesR. K. P. Zia, E. F. Redish, and S. R. McKay. Making sense of the Legendre transform. Am. J. Phys., 77(7):614–622, 07 2009. doi: https://doi.org/10.1119/1.3119512.spa
dc.relation.referencesE. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 28(6):1049–1070, 12 1926. doi: https://doi.org/10.1103/physrev.28.1049.spa
dc.relation.referencesL. C. Evans. Nonlinear first-order PDE. In Graduate Studies in Mathematics, Graduate studies in mathematics, pages 91–166. American Mathematical Society, Providence, Rhode Island, 2 edition, 03 2010.spa
dc.relation.referencesR. Courant and D. Hilbert. Methods of mathematical physics. Wiley Classics Library. John Wiley & Sons, Nashville, TN, 04 1989.spa
dc.relation.referencesV. N. Popov. Functional integrals in quantum field theory and statistical physics. Mathematical Physics and Applied Mathematics. Springer, New York, NY, 11 2001.spa
dc.relation.referencesP. J. Daniell. Integrals in An Infinite Number of Dimensions. Ann. Math., 20(4):281, 07 1919. doi: https://doi.org/10.2307/1967122.spa
dc.relation.referencesR. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep., 506(5):87–162, 09 2011. doi: https://doi.org/10.1016/j.physrep.2011.05.003.spa
dc.relation.referencesJ. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly. Eigenvalue inequalities for products of matrix exponentials. Linear Algebra Appl., 45:55–95, 06 1982. doi: https://doi.org/10.1016/0024-3795(82)90211-7.spa
dc.relation.referencesA. Issaka and I. SenGupta. Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets. J. Appl. Math. Comput., 54(1-2):159–182, 03 2016. doi: https://doi.org/10.1007/s12190-016-1002-2.spa
dc.relation.referencesR. LePage, K. Podgórski, and M. Ryznar. Strong and conditional invariance principles for samples attracted to stable laws. Probab. Theory Relat. Fields, 108(2):281–298, 06 1997. doi: https://doi.org/10.1007/s004400050110.spa
dc.relation.referencesA. Piryatinska. Inference for the Lévy models and their applications in medicine and statistical physics, 10 2005.spa
dc.relation.referencesJ. P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Physica A, 282(3-4):536–545, 07 2000. doi: https://doi.org/10.1016/S0378-4371(00)00205-3.spa
dc.relation.referencesD. S. Quevedo and C. Quimbay. Non-conservative kinetic model of wealth exchange with saving of production. Eur. Phys. J. B, 93(10), 10 2020. doi: https://doi.org/10.1140/epjb/e2020-10193-3.spa
dc.relation.referencesR. Aroussi. Download market data from Yahoo! Finance API. Python, 2023.spa
dc.relation.referencesA. A. Dragulescu and V. M. Yakovenko. Probability distribution of returns in the Heston model with stochastic volatility. arXiv, 03 2004. doi: https://doi.org/10.48550/arXiv.cond-mat/0203046.spa
dc.relation.referencesF. Abril. Temporal_Fluctuation_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Fluctuation_Scaling.spa
dc.relation.referencesH. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. C. Ivanov, T. H. Keitt, and V. Plerou. Scale invariance and universality: organizing principles in complex systems. Physica A, 281(1-4):64–68, 06 2000. doi: https://doi.org/10.1016/s0378-4371(00)00195-3.spa
dc.relation.referencesB. Mandelbrot. The fractal geometry of nature. W. H. Freeman, New York, NY, 11 1982.spa
dc.relation.referencesC.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685–1689, 02 1994. doi: https://doi.org/10.1103/physreve.49.1685.spa
dc.relation.referencesF. Bourguignon. Decomposable Income Inequality Measures. Econometrica, 47(4):901, 07 1979. doi: https://doi.org/10.2307/1914138.spa
dc.relation.referencesF. Bourguignon and C. Morrison. Inequality among World Citizens: 1820-1992. Am. Econ. Rev., 92(4):727–744, 08 2002. doi: http://dx.doi.org/10.1257/00028280260344443.spa
dc.relation.referencesJ. Miśkiewicz. Analysis of Time Series Correlation. The Choice of Distance Metrics and Network Structure. Acta Phys. Pol. A, 121(2B):B–89–B–94, 02 2012. doi: https://doi.org/10.12693/APHYSPOLA.121.B-89.spa
dc.relation.referencesJ. Iglesias and R. M. C. de Almeida. Entropy and equilibrium state of free market models. Eur. Phys. J. B, 85(3), 03 2012. doi: https://doi.org/10.1140/epjb/e2012-21036-1.spa
dc.relation.referencesM. J. Salois. Regional changes in the distribution of foreign aid: An entropy approach. Physica A, 392(13):2893–2902, 07 2013. doi: https://doi.org/10.1016/j.physa.2013.02.007.spa
dc.relation.referencesT. Andrei, B. Oancea, P. Richmond, G. Dhesi, and C. Herteliu. Decomposition of the Inequality of Income Distribution by Income Types—Application for Romania. Entropy, 19(9):430, 09 2017. doi: https://doi.org/10.3390/e19090430.spa
dc.relation.referencesA. F. Shorrocks. The Class of Additively Decomposable Inequality Measures. Econometrica, 48(3):613, 04 1980. doi: https://doi.org/10.2307/1913126.spa
dc.relation.referencesL. I. Kuncheva and C. J. Whitaker. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn., 51(2):181–207, 2003. doi: https://doi.org/10.1023/A:1022859003006.spa
dc.relation.referencesJ. V. T. de Lima, S. L. E. F. da Silva, J. M. de Araújo, G. Corso, and G. Z. Lima. Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys J. Plus, 136(3), 03 2021. doi: https://doi.org/10.1140/epjp/s13360-021-01274-6.spa
dc.relation.referencesC. Chatterjee, A. Ghosh, J. Inoue, and B. K. Chakrabarti. Social inequality: from data to statistical physics modeling. J. Phys. Conf. Ser., 638:012014, 09 2015. doi: https://doi.org/10.1088/1742-6596/638/1/012014.spa
dc.relation.referencesI. Eliazar and I. M. Sokolov. Maximization of statistical heterogeneity: From Shannon’s entropy to Gini’s index. Physica A, 389(16):3023–3038, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.03.045.spa
dc.relation.referencesL. Landau. The Theory of Phase Transitions. Nature, 138(3498):840 – 841, 11 1936. doi: https://doi.org/10.1038/138840a0.spa
dc.relation.referencesL. Landau. On the theory of superconductivity. In Collected Papers of L.D. Landau, pages 217–225. Elsevier, 1965. doi: https://doi.org/10.1016/b978-0-08-010586-4.50035-3.spa
dc.relation.referencesT. Lancaster and S. J. Blundell. Quantum field theory for the gifted amateur. Oxford University Press, London, England, 04 2014. Chapter 26 and 35.spa
dc.relation.referencesM. V. Milošević and R. Geurts. The Ginzburg–Landau theory in application. Physica C, 470:791–795, 10 2010. doi: https://doi.org/10.1016/j.physc.2010.02.056.spa
dc.relation.referencesJ. Als-Nielsen. Neutron Scattering and Spatial Correlation near the Critical Point. In Phase Transition and Critical Phenomena, volume 5a, pages 87–163. Academic Press, San Diego, CA, 04 1976.spa
dc.relation.referencesJ. S. Rowlinson. Liquids and liquid mixtures. Butterworth-Heinemann, Oxford, England, 3 edition, 01 1982.spa
dc.relation.referencesM. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials. Oxford University Press, London, England, 02 2001. doi: https://doi.org/10.1093/acprof:oso/9780198507789.001.0001.spa
dc.relation.referencesR. K. Pathria and P. D. Beale. Statistical mechanics. Elsevier, 3 edition, 2011.spa
dc.relation.referencesJ. Chakravarty and D. Jain. Critical exponents for higher order phase transitions: Landau theory and RG flow. J. Stat. Mech., 2021(9):093204, 09 2021. doi: https://doi.org/10.1088/1742-5468/ac1f11.spa
dc.relation.referencesC. E. Ekuma, G. C. Asomba, and C. M. I. Okoye. Ginzburg–Landau theory for higher order phase transition. Physica C, 472(1):1–4, 01 2012. doi: https://doi.org/10.1016/j.physc.2011.09.015.spa
dc.relation.referencesC. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(3):379–423, 07 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.spa
dc.relation.referencesE. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620–630, 05 1957. doi: https://doi.org/10.1103/PhysRev.106.620.spa
dc.relation.referencesN. Laskin. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 268(4-6):298–305, 04 2000. doi: https://doi.org/10.1016/S0375-9601(00)00201-2.spa
dc.relation.referencesJ. Goldstone. Field theories with Superconductor solutions. Il Nuovo Cimento, 19(1):154–164, 01 1961. doi: https://doi.org/10.1007/bf02812722.spa
dc.relation.referencesV. E. Tarasov and G. M. Zaslavsky. Fractional Ginzburg-Landau equation for fractal media. Physica A, 354:249–261, 08 2005. doi: https://doi.org/10.1016/j.physa.2005.02.047.spa
dc.relation.referencesY. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He. Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fractals, 131(109471), 02 2020. doi: https://doi.org/10.1016/j.chaos.2019.109471.spa
dc.relation.referencesE. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento, 20(3):454–477, 05 1961. doi: https://doi.org/10.1007/BF02731494.spa
dc.relation.referencesD. A. Tayurskii and Y. V. Lysogorskiys. Superfluid hydrodynamic in fractal dimension space. J. Phys. Conf. Ser., 394:012004, 11 2012. doi: https://doi.org/10.1088/1742-6596/394/1/012004.spa
dc.relation.referencesNational Office of Oceanic and Atmospheric Administration. Daily Summaries. NOAA, 2023.spa
dc.relation.referencesF. Abril. Temporal_Theil_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Theil_Scaling.spa
dc.relation.referencesB. B. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131(1-2):5–42, 05 1989. doi: https://doi.org/10.1007/bf00874478.spa
dc.relation.referencesE. A. Novikov. Intermittency and scale similarity in the structure of a turbulent flow. Journal of Applied Mathematics and Mechanics, 35(2):231–241, 01 1971. doi: https://doi.org/10.1016/0021-8928(71)90029-3.spa
dc.relation.referencesT. Di Matteo. Multi-scaling in finance. Quant. Finance, 7(1):21–36, 02 2007. doi: https://doi.org/10.1080/14697680600969727.spa
dc.relation.referencesB. Mandelbrot. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775):636–638, 05 1967. doi: https://doi.org/10.1126/science.156.3775.636.spa
dc.relation.referencesA. Rényi. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungaricae, 10(1-2):193–215, 03 1959. doi: https://doi.org/10.1007/bf02063299.spa
dc.relation.referencesT. Vicsek. Fractal Growth Phenomena. World Scientific Publishing Company, 06 1992. doi: https://doi.org/10.1142/1407.spa
dc.relation.referencesP. Grassberger and I. Procaccia. The liapunov dimension of strange attractors. J. Differ. Equ., 49(2):185–207, 08 1983. doi: https://doi.org/10.1016/0022-0396(83)90011-6.spa
dc.relation.referencesT. Higuchi. Approach to an irregular time series on the basis of the fractal theory. Physica D, 31(2):277–283, 06 1988. doi: https://doi.org/10.1016/0167-2789(88)90081-4.spa
dc.relation.referencesT. Gneiting, H. Ševčíková, and D. B. Percival. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. Stat. Sci., 27(2), 05 2012. doi: https://doi.org/10.1214/11-sts370.spa
dc.relation.referencesW. S. Kendal and B. Jørgensen. Tweedie convergence: A mathematical basis for Taylor's power law, 1/f noise, and multifractality. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/physreve.84.066120.spa
dc.relation.referencesB. Jørgensen and C. C. Kokonendji. Dispersion models for geometric sums. Braz. J. Probab. Stat., 25(3), 11 2011. doi: https://doi.org/10.1214/10-bjps136.spa
dc.relation.referencesH. Xu, G. Gu, and W. Zhou. Direct determination approach for the multifractal detrending moving average analysis. Phys. Rev. E, 96(5), 11 2017. doi: https://doi.org/10.1103/physreve.96.052201.spa
dc.relation.referencesM. S. Taqqu. Benoît Mandelbrot and Fractional Brownian Motion. Stat. Sci., 28(1), 02 2013. doi: https://doi.org/10.1214/12-sts389.spa
dc.relation.referencesA. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Acad. Sci. URSS, 26:115–118, 01 1940.spa
dc.relation.referencesG. A. Hunt. Random Fourier transforms. Trans. Amer. Math. Soc., 71:38–69, 01 1951.spa
dc.relation.referencesA. M. Yaglom. Correlation theory of processes with random stationary nth increments. Mat. Sb. N.S., 79(37), 01 1955.spa
dc.relation.referencesH. Grad. The many faces of entropy. Commun. Pure Appl. Math., 14(3):323–354, 08 1961. doi: https://doi.org/10.1002/cpa.3160140312.spa
dc.relation.referencesR. Schumacher. The Generalization of Faulhaber’s Formula to Sums of Arbitrary Complex Powers. arXiv, 03 2021. doi: https://doi.org/10.48550/arxiv.2103.08027.spa
dc.relation.referencesL. Rydin-Gorjão, G. Hassan, J. Kurths, and D. Witthaut. MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun., 273:108254, 04 2022. doi: https://doi.org/10.1016/j.cpc.2021.108254.spa
dc.relation.referencesF. Abril. Generalized_Shannon_Index. GitHub repository, 2023. https://github.com/fsabrilb/Generalized_Shannon_Index.spa
dc.relation.referencesR. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki. Norms of structured random matrices. Math. Ann., 04 2023. doi: https://doi.org/10.1007/s00208-023-02599-6.spa
dc.relation.referencesA. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. der Physik, 348(5):810–820, 01 1914. doi: https://doi.org/10.1002/andp.19143480507.spa
dc.relation.referencesN. Laskin. Fractional Schrödinger equation. Phys. Rev. E, 66(5), 11 2002. doi: https://doi.org/10.1103/physreve.66.056108.spa
dc.relation.referencesH. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 04 1940. doi: https://doi.org/10.1016/s0031-8914(40)90098-2.spa
dc.relation.referencesJ. E. Moyal. Stochastic Processes and Statistical Physics. J. R. Stat. Soc. Ser. B Meth., 11(2):150–210, 01 1949. https://www.jstor.org/stable/2984076.spa
dc.relation.referencesP. Jung and P. Hänggi. Dynamical systems: A unified colored-noise approximation. Phys. Rev. A, 35(10):4464–4466, 05 1987. doi: https://doi.org/10.1103/physreva.35.4464.spa
dc.relation.referencesP. Hänggi and P. Jung. Colored Noise in Dynamical Systems. In Advances in Chemical Physics, pages 239–326. John Wiley & Sons, 03 2007. doi: https://doi.org/10.1002/9780470141489.ch4.spa
dc.relation.referencesC. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1-2):479–487, 07 1988. doi: https://doi.org/10.1007/bf01016429.spa
dc.relation.referencesE. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 24(2):L69–L72, 01 1991. doi: https://doi.org/10.1088/0305-4470/24/2/004.spa
dc.relation.referencesE. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 25(4):1019–1019, 02 1992. doi: https://doi.org/10.1088/0305-4470/25/4/038.spa
dc.relation.referencesL. Borland. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A, 245(1-2):67–72, 08 1998. doi: https://doi.org/10.1016/s0375-9601(98)00467-8.spa
dc.relation.referencesM. Gell-Mann and C. Tsallis. Nonextensive Entropy. Oxford University Press, New York, NY, 03 2004.spa
dc.relation.referencesC. H. Eab and S. C. Lim. Path integral representation of fractional harmonic oscillator. Physica A, 371(2):303–316, 11 2006. doi: https://doi.org/10.1016/j.physa.2006.03.029.spa
dc.relation.referencesA. H. Bhrawy and M. A. Zaky. An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math., 111:197–218, 01 2017. doi: https://doi.org/10.1016/j.apnum.2016.09.009.spa
dc.relation.referencesP. Capuozzo, E. Panella, T. Schettini-Gherardini, and D. D. Vvedensky. Path integral Monte Carlo method for option pricing. Physica A, 581:126231, 11 2021. doi: https://doi.org/10.1016/j.physa.2021.126231.spa
dc.relation.referencesV. E. Tarasov and G. M. Zaslavsky. Fractional generalization of Kac integral. Commun. Nonlinear. Sci. Numer. Simul., 13(2):248–258, 03 2008. doi: https://doi.org/10.1016/j.cnsns.2007.04.020.spa
dc.relation.referencesA. V. Chechkin, R. Metzler, J. Klafter, and V. Y. Gonchar. Introduction to the Theory of Lévy Flights. In Anomalous Transport, pages 129–162. Wiley-VCH Verlag GmbH and Co. KGaA, 07 2008. doi: https://doi.org/10.1002/9783527622979.ch5.spa
dc.relation.referencesR. Hilfer. Applications of fractional calculus in physics. World Scientific Publishing Company, 03 2000. doi: https://doi.org/10.1142/3779.spa
dc.relation.referencesP. D. Lax. Change of Variables in Multiple Integrals. Am. Math. Mon., 106(6):497–501, 06 1999. doi: https://doi.org/10.1080/00029890.1999.12005078.spa
dc.relation.referencesJ. Munkhammar. Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series, 06 2004.spa
dc.relation.referencesM. D. Ortigueira. Riesz potential operators and inverses via fractional centered derivatives. Int. J. Math. Math. Sci., 2006:1–12, 06 2006. doi: https://doi.org/10.1155/ijmms/2006/48391.spa
dc.relation.referencesC. Çelik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 231(4):1743–1750, 02 2012.doi: https://doi.org/10.1016/j.jcp.2011.11.008.spa
dc.relation.referencesR. A. Aljethi and A. Kılıçman. Derivation of the Fractional Fokker-Planck Equation for Stable Lévy with Financial Applications. Mathematics, 11(5):1102, 02 2023. doi: https://doi.org/10.3390/math11051102.spa
dc.relation.referencesR. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 12 2000. doi: https://doi.org/10.1016/S0370-1573(00)00070-3.spa
dc.relation.referencesF. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. arXiv, 02 2007. doi: https://doi.org/10.48550/arXiv.cond-mat/0702419.spa
dc.relation.referencesK. M. Kolwankar. Local Fractional Calculus: a Review. arXiv, 07 2013. doi: https://doi.org/10.48550/arxiv.1307.0739.spa
dc.relation.referencesF. Olivar-Romero and O. Rosas-Ortiz. Fractional Driven Damped Oscillator. J. Phys. Conf. Ser., 839:012010, 05 2017. doi: https://doi.org/10.1088/1742-6596/839/1/012010.spa
dc.relation.referencesPodcast UNAL. Physics Sounds: Episodio 4: Econo-física. http://podcastradio.unal.edu.co/detalle/episodio-4-econo-fisica, 03 2022.spa
dc.relation.referencesG. B. Folland. Advanced Calculus. Pearson, Upper Saddle River, NJ, 12 2001. p. 193.spa
dc.relation.referencesK. B. Oldham and P. Howlett. The fractional calculus. Elsevier Science & Technology, 05 2014.spa
dc.relation.referencesJ. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35(7):3081–3085, 04 1987. doi: https://doi.org/10.1103/physreva.35.3081.spa
dc.relation.referencesJ. Klafter, S. C. Lim, and R. Metzler. Fractional Dynamics. World Scientific Publishing Company, 10 2011. doi: https://doi.org/10.1142/8087.spa
dc.relation.referencesM. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. Strange kinetics. Nature, 363(6424):31–37, 05 1993. doi: https://doi.org/10.1038/363031a0.spa
dc.relation.referencesI. S. Gradshteyn and I. M. Ryzhik. Definite Integrals of Elementary Functions. In Table of Integrals, Series, and Products. Elsevier Science & Technology, San Diego, California, 7 edition, 01 2007. Formula 3.944.5 and 3.944.6.spa
dc.relation.referencesH. Bateman. Higher Transcendental Functions, volume 1. McGraw-Hill Book Company, New York, NY, 1953. Sec. 1.11, formula (14).spa
dc.relation.referencesJ. E. Robinson. Note on the Bose-Einstein Integral Functions. Phys. Rev., 83(3):678–679, 08 1951. doi: https://doi.org/10.1103/PhysRev.83.678.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lccMultifractal systemeng
dc.subject.lccAnálisis multifractalspa
dc.subject.lccSupersymmetryeng
dc.subject.lccSupersimetríaspa
dc.subject.lccCálculo fraccionariospa
dc.subject.lccFractional calculuseng
dc.subject.lembMovimiento brownianospa
dc.subject.lembBrownian movementseng
dc.subject.lembAnálisis de series de tiempospa
dc.subject.lembTime-series analysiseng
dc.subject.lembProcesos estocásticosspa
dc.subject.lembStochastic processeseng
dc.subject.proposalFractional stochastic path integral formalismeng
dc.subject.proposalFractional Brownian motioneng
dc.subject.proposalEconophysicseng
dc.subject.proposalMultifractalityeng
dc.subject.proposalShannon indexeng
dc.subject.proposalSupersymmetric theory of stochastic dynamicseng
dc.subject.proposalFormalismo de integral de camino estocástica fraccionalspa
dc.subject.proposalMovimiento Browniano fraccionalspa
dc.subject.proposalEconofísicaspa
dc.subject.proposalMultifractalidadspa
dc.subject.proposalÍndice de Shannonspa
dc.subject.proposalTeoría supersimétrica de la dinámica estocásticaspa
dc.subject.wikidataEconofísicaspa
dc.subject.wikidataEconophysicseng
dc.titleFractional Brownian motion applied to the study of the dynamics associated with non-stationary time serieseng
dc.title.translatedMovimiento Browniano fraccional aplicado al estudio de la dinámica asociada con series de tiempo no estacionariasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013671689.2023.pdf
Tamaño:
19.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: