Dinámica geoquímica en andisoles alto andinos, caso de estudio, la microcuenca Las Palmas
dc.contributor.advisor | Cardona Gallo, Santiago | |
dc.contributor.advisor | Loaiza Usuga, Juan Carlos | |
dc.contributor.author | Berbesí Jaimes, Andrés Fernando | |
dc.date.accessioned | 2024-01-26T16:10:40Z | |
dc.date.available | 2024-01-26T16:10:40Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones, mapas | spa |
dc.description.abstract | The dynamics of water in basins is regulated by its interaction with soil moisture, vegetation, temperature and precipitation among other factors. The changes in these interactions can be used as tools for the analysis of hydrological processes and generate ecosystem management proposals. The soil is a key element in the water cycle, which regulates most of the processes that take place there, but the growth of anthropogenic agro-industrial activities has brought with it the alteration of ecosystems and a significant deterioration in the quality of surface and underground waters, thus the use of nitrogenous fertilizers has been one of the factors that has led to the progressive pollution of water quality, generating a risk to human health, from the chemical species associated with these fertilizers, the contaminant that requires the most attention is nitrates. In order to analyze the influence of pollutants such as nitrate on water quality in a basin system where andisol soils are present, the study area was divided into four areas of interest (potato cultivation, pastures, forests and the channel of Las Palmas brook), in the land-use-zones potato crops, grasslands and forests, two experimental plots with sufficient hydrometeorological instruments were used to obtain data on precipitation, surface runoff, infiltration at 0,20 and 0,50 m deep, in addition to a physicochemical analysis of the waters of each of these systems and an analysis of the dynamics of iron in Andisol soils as an indicator of ion mobility. In the interest to relate the hydrological processes based on the chemical species studied, multivariate statistical methods were applied such as the variant analysis of three factors and principal components (PCA), together with linear regressions (ANCOVA); with the purpose of generating information to design better management strategies for the different land uses and mitigate the impacts on bodies of water. The results found show a lower storage of water in the soil for the forest soils (gallery or riparian forest) due to the high interception by the covers; while soils under crops (Solanum Tuberosum) and grazing (Pennisetum Clandestinum) have high moisture retention. Given the high availability of water in these ecosystems, conditions associated with anaerobic processes prevail in wet seasons and aerobic processes in dry seasons, where water flows in wet seasons have concentrations of less than 50 mg/L NO3-, which does not represent a risk to human health, in dry seasons these concentrations can be exceeded, especially in the forest area with concentrations up to 139 ml/L NO3- (June). The high moisture content of the soil, high rainfall, high infiltration (83-99%) and low runoff (<1%), as well as acidity and a redox potential of less than 450 mV, condition the mobility of contaminants in these environments favoring the resilience of these ecosystems. | eng |
dc.description.abstract | La dinámica del agua en las cuencas está regulada por su interacción con la humedad del suelo, la vegetación, la temperatura y la precipitación, entre otros factores. Los cambios en estas interacciones pueden ser utilizadas como herramientas para el análisis de los procesos hidrológicos y generar propuestas de gestión de los ecosistemas. El suelo es un elemento clave en el ciclo del agua, que regula la mayoría de procesos que allí se desarrollan, pero el crecimiento de actividades antropogénicas agroindustriales ha traído consigo la alteración de los ecosistemas y un deterioro marcado de la calidad de las aguas superficiales y subterráneas, así el uso de fertilizantes nitrogenados ha sido de los factores que ha llevado a la contaminación progresiva de la calidad del agua generando un riesgo para la salud humana, de las especies químicas asocias a estos fertilizantes, el contaminante que mayor atención tiene son los nitratos. Con el fin de analizar la influencia de contaminantes como el nitrato en la calidad de agua en un sistema cuenca donde están presenten los suelos andisoles, se realizó una división de la zona de estudio en cuatro áreas de interés (cultivo de papa, pastizales, bosques y el cauce de la quebrada Las Palmas), en las zonas de uso del suelo cultivos de papa, pastizales y bosques, se trabajó con dos parcelas experimentales, con los instrumentos hidrometeorológicos suficientes para la obtención de datos de precipitación, escorrentía superficial, infiltración a 0,20 y 0,50 m de profundidad, además de un análisis fisicoquímico de las aguas de cada uno de estos sistemas y un análisis de la de dinámica del hierro en suelos Andisoles como indicador de movilidad de iones. Para poder relacionar los procesos hidrológicos en función de las especies químicas estudiadas, se aplicaron métodos estadístico multivariantes, como análisis de varianza de tres factores y componentes principales (PCA), junto a regresiones lineales (ANCOVA). con el propósito de generar información para diseñar mejores estrategias del manejo de los diferentes usos del suelo y mitigar los impactos a los cuerpos de agua. Los resultados encontrados muestran un menor almacenamiento de agua en el suelo para suelos forestales (bosque de galería o ripario) debido a la alta interceptación por parte de las coberturas; mientras los suelos bajo cultivos de papa (Solanum tuberosum) y pastoreo (Pennisetum clandestinum) tienen una alta retención de humedad. Dada la alta disponibilidad de agua en estos ecosistemas prevalecen las condiciones asociadas a procesos anaeróbicos en épocas húmedas y procesos aeróbicos en épocas secas, en donde los flujos de agua en estaciones húmedas tienen concentraciones inferiores a 50 mg/L NO3- , lo cual no representa un riesgo para la salud humana, en épocas secas se pueden superar estas concentraciones especialmente en la zona de bosques con concentraciones de hasta 139 mg/L NO3- (junio). El alto contenido de humedad del suelo, las altas precipitaciones, alta infiltración (83 - 99 %) y la baja escorrentía (< 1 %), así como la acidez y un potencial redox inferior a los 450 mV, condicionan la movilidad de contaminantes en estos ambientes favoreciendo la resiliencia de estos ecosistemas. (Texto tomado de la fuente) | spa |
dc.description.abstract | The dynamics of water in basins is regulated by its interaction with soil moisture, vegetation, temperature and precipitation among other factors. The changes in these interactions can be used as tools for the analysis of hydrological processes and generate ecosystem management proposals. The soil is a key element in the water cycle, which regulates most of the processes that take place there, but the growth of anthropogenic agro-industrial activities has brought with it the alteration of ecosystems and a significant deterioration in the quality of surface and underground waters, thus the use of nitrogenous fertilizers has been one of the factors that has led to the progressive pollution of water quality, generating a risk to human health, from the chemical species associated with these fertilizers, the contaminant that requires the most attention is nitrates. In order to analyze the influence of pollutants such as nitrate on water quality in a basin system where andisol soils are present, the study area was divided into four areas of interest (potato cultivation, pastures, forests and the channel of Las Palmas brook), in the land-use-zones potato crops, grasslands and forests, two experimental plots with sufficient hydrometeorological instruments were used to obtain data on precipitation, surface runoff, infiltration at 0,20 and 0,50 m deep, in addition to a physicochemical analysis of the waters of each of these systems and an analysis of the dynamics of iron in Andisol soils as an indicator of ion mobility. In the interest to relate the hydrological processes based on the chemical species studied, multivariate statistical methods were applied such as the variant analysis of three factors and principal components (PCA), together with linear regressions (ANCOVA); with the purpose of generating information to design better management strategies for the different land uses and mitigate the impacts on bodies of water. The results found show a lower storage of water in the soil for the forest soils (gallery or riparian forest) due to the high interception by the covers; while soils under crops (Solanum Tuberosum) and grazing (Pennisetum Clandestinum) have high moisture retention. Given the high availability of water in these ecosystems, conditions associated with anaerobic processes prevail in wet seasons and aerobic processes in dry seasons, where water flows in wet seasons have concentrations of less than 50 mg/L NO3-, which does not represent a risk to human health, in dry seasons these concentrations can be exceeded, especially in the forest area with concentrations up to 139 ml/L NO3- (June). The high moisture content of the soil, high rainfall, high infiltration (83-99%) and low runoff (<1%), as well as acidity and a redox potential of less than 450 mV, condition the mobility of contaminants in these environments favoring the resilience of these ecosystems. | eng |
dc.description.curriculararea | Área Curricular de Medio Ambiente | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ingeniería- Recursos Hidráulicos | spa |
dc.description.researcharea | Hidrogeoquímica | spa |
dc.format.extent | 122 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85460 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdelaziz, S., Gad, M. I., y El Tahan, A. H. M. (2020). Groundwater quality index based on PCA: wadi El-Natrun, Egypt. Journal of African Earth Sciences, 172, 103964. https://doi.org/10.1016/j.jafrearsci.2020.103964 | spa |
dc.relation.references | Abdollahi, K., Bazargan, A., McKay, G. (2019). Water Balance Models in Environmental Modeling. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_119 | spa |
dc.relation.references | Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (2015). Resumen de Salud Pública Nitrato y Nitrito. Re: https://www.atsdr.cdc.gov/es/phs/es_phs204.html | spa |
dc.relation.references | Ai, L., Shi, Z. H., Yin, W., & Huang, X. (2015). Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. Journal of Hydrology, 523, 398-408. https://doi.org/10.1016/j.jhydrol.2015.01.082 | spa |
dc.relation.references | Akbariyeh, S., Pena, C.A.G., Wang, T., Mohebbi, A., Bartelt-Hunt, S., Zhang, J., Li, Y (2019). Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Science of The Total Environment, 685, 514-526. https://doi.org/10.1016/j.scitotenv.2019.05.417 | spa |
dc.relation.references | Allbrook, R. F. (1983). Some physical properties of allophane soils from the North Island, New Zealand. New Zealand Journal of Science, 26(4), 481-492. | spa |
dc.relation.references | Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Fao, Rome. https://www.fao.org/3/X0490E/x0490e00.htm | spa |
dc.relation.references | Alvarado, A., Mata, R., & Chinchilla, M. (2014). Arcillas identificadas en suelos de Costa Rica a nivel generalizado durante el período 1931-2014: I. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense, 38(1), 75-106. | spa |
dc.relation.references | Álvarez, J. (1982). Tectónicas dunitas de Medellín, Departamento de Antioquia, Colombia. Boletín Geológico, 28(3), 13-44. https://doi.org/10.32685/0120-1425/bolgeol28.3.1987.305 | spa |
dc.relation.references | APHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and Wastewater (22nd ed.) | spa |
dc.relation.references | Aryal, J. P., Sapkota, T. B., Krupnik, T. J., Rahut, D. B., Jat, M. L., y Stirling, C. M. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research, 28(37), 51480-51496. | spa |
dc.relation.references | Asano, M., y Wagai, R. (2014). Evidence of aggregate hierarchy at micro-to submicron scales in an allophanic Andisol. Geoderma, 216, 62-74. https://doi.org/10.1016/j.geoderma.2013.10.005 | spa |
dc.relation.references | Ashagrie, Y., y Zech, W. (2010). Water and nutrient inputs in rainfall into natural and managed forest ecosystems in south-eastern highlands of Ethiopia. Ecohydrology & Hydrobiology, 10(2-4), 169-181. https://doi.org/10.2478/v10104-011-0009-4 | spa |
dc.relation.references | Balocchi, F., Galleguillos, M., Rivera, D., Stehr, A., Arumi, J.L., Pizarro, R., y de Arellano, P.R. (2022). Forest hydrology in Chile: Past, present, and future. Journal of Hydrology, 616, 128681. https://doi.org/10.1016/j.jhydrol.2022.128681 | spa |
dc.relation.references | Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Borschneck, D., Bottero, J. Y., Moustier, S., ... y Colin, F. (2007). Mineral control of carbon pools in a volcanic soil horizon. Geoderma, 137(3-4), 477-489. | spa |
dc.relation.references | Belmonte Serrato, F., Romero Díaz, A., y López Bermúdez, F. (1999). Efectos sobre la cubierta vegetal, la escorrentía y la erosión del suelo, de la alternancia cultivo-abandono en parcelas experimentales. Investigaciones geográficas, 22, 95-107. | spa |
dc.relation.references | Besoain, E. (1985). Minerales de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura. San José, Costa Rica. Re: https://repositorio.iica.int/handle/11324/12993 | spa |
dc.relation.references | Beverskog, B., & Puigdomenech, I. (1996). Revised pourbaix diagrams for iron at 25–300 C. Corrosion Science, 38(12), 2121-2135. https://doi.org/10.1016/S0010-938X(96)00067-4 | spa |
dc.relation.references | Bhatnagar, A., y Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. https://doi.org/10.1016/j.cej.2011.01.103 | spa |
dc.relation.references | Bigham, J. M., Fitzpatrick, R. W., & Schulze, D. G. (2002). Iron oxides. Soil mineralogy with environmental applications, 7, 323-366. | spa |
dc.relation.references | Bodek, I., Lyman, W. J., Reehl, W. F., & Rosenblatt, D. H. (Eds.). (1988). Environmental inorganic chemistry: properties, processes, and estimation methods, Pergamon press.1199. | spa |
dc.relation.references | Botero, A.M., Vélez, J.P. (2005). Caracterización Hidrogeológica del Municipio de Envigado. (Tesis pregrado). Universidad Nacional de Colombia, Facultad de Minas, Medellín, Colombia. | spa |
dc.relation.references | Bowen, H. J. M. (1979). Environmental chemistry of the elements. Academic Press. | spa |
dc.relation.references | Burrough, P. A., and McDonell, R. A., (1998). Principles of Geographical Information Systems (Oxford University Press, New York), 190. | spa |
dc.relation.references | Cáceres, L., Escudey, M., Fuentes, E., & Báez, M. E. (2010). Modeling the sorption kinetic of metsulfuron-methyl on Andisols and Ultisols volcanic ash-derived soils: Kinetics parameters and solute transport mechanisms. Journal of hazardous materials, 179(1-3), 795-803. https://doi.org/10.1016/j.jhazmat.2010.03.074 | spa |
dc.relation.references | Cahyana, D., Sulaeman, Y., Barus, B., & Mulyanto, B. (2023). Improving digital soil mapping in Bogor, Indonesia using parent material information. Geoderma Regional, 33, e00627. https://doi.org/10.1016/j.geodrs.2023.e00627 | spa |
dc.relation.references | Carrión-Paladines, V., Benítez, Á., & García-Ruíz, R. (2022). Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador's Podocarpus National Park. Forest Ecosystems, 9, 100076. https://doi.org/10.1016/j.fecs.2022.100076 | spa |
dc.relation.references | Casamitjana, M & Loaiza-Usuga, J.C. (2019). Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas”. in: Movimientos en masa. Casamitjana, M; Sidley, R (Eds). Editorial EIA. Colombia. 111 – 134. ISBN: 978-958-52367-0-7 | spa |
dc.relation.references | Cascaredo, A. C., Oleschko, K., Huerta, L. C., Etchevers, J. D., & Hidalgo, C. (2001). Estimación de alófono y su relación con otros parámetros químicos en Andisoles de montaña del volcán Cofre de Perote. Terra Latinoamericana, 19(2), 105-116. Re: https://www.redalyc.org/articulo.oa?id=57319201 | spa |
dc.relation.references | Casso-Hartmann, L., Rojas-Lamos, P., McCourt, K., Vélez-Torres, I., Barba-Ho, L. E., Bolaños, B. W., y Vanegas, D. (2022). Water pollution and environmental policy in artisanal gold mining frontiers: The case of La Toma, Colombia. Science of The Total Environment, 852, 158417. https://doi.org/10.1016/j.scitotenv.2022.158417 | spa |
dc.relation.references | Castro Franco, H. E., & Gómez Sánchez, M. I. (2015). Génesis y evolución de los suelos sulfatados ácidos del Valle Alto del Río Chicamocha. Re: https://repositorio.uptc.edu.co/ | spa |
dc.relation.references | Castro Franco, H. E., & Gómez Sánchez, M. I. (2015). Suelos sulfatados ácidos: el caso del valle alto del río Chicamocha Boyacá–Colombia. Editorial UPTC. | spa |
dc.relation.references | Chedadi, M., Amakdouf, H., El Barnossi, A., El Moussaoui, A., Kara, M., El Asmi, H., ... & Bari, A. (2023). Impact of Anthropogenic Activities on the Physicochemical and Bacteriological Quality of Water Along Oued Fez River (Morocco). Scientific African, 19, e01549. https://doi.org/10.1016/j.sciaf.2023.e01549 | spa |
dc.relation.references | Chen, A., Yang, X., Guo, J., Zhang, M., Xing, X., Yang, D., ... & Jiang, L. (2022). Dynamic of land use, landscape, and their impact on ecological quality in the northern sand-prevention belt of China. Journal of Environmental Management, 317, 115351. | spa |
dc.relation.references | Cheremisinoff, N. P. (1998). Groundwater remediation and treatment technologies. Elsevier. | spa |
dc.relation.references | Childs, C. W., Matsue, N., y Yoshinaga, N. (1991). Ferrihydrite in volcanic ash soils of Japan. Soil Science and Plant Nutrition, 37(2), 299-311. | spa |
dc.relation.references | Childs, C.W. (1992). Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernaehr. Bodenkd. 155,441–448. | spa |
dc.relation.references | Choi, Y., Kang, J., & Kim, J. (2021). Urban flood adaptation planning for local governments: Hydrology analysis and optimization. International Journal of Disaster Risk Reduction, 59, 102213. https://doi.org/10.1016/j.ijdrr.2021.102213 | spa |
dc.relation.references | Chow, V. T., Maidment, D. R., y Mays, L. W. (1994). Hidrología aplicada (1a. ed.). Bogotá: Mc Graw Hill. | spa |
dc.relation.references | Contraloría Municipal de Envigado (2016) Informe del Estado de los Recursos Naturales y el Ambiente Municipio de Envigado 2015. | spa |
dc.relation.references | Correa, A., Breuer, L., Crespo, P., Célleri, R., Feyen, J., Birkel, C., y Windhorst, D. (2019). Spatially distributed hydro-chemical data with temporally high-resolution is needed to adequately assess the hydrological functioning of headwater catchments. Science of the Total Environment, 651, 1613-1626. | spa |
dc.relation.references | Correa, A., Windhorst, D., Tetzlaff, D., Crespo, P., Célleri, R., Feyen, J., y Breuer, L. (2017). Temporal dynamics in dominant runoff sources and flow paths in the A ndean P áramo. Water Resources Research, 53(7), 5998-6017. | spa |
dc.relation.references | Cruz-Hernández, M., Velázquez-Herrera, F. D., y Fetter, G. (2023). Synthetic hydroxyapatites as high-performance fertilizers for lettuce plant growth. Rhizosphere, 100718. | spa |
dc.relation.references | Cuello, C., Correa, P., Haenszel, W., Gordillo, G., Brown, C., Archer, M., y Tannenbaum, S. (1976). Gastric Cancer in Colombia. I. Cancer Risk and Suspect Environmental Agents 2. Journal of the National Cancer Institute, 57(5), 1015-1020. | spa |
dc.relation.references | Dahlgren, R. A., Saigusa, M. y Ugolini, F. C. (2004). The nature, properties and management of volcanic soils. Advances in agronomy, 82(3), 113-182. https://doi.org/10.1016/S0065-2113(03)82003-5 | spa |
dc.relation.references | de Carvalho, T. C., da Mota Borges, A. K., & da Silva, I. F. (2023). Stomach cancer incidence trends in selected Latin America countries: Age, period, and birth-cohort effects. Cancer Epidemiology, 85, 102392. https://doi.org/10.1016/j.canep.2023.102392 | spa |
dc.relation.references | De las Salas, G. (1987). Suelos y ecosistemas forestales: con énfasis en América tropical. San José de Costa Rica. (Colección de Libros y Materiales Educativos/IICA No. 80). | spa |
dc.relation.references | Deng, H., Li, L., Kim, JJ, Ling, FT, Beckingham, LE y Wammer, KH (2022). Bridging environmental geochemistry and hydrology. Journal of Hydrology, 128448. https://doi.org/10.1016/j.jhydrol.2022.128448 | spa |
dc.relation.references | Dixon, E. R., Cardenas, L., Alfaro, M., Salazar, F., & Hatch, D. J. (2011). High rates of nitrogen cycling in volcanic soils from Chilean grasslands. Rapid Communications in Mass Spectrometry, 25(11), 1521-1526. | spa |
dc.relation.references | Dörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L. y Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693-702. | spa |
dc.relation.references | e Silva, G. M., Garcia, J. A., de Alencar Garitta, J., Cunha, D. G. F., Finkler, N. R., Mendiondo, E. M., & Ghiglieno, F. (2022). Smartphone-based spectrometry system as a prescreening assessment of copper and iron for real time control of water pollution. Journal of Environmental Management, 323, 116214. https://doi.org/10.1016/j.jenvman.2022.116214 | spa |
dc.relation.references | Echavarría, N. P., Jaramillo, D. F. J., Villadiego, O. S. R. y Sánchez, L. N. P. (2017). Caracterización de un Andisol de la cuenca alta de la quebrada Santa Elena, Oriente Antioqueño, Colombia. Revista de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, 6(1), 24-38. https://doi.org/10.15446/rev.fac.cienc.v6n1.60628 | spa |
dc.relation.references | Echeverría, C., Huber, A. y Taberlet, F. (2007). Estudio comparativo de los componentes del balance hídrico en un bosque nativo y una pradera en el sur de Chile. Bosque (Valdivia), 28(3), 271-280. Re: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002007000300013 | spa |
dc.relation.references | Egbi, C. D., Anornu, G. K., Ganyaglo, S. Y., Appiah-Adjei, E. K., Li, S. L., & Dampare, S. B. (2020). Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks. Ecotoxicology and environmental safety, 191, 110227. | spa |
dc.relation.references | Espinosa, J. y Molina E. (1999). Acidez y encalado de los suelos. International Plant Nutrition Institute | spa |
dc.relation.references | Evangelou, V. P. (1998). Environmental soil and water chemistry: principles and applications (No. 631.455 E6). | spa |
dc.relation.references | FAO (2005). Optimizacion de la Humedad Del Suelo Para la Producción Vegetal: El Significado de la Porosidad Del Suelo (Boletines de Suelos de la Fao) ,79. Food & Agriculture Org. Re: https://www.fao.org/3/y4690s/y4690s00.htm | spa |
dc.relation.references | FAO. (2019). World fertilizer trends and outlook to 2022. Re: https://www.fao.org/3/ca6746en/CA6746EN.pdf | spa |
dc.relation.references | Fekiacova, Z., Pichat, S., Cornu, S., y Balesdent, J. (2013). Inferences from the vertical distribution of Fe isotopic compositions on pedogenetic processes in soils. Geoderma, 209, 110-118. https://doi.org/10.1016/j.geoderma.2013.06.007 | spa |
dc.relation.references | Filimonova, S., Kaufhold, S., Wagner, F. E., Häusler, W. y Kögel-Knabner, I. (2016). The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol. Geochimica et Cosmochimica Acta, 180, 284-302. https://doi.org/10.1016/j.gca.2016.02.033 | spa |
dc.relation.references | Flórez, M. T., Zapata, R., Malagón, D. y Madriñán, R. (2004). Alteración química de los fragmentos de matriz y de los vidrios volcánicos. Acad. Colomb. Cienc. 30 (114), 47-66 | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO) (2015). World fertilizer trends and outlook to 2018. | spa |
dc.relation.references | Frene, C., Núñez-Ávila, M., Castro, B. y Armesto, J.J. (2022). Seasonal partitioning of rainfall in second-growth evergreen temperate rainforests in chiloé island, southern Chile. Front. For. Global Change 4, 781663. | spa |
dc.relation.references | Garzón-Sánchez, H., Loaiza-Usuga, J. C. y Vélez-Upégui, J. I. (2021). Soil Moisture Behavior in Relation to Topography and Land Use for Two Andean Colombian Catchments. Water, 13(11), 1448. | spa |
dc.relation.references | Gaspar-Santos, E. S., González-Espinosa, M., Ramírez-Marcial, N. y Álvarez-Solís, J. D. (2015). Acumulación y descomposición de hojarasca en bosques secundarios del sur de la Sierra Madre de Chiapas, México. Bosque (Valdivia), 36(3), 467-480. Re: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002015000300013 | spa |
dc.relation.references | Gleick, P. H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329-344. | spa |
dc.relation.references | Gómez, E. H., y Marín, C. T. (2012). Dinámica del agua en Andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2). https://revistas.unal.edu.co/index.php/refame/article/view/36490 | spa |
dc.relation.references | Hansen, É., de Aquim, P. M., Hansen, A. W., Cardoso, J. K., Ziulkoski, A. L. y Gutterres, M. (2020). Impact of post-tanning chemicals on the pollution load of tannery wastewater. Journal of Environmental Management, 269, 110787. https://doi.org/10.1016/j.jenvman.2020.110787 | spa |
dc.relation.references | He, B., He, J., Wang, L., Zhang, X., Bi, E. (2019). Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Research, 163, 114880. https://doi.org/10.1016/j.watres.2019.114880 | spa |
dc.relation.references | Herrera, L, (2003) Carso De Alta Montaña En Santa Elena; Implicaciones Hidrológicas E Hidrogeológicas En El Valle De Aburrá, (tesis maestría) Universidad Nacional de Colombia, Facultad de Minas, Medellín, Colombia. | spa |
dc.relation.references | Herrera-Ardila, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia-estudio fundamental e implicaciones en ingeniería, Uniandes. Re: https://repositorio.uniandes.edu.co/handle/1992/7812?locale-attribute=en | spa |
dc.relation.references | Hiemstra, T. (2013). Surface and mineral structure of ferrihydrite. Geochimica et Cosmochimica Acta, 105, 316-325. https://doi.org/10.1016/j.gca.2012.12.002 | spa |
dc.relation.references | Hincapié Gómez, E. y Tobón Marín, C. (2012). Dinámica del agua en Andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2), 6765-6777. | spa |
dc.relation.references | Holton, J. R. (2004). An Introduction to Dynamic Meteorology. 4 edition. Department of Atmo. | spa |
dc.relation.references | Hu, M., Liu, Y., Zhang, Y., Dahlgren, R. A., y Chen, D. (2019). Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water research, 150, 418-430. https://doi.org/10.1016/j.watres.2018.11.082 | spa |
dc.relation.references | Huber, A., Iroumé, A., Mohr, C. y Frene, C. (2010). Efecto de plantaciones de Pinus radiata y Eucalyptus globulus sobre el recurso agua en la Cordillera de la Costa de la región del Biobío. Chile. Bosque (Valdivia) 31 (3), 219–230. https://doi.org/10.4067/S0717-92002010000300006. | spa |
dc.relation.references | Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389-417. | spa |
dc.relation.references | ICONTEC. (2004). Calidad de agua. Muestreo. Parte 3: Directrices para la preservación y manejo de las muestras NTC-ISO 5667-3. | spa |
dc.relation.references | IGAC (2012): Atlas de la distribución de la propiedad rural en Colombia. Instituto Geográfico Agustín Codazzi, Universidad de los Andes, Bogotá. | spa |
dc.relation.references | IGAC, I. (2014). Metodología para la clasificación de las tierras por su capacidad de uso. Re: http://igacnet2. igac. gov. co/intranet/UserFiles/File/procedimientos/instructivos/2014/M40100-02% 2014V2% 20Para% 20la% 20clasificacion% 20de% 20las% 20tierras% 20por% 20s u% 20capacidad% 20de% 20uso. pdf. | spa |
dc.relation.references | Imanudin, MS y Armanto, E. (2012). Effect of Water Management Improvement on Soil Nutrient Content, Iron and Aluminum Solubility at Tidal Low Land Area. APCBEE Procedia, 4 , 253-258. https://doi.org/10.1016/j.apcbee.2012.11.043 | spa |
dc.relation.references | International Agency for Research on Cancer. (2017). IARC Monographs on the evaluation of Carcinogenic Risk to Humans. Agents Classified by the IARC Monographs, Volumes 1-119. Re: https://www.iarc.fr/ , http://monographs.iarc.fr/ENG/Classification/ | spa |
dc.relation.references | Iroumé, A., y Huber, A. (2002). Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrological Processes, 16(12), 2347-2361. | spa |
dc.relation.references | IUSS Working Group WRB (2022). Worl Reference Base for Soil Resources. International soil classification system for naming soil and creating legends for soil maps. International Union of Soil Sciences (IUSS). Vienna, Austria. | spa |
dc.relation.references | Jaramillo Jaramillo, D. F. (1999). Caracterización química de Andisoles repelentes al agua del oriente Antioqueño. Revista Facultad Nacional de Agronomía Medellín, 52(2), 657-673.Re: https://revistas.unal.edu.co/index.php/refame/article/view/23909 | spa |
dc.relation.references | Jaramillo, D. F. (2014). El suelo: origen, propiedades, espacialidad. Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias, Escuela de Geociencias. | spa |
dc.relation.references | Jaramillo, D.F. (2011), Caracterización de la materia orgánica del horizonte superficial de un Andisol hidromórfico del Oriente Antioqueño (Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35(134), 23-34. | spa |
dc.relation.references | Jaramillo-Jaramillo, D. F. (2002). Introducción a la ciencia del suelo. Escuela de Geociencias y Medio Ambiente. Re: https://repositorio.unal.edu.co/handle/unal/70085 | spa |
dc.relation.references | Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. Courier Corporation. | spa |
dc.relation.references | Jenny, H., BINGHAM, F., PADILLA, B., y Gessel, S. P. (1953). El contenido de nitrógeno y materia orgánica en los suelos ecuatoriales de Colombia y Estudio comparativo sobre la velocidad de descomposición de la materia orgánica en regiones tropicales y templadas. Boletín Técnico No.1(8), CENICAFE 39. Re: https://biblioteca.cenicafe.org/handle/10778/464/simple-search?filterquery=BINGHAM%2C+F.T.&filtername=author&filtertype=equals | spa |
dc.relation.references | Joshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental science & technology, 43(15), 5884-5889. | spa |
dc.relation.references | Kom, K. P., Gurugnanam, B., & Bairavi, S. (2022). Non-carcinogenic health risk assessment of nitrate and fluoride contamination in the groundwater of Noyyal basin, India. Geodesy and Geodynamics, 13(6), 619-631. https://doi.org/10.1016/j.geog.2022.04.003 | spa |
dc.relation.references | Korzoun VI, Sokolov AA (1978) World water balance and water resources of the earth. Water Development, Supply and Management, United Nations Educational, Scientific and Cultural Organization, 75 – Paris (France). International Hydrological Decade, Moscow (USSR). USSR National Committee | spa |
dc.relation.references | Lefèvre, C., Rekik, F., Alcantara, V., y Wiese, L. (2017). Soil organic carbon: The hidden potential (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.) https://doi.org/10.1038/nrg2350 | spa |
dc.relation.references | Lenhart, S., Ortmeyer, F., y Banning, A. (2021). Denitrification in the vadose zone: modelling with percolating water prognosis and denitrification potential. Journal of Contaminant Hydrology, 242, 103843. | spa |
dc.relation.references | Li, C., Yue, F. J., Zhong, J., Xu, S., y Li, S. L. (2023a). Hydrological regulation of nitrate sources, transformation and transport pathway in a karstic river. Journal of Hydrology, 617, 128998. https://doi.org/10.1016/j.jhydrol.2022.128998 | spa |
dc.relation.references | Li, Q., Kang, X., Lin, G., Yang, G., Wu, P., Zuo, W., y Liu, Y. (2023b). Groundwater quality characteristics and health risk assessment in the valley plain area of the western Qinghai–Tibet plateau. Journal of Contaminant Hydrology, 104221. | spa |
dc.relation.references | Lindsay, W. L. (1979). Chemical Equilibria in Soils, WileyÁ. New York, NY. | spa |
dc.relation.references | Liu, W., Jiang, H., Guo, X., Li, Y., & Xu, Z. (2022). Time-series monitoring of river hydrochemistry and multiple isotope signals in the Yarlung Tsangpo River reveals a hydrological domination of fluvial nitrate fluxes in the Tibetan Plateau. Water Research, 225, 119098. https://doi.org/10.1016/j.watres.2022.119098 | spa |
dc.relation.references | Loaiza Usuga, J. C., y Pauwels, V. (2009). The impact of land use on surface runoff generating processes in a Mediterranean mountainous basin. In Handbook of Environmental Research. Nova Science. Re: https://biblio.ugent.be/publication/771871 | spa |
dc.relation.references | Loaiza-Usuga, J. C y Poch, R. M. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan Pre-Pyrenees NE Spain). Zeitschrift für Geomorphologie, 519-537. | spa |
dc.relation.references | Loaiza-Úsuga, J.C. y Pauwels, V. (2008). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo (Ecuaciones de Calibración). Suelos Ecuat. 2008, 38, 24–33. | spa |
dc.relation.references | Loaiza-Usuga, J.C. y Pauwels, V. (2011). Desarrollo de modelos hidrológicos y modelación de procesos superficiales. Caso de estudio para vertientes de alta montaña. Gestión y Ambiente, 14(3), 23-31 | spa |
dc.relation.references | Loaiza-Usuga, J.C., Monsalve, G., Pertuz, A., Arce, L., Sanín, M., Ramírez, L.F. y Pauwels, V. . (2018). Desentrañar la dinámica de una pendiente creciente en el noroeste de Colombia: variables hidrológicas y firmas geoeléctricas y sísmicas. Agua, 10, 1-17. | spa |
dc.relation.references | Lopes, T. R., Zolin, C. A., Mingoti, R., Vendrusculo, L. G., de Almeida, F. T., de Souza, A. P., y Uliana, E. M. (2021). Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. Journal of South American Earth Sciences, 108, 103224. | spa |
dc.relation.references | Ma, J., Faqir, Y., Chai, Y., Wu, S., Luo, T., Liao, S., y Hadir, W. (2023). Chitosan microspheres-based controlled release nitrogen fertilizers enhance the growth, antioxidant, and metabolite contents of Chinese cabbage. Scientia Horticulturae, 308, 111542. | spa |
dc.relation.references | Mackay-Smith, T. H., Burkitt, L. L., López, I. F., y Reid, J. I. (2022). The impact of a kānuka silvopastoral system on surface runoff and sediment and nutrient losses in New Zealand hill country. Catena, 213, 106215. | spa |
dc.relation.references | Maeda M, Hara H, Ota T (2008) Deep-soil adsorption of nitrate in a Japanese Andisol in response todifferent nitrogen sources. Soil Science Society of America Journal 72, 702-710. | spa |
dc.relation.references | Maeda, M., Zhao, B., Ozaki, Y. y Yoneyama, T. (2003). Nitrate leaching in an Andisol treated with different types of fertilizers. Environmental Pollution, 121(3), 477-487. | spa |
dc.relation.references | Martins, M., Lunardi, S., de Andrade Puhl, V., Pizzolatti, B. S., & Soares, M. (2021). Enzymatic analysis in bank filtration sites as a tool for assessing biological clogging—A column study. Journal of Water Process Engineering, 44, 102375. | spa |
dc.relation.references | Martí-Roura, M., Hagedorn, F., Rovira, P., & Romanya, J. (2019). Effect of land use and carbonates on organic matter stabilization and microbial communities in Mediterranean soils. Geoderma, 351, 103-115. | spa |
dc.relation.references | Mateos Rodríguez, A. B., y Schnabel, S. (1998). Medición de la interceptación de las precipitaciones por la encina (Quercus rotundifolia Lam.): Metodología e instrumentalización. Norba. Revista de Geografía. | spa |
dc.relation.references | Mayo, A.L., Ritter, D.J., Bruthans, J., Tingey, D. (2019). Contributions of commercial fertilizer, mineralized soil nitrate, and animal and human waste to the nitrate load in the Upper Elbe River Basin, Czech Republic. HydroResearch, 1, 25-35. | spa |
dc.relation.references | McDaniel, P. A., & Wilson, M. A. (2007). Physical and chemical characteristics of ash-influenced soils of Inland Northwest forests. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44,31-45. | spa |
dc.relation.references | Mermut, A. R., y Eswaran, H. (1997). Opportunities for soil science in a milieu of reduced funds. Canadian Journal of Soil Science, 77(1), 1-7. | spa |
dc.relation.references | Mosquera, G. M., Crespo, P., Breuer, L., Feyen, J., y Windhorst, D. (2020). Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge. Hydrological Processes, 34(9), 2032-2047. | spa |
dc.relation.references | Mosquera, G. M., Marín, F., Stern, M., Bonnesoeur, V., Ochoa-Tocachi, B. F., Román-Dañobeytia, F., y Crespo, P. (2022). Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use. Science of the Total Environment, 804, 150112. | spa |
dc.relation.references | Municipio de Envigado - Instituto de Estudios Ambientales (IDEA) Universidad Nacional de Colombia. Sede Medellín (2014). Estudio hidropedológico (Escala 1:25.000) de las Veredas Perico y Pantanillo - Municipio de Envigado Antioquia. | spa |
dc.relation.references | Nanzyo M, Dahlgren R, y Shoji S (1993a) Chemical characteristics of volcanic ash soils. In ‘Volcanic ash soils:genesis, properties and utilization’. S Shoji, S., R Dahlgren, R. y Nanzyo, M.( Eds), 153, 166-167. (Elsevier, Amsterdam). | spa |
dc.relation.references | Nanzyo, M., Dahlgren, R., y Shoji, S. (1993b). Chemical characteristics of volcanic ash soils. In Developments in soil science, 21, 145-187. Elsevier. | spa |
dc.relation.references | National Research Council (2012) Challenges and Opportunities in the Hydrologic Sciences. | spa |
dc.relation.references | OMS (2018) «Guias para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda». Ginebra | spa |
dc.relation.references | Ortiz, P. (2006). Análisis de las coberturas vegetales en el Municipio de Envigado (Antioquia). | spa |
dc.relation.references | Osorio, A., y Bahamon, C. (2008). Dinámica de la humedad del suelo en bosques alto andinos en el páramo de guerrero, Cundinamarca-Colombia (tesis doctoral), Universidad Nacional de Colombia, sede Medellín). | spa |
dc.relation.references | Pan, B., Xia, L., Lam, S. K., Wang, E., Zhang, Y., Mosier, A., y Chen, D. (2022). A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems & Environment, 327, 107850. | spa |
dc.relation.references | Paredes, P. M., y Verdugo, A. R. (2004). Génesis y estructura de los suelos alofánicos en Chile. In V Congreso Chileno de Ingeniería Geotécnica. Universidad de Chile. | spa |
dc.relation.references | Park, S., Anggraini, T. M., Chung, J., Kang, P. K., y Lee, S. (2021). Microfluidic pore model study of precipitates induced by the pore-scale mixing of an iron sulfate solution with simulated groundwater. Chemosphere, 271, 129857. | spa |
dc.relation.references | Perrott KW (1978) Influence of organic-matter extracted from humified clover on properties of amorphous aluminosilicates. 1. Surface charge. Australian Journal of Soil Research 16, 327-339. | spa |
dc.relation.references | Pertuz-Paz, A., Monsalve, G., Loaiza-Úsuga, JC, Caballero-Acosta, JH, Agudelo-Vélez, LI, y Sidle, RC (2020). Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences, 10 (11), 472. | spa |
dc.relation.references | Quintero-Gallego, M. E., Quintero-Angel, M., y Vila-Ortega, J. J. (2018). Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindío. Science of The Total Environment, 634, 1288-1299. | spa |
dc.relation.references | Quintero-Gallego, M. E., Quintero-Angel, M., y Vila-Ortega, J. J. (2018). Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindío. Science of The Total Environment, 634, 1288-1299. | spa |
dc.relation.references | Rahman, M., Frame, JM, Lin, J. y Nearing, GS (2022). Hydrology research articles are becoming more topically diverse. Journal of Hydrology, 614 , 128551. | spa |
dc.relation.references | Rydberg, J., Lindborg, T., Lidman, F., Tröjbom, M., Berglund, S., Lindborg, E., y Laudon, H. (2023). Ciclo biogeoquímico en un entorno periglacial: un presupuesto de balance de masa de elementos múltiples para una cuenca en el oeste de Groenlandia. CATENA , 231 , 107311. | spa |
dc.relation.references | Salazar, S., Ochoa, A. y McCarthy, P. (2023). How the visit of pedologist Hans Jenny to Colombia (1946–1947) contributed to the theory of soil-forming factors. Geoderma , 437 , 116575. | spa |
dc.relation.references | Salome, J. P., Amutha, R., Jagannathan, P., Josiah, J. J. M., Berchmans, S. y Yegnaraman, V. (2009). Electrochemical assay of the nitrate and nitrite reductase activities of Rhizobium japonicum. Biosensors and Bioelectronics, 24(12), 3487-3491. | spa |
dc.relation.references | Sapkota, T. B., Singh, B. y Takele, R. (2022). Improving nitrogen use efficiency and reducing nitrogen surplus through best fertilizer nitrogen management in cereal production: The case of India and China. Advances in Agronomy, 178, 233-294. | spa |
dc.relation.references | Schmukat, A., Duester, L., Goryunova, E., Ecker, D., Heininger, P. y Ternes, T. A. (2016). Influence of environmental parameters and of their interactions on the release of metal (loid) s from a construction material in hydraulic engineering. Journal of Hazardous Materials, 304, 58-65. | spa |
dc.relation.references | Schwertmann, U., y Taylor, R. (1989). Iron oxides. Minerals in soil environments, 1, 379-438. | spa |
dc.relation.references | Seidenfaden, I. K., Sonnenborg, T. O., Børgesen, C. D., Trolle, D., Olesen, J. E. y Refsgaard, J. C. (2022). Impacts of land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties. Science of The Total Environment, 830, 154671. | spa |
dc.relation.references | Shioiri, M. (1952). Chemical study on sesquioxide of clay fraction in allophanic soil. Study on soil science, 148-155. | spa |
dc.relation.references | Shoji, S. y Takahashi, T. (2002). Environmental and agricultural significance of volcanic ash soils. Global Environmental Research-English Edition-, 6(2), 113-135. | spa |
dc.relation.references | Shoji, S., Nanzyo, M., y Dahlgren, R. A. (1994). Volcanic ash soils: genesis, properties and utilization. Elsevier Science (Eds) | spa |
dc.relation.references | Sidle, R. C., Gomi, T., Loaiza-Usuga, J. C., & Jarihani, B. (2017). Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Science Reviews, 175, 75-96. | spa |
dc.relation.references | Silva, T. P., Bressiani, D., Ebling, É. D., y Reichert, J. M. (2023). Best management practices to reduce soil erosion and change water balance components in watersheds under grain and dairy production. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.06.003 | spa |
dc.relation.references | Sim, S. I., & Teow, Y. H. (2023). Integrated Membrane-adsorption system as a sustainable development approach for semiconductor-industry wastewater treatment. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.102 | spa |
dc.relation.references | Smith, G. D., Wetselaar, R., Fox, J. J., Van de Graaff, R. H., Moeljohardjo, D., Sarwono, J., y Basuki. (1999). The origin and distribution of nitrate in groundwater from village wells in Kotagede, Yogyakarta, Indonesia. Hydrogeology Journal, 7, 576-589. | spa |
dc.relation.references | Snoeyink V. L., & Jenkins, D. (2002). Química del Agua (No. 968-18-1608-0. 01-A3 LU. AL-QAG.). | spa |
dc.relation.references | Soil Survery Staff (SSS). (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service. | spa |
dc.relation.references | Soil Survery Staff (SSS). (2014). Keys to soil taxonomy. 12th ed. United States Department of Agriculture (USDA). Natural Resources Conservation Service (NRCS). | spa |
dc.relation.references | Sparks, D. L. (1995). Environmental soil chemistry. Academic press, INC. | spa |
dc.relation.references | Sposito, G. (1981). The thermodynamic of the soil solution. Clarendon Press, Oxford. U.K. 223. | spa |
dc.relation.references | Sposito, G. (1989). The chemestry of soils .Oxford, University Press, N.Y. 277. | spa |
dc.relation.references | Stevenson, F. J., & Cole, M. A. (1986). Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients John Wiley & Sons. New York. | spa |
dc.relation.references | Sugimoto, R., Tsuboi, T. y Fujita, M.S. (2019) Comprehensive and quantitative assessment of nitrate dynamics in two contrasting forested basins along the Sea of Japan using dual isotopes of nitrate. Science of The Total Environment, 687, 667-678. | spa |
dc.relation.references | Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F. y Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of The Total Environment, 626, 1394-1401. | spa |
dc.relation.references | Takahashi, T., y Dahlgren, R. A. (2016). Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma, 263, 110-121. | spa |
dc.relation.references | Tani M, Okuten T, Koike M, Kuramochi K, y Kondo R (2004) Nitrate adsorption in some andisols developedunder different moisture conditions. Soil Science and Plant Nutrition 50, 439-446. | spa |
dc.relation.references | Taniwaki, R. H., Cassiano, C. C., Fransozi, A. A., Vásquez, K. V., Posada, R. G., Velásquez, G. V., y Ferraz, S. F. (2019). Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica, 74, 1-7. | spa |
dc.relation.references | Targulian, V. (1964) The Future of Soil Science. Alfred E. Hartemink. (Eds) Wageningen: IUSS International Union of Soil Sciences. | spa |
dc.relation.references | Tobón, C., Bruijnzeel, L. A., & Frumau, A. (2004). Physical and hydraulic properties of Tropical Montane Cloud Forest soils and their changes after conversion to pasture. In Proceedings of the Second International Symposium: Science for Conserving and Managing Tropical Montane Cloud Forests, Waimea, Hawaii. | spa |
dc.relation.references | Tobón, C., Bruijnzeel, L. A., Frumau, K. A. y Calvo-Alvarado, J. C. (2010). Changes in soil physical properties after conversion of tropical montane cloud forest to pasture in northern Costa Rica. Tropical montane cloud forests: Science for conservation and management, 502-515. | spa |
dc.relation.references | Tsai, C. C., Chen, Z. S., Kao, C. I., Ottner, F., Kao, S. J. y Zehetner, F. (2010). Pedogenic development of volcanic ash soils along a climosequence in Northern Taiwan. Geoderma, 156(1-2), 48-59. | spa |
dc.relation.references | Upadhyay, S., Singh, R., Verma, P., & Raghubanshi, A. S. (2021). Spatio-temporal variability in soil CO2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes. Journal of Environmental Management, 295, 113141. | spa |
dc.relation.references | USEPA. (2001). Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) | spa |
dc.relation.references | Vacca, A., Adamo, P., Pigna, M., & Violante, P. (2003). Genesis of tephra‐derived soils from the Roccamonfina volcano, south central Italy. Soil Science Society of America Journal, 67(1), 198-207. | spa |
dc.relation.references | Valenzuela-Diaz, MJ, Navarrete-Calvo, A., Caraballo, MA, McPhee, J., Garcia, A., Correa-Burrows, JP, y Navarro-Valdivia, L. (2020). Hydrogeochemical and environmental water quality standards in the overlap between high mountainous natural protected areas and copper mining activities (Mapocho river upper basin, Santiago, Chile). Journal of Hydrology, 588 , 125063. | spa |
dc.relation.references | Vanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K. y Castro-Nunez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land use policy, 114, 105981. | spa |
dc.relation.references | Vilcáez, J. (2020). Reactive transport modeling of produced water disposal into dolomite saline aquifers: Controls of barium transport. Journal of contaminant hydrology, 233, 103600. | spa |
dc.relation.references | Villalobos, M., y Antelo, J. (2011). A unified surface stuctural model for ferrihydrite: proton charge, electrolyte binding, and arsenate adsorption. Revista internacional de contaminación ambiental, 27(2), 139-151. | spa |
dc.relation.references | Wang, S., Chen, J., Zhang, S., Zhang, X., Chen, D. y Zhou, J. (2023). Hydrochemical evolution characteristics, controlling factors, and high nitrate hazards of shallow groundwater in a typical agricultural area of Nansi Lake Basin, North China. Environmental Research, 223, 115430. | spa |
dc.relation.references | Wang, Y., Lin, J., Wang, F., Tian, Q., Zheng, Y. y Chen, N. (2023). Hydrological connectivity affects nitrogen migration and retention in the land‒river continuum. Journal of Environmental Management, 326, 116816. | spa |
dc.relation.references | Wang, X., Wells, N. S., Xiao, W., Hamilton, J. L., Jones, A. M. y Collins, R. N. (2023). Abiotic reduction of nitrate to ammonium by iron (oxy)(hydr) oxides and its stable isotope (δ15N, δ18O) dynamics. Geochimica et cosmochimica acta, 347, 28-41. | spa |
dc.relation.references | Wang, Y., Zhang, Y., Yu, X., Jia, G., Liu, Z., Sun, L. y Zhu, X. (2021). Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecological Indicators, 131, 108196. | spa |
dc.relation.references | Watanabe, T., Ueda, S., Nakao, A., Ze, A. M., Dahlgren, R. A., y Funakawa, S. (2023). Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line. Geoderma, 430, 116289. | spa |
dc.relation.references | Weerasinghe, V., y Handapangoda, K. (2019). Surface water quality analysis of an urban lake; East Beira, Colombo, Sri Lanka. Environmental Nanotechnology, Monitoring & Management, 12, 100249. | spa |
dc.relation.references | Weiner, E.R. (2010). Applications of environmental chemistry: a practical guide for environmental professionals. CRC press, Boca Raton, FL, USA | spa |
dc.relation.references | White, D.A., Silberstein, R.P., Balocchi-Contreras, F., Quiroga, J.J., Meason, D.F., Palma, J.H., y de Arellano, P.R. (2021). Growth, water use, and water use efficiency of Eucalyptus globulus and Pinus radiata plantations compared with natural stands of Roble-Hualo forest in the coastal mountains of central Chile. For. Ecol. Manage. 501, 119676 https://doi.org/10.1016/j.foreco.2021.119676. | spa |
dc.relation.references | WHO, (2006). Guías para la calidad del agua potable. Primer Apéndice a la Tercera Edición. World Health Organization. | spa |
dc.relation.references | Wiechmann, H., Bohn, H.L., McNeal, B.L. y O'Connor, G.A. (1986). Soil Chemistry. 2. Auflage, 341 S., John Wiley a. Sons, New York, Chichester (1985). Zeitschrift Für Pflanzenernährung Und Bodenkd. 149 (1986) 357–357. doi: https://doi.org/10.1002/jpln.19861490315. | spa |
dc.relation.references | Wilcke, W., Yasin, S., Valarezo, C., Zech, W. (2001). Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry, 55(1), 45-72. | spa |
dc.relation.references | Williams, M. R., & Filoso, S. (2023). Changes in hydrology and pollutant loads from stream restoration in an urban headwater catchment. Journal of Hydrology, 618, 129164. | spa |
dc.relation.references | World Health Organization. (2017). Guias para lacalidad del agua de consumo humano: cuarta edición que incorpora la primera adenda. Geneva: WHO. | spa |
dc.relation.references | Xi, Y., Templeton, E. J., & Salin, E. D. (2010). Rapid simultaneous determination of nitrate and nitrite on a centrifugal microfluidic device. Talanta, 82(4), 1612-1615. | spa |
dc.relation.references | Xinwei, Z., Yunchao, Z., & Qiulan, F. (2023). Main influencing factors of soil particle distribution in the karst basin. Catena, 224, 107002. | spa |
dc.relation.references | Xiong, F., Chen, Y., Zhang, S., Xu, Y., Lu, Y., Qu, X., ... & Lin, L. S. (2022). Land use, hydrology, and climate influence water quality of China's largest river. Journal of Environmental Management, 318, 115581. | spa |
dc.relation.references | Yang, T., Ala, M., Zhang, Y., Wu, J., Wang, A., & Guan, D. (2018). Characteristics of soil moisture under different vegetation coverage in Horqin Sandy Land, northern China. PLoS One, 13(6), e0198805. | spa |
dc.relation.references | Yi, H., Cui, J., Sun, J., Zhou, X., Ye, T., Gan, S., ... & Xiao, T. (2023). Key drivers regulating arsenic enrichment in shallow groundwater of the Pearl River Delta: Comprehensive analyses of iron, competitive anions, and dissolved organic matter. Applied Geochemistry, 151, 105602. | spa |
dc.relation.references | Yifru, B. A., Chung, I. M., Kim, M. G., & Chang, S. W. (2021). Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model. Journal of Hydrology: Regional Studies, 37, 100926. | spa |
dc.relation.references | Younis, A., Trujillo, Y., Benders, R., y Faaij, A. (2021). Regionalized cost supply potential of bioenergy crops and residues in Colombia: A hybrid statistical balance and land suitability allocation scenario analysis. Biomass and Bioenergy, 150, 106096 | spa |
dc.relation.references | ZAPATA R. (2002). Química de los procesos pedogenéticos. Escuela de Geociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín. Colombia. 358. | spa |
dc.relation.references | Zapata, R. (2014). Los procesos químicos del suelo. Medellín, Colombia: Editorial Universidad Nacional, 686. | spa |
dc.relation.references | Zhang, Y., Li, Y., Walker, J.P., Pauwels, V.R. y Shahrban, M. (2015). Towards operational hydrological model calibration using streamflow and soil moisture measurements. In 21st International Congress on Modelling and Simulation. Gold Coast, Australia, 2089-2095. | spa |
dc.relation.references | Zhang, Z. y Furman, A. (2021). Soil redox dynamics under dynamic hydrologic regimes-A review. Science of The Total Environment, 763, 143026. | spa |
dc.relation.references | Zhao, F., Wu, Y., Qiu, L., Sivakumar, B., Zhang, F., Sun, Y. y Voinov, A. (2018). Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecological Indicators, 91, 542-554. | spa |
dc.relation.references | Zhou, H., Rao, K., Yao, M., Xiong, Y., Wang, Y. y Yin, Y. (2022). Effects of land use, meteorology, and hydrology on nutrients, biochemical indexes, and heavy metals in Qingjiang River Basin, China. Journal of Cleaner Production, 370, 133416. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica | spa |
dc.subject.lemb | Geoquímica | |
dc.subject.lemb | Calidad del agua | |
dc.subject.proposal | Andisoles | spa |
dc.subject.proposal | Flujos hidrológicos | spa |
dc.subject.proposal | Biogeoquímica | spa |
dc.subject.proposal | Potencial redox | spa |
dc.subject.proposal | Hydrological flows | eng |
dc.subject.proposal | Andisols | eng |
dc.subject.proposal | Biogeochemistry | eng |
dc.subject.proposal | Redox potential | eng |
dc.subject.proposal | Andean mountain | eng |
dc.subject.proposal | Andean Mountain | spa |
dc.subject.wikidata | Andisol | |
dc.subject.wikidata | Redox | |
dc.title | Dinámica geoquímica en andisoles alto andinos, caso de estudio, la microcuenca Las Palmas | spa |
dc.title.translated | Geochemical dynamic in high andean Andisols, case study, Las Palmas microbasin | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1094248827.2023.pdf
- Tamaño:
- 2.66 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería- Recursos Hidráulicos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: