Dinámica geoquímica en andisoles alto andinos, caso de estudio, la microcuenca Las Palmas

dc.contributor.advisorCardona Gallo, Santiago
dc.contributor.advisorLoaiza Usuga, Juan Carlos
dc.contributor.authorBerbesí Jaimes, Andrés Fernando
dc.date.accessioned2024-01-26T16:10:40Z
dc.date.available2024-01-26T16:10:40Z
dc.date.issued2023
dc.descriptionIlustraciones, mapasspa
dc.description.abstractThe dynamics of water in basins is regulated by its interaction with soil moisture, vegetation, temperature and precipitation among other factors. The changes in these interactions can be used as tools for the analysis of hydrological processes and generate ecosystem management proposals. The soil is a key element in the water cycle, which regulates most of the processes that take place there, but the growth of anthropogenic agro-industrial activities has brought with it the alteration of ecosystems and a significant deterioration in the quality of surface and underground waters, thus the use of nitrogenous fertilizers has been one of the factors that has led to the progressive pollution of water quality, generating a risk to human health, from the chemical species associated with these fertilizers, the contaminant that requires the most attention is nitrates. In order to analyze the influence of pollutants such as nitrate on water quality in a basin system where andisol soils are present, the study area was divided into four areas of interest (potato cultivation, pastures, forests and the channel of Las Palmas brook), in the land-use-zones potato crops, grasslands and forests, two experimental plots with sufficient hydrometeorological instruments were used to obtain data on precipitation, surface runoff, infiltration at 0,20 and 0,50 m deep, in addition to a physicochemical analysis of the waters of each of these systems and an analysis of the dynamics of iron in Andisol soils as an indicator of ion mobility. In the interest to relate the hydrological processes based on the chemical species studied, multivariate statistical methods were applied such as the variant analysis of three factors and principal components (PCA), together with linear regressions (ANCOVA); with the purpose of generating information to design better management strategies for the different land uses and mitigate the impacts on bodies of water. The results found show a lower storage of water in the soil for the forest soils (gallery or riparian forest) due to the high interception by the covers; while soils under crops (Solanum Tuberosum) and grazing (Pennisetum Clandestinum) have high moisture retention. Given the high availability of water in these ecosystems, conditions associated with anaerobic processes prevail in wet seasons and aerobic processes in dry seasons, where water flows in wet seasons have concentrations of less than 50 mg/L NO3-, which does not represent a risk to human health, in dry seasons these concentrations can be exceeded, especially in the forest area with concentrations up to 139 ml/L NO3- (June). The high moisture content of the soil, high rainfall, high infiltration (83-99%) and low runoff (<1%), as well as acidity and a redox potential of less than 450 mV, condition the mobility of contaminants in these environments favoring the resilience of these ecosystems.eng
dc.description.abstractLa dinámica del agua en las cuencas está regulada por su interacción con la humedad del suelo, la vegetación, la temperatura y la precipitación, entre otros factores. Los cambios en estas interacciones pueden ser utilizadas como herramientas para el análisis de los procesos hidrológicos y generar propuestas de gestión de los ecosistemas. El suelo es un elemento clave en el ciclo del agua, que regula la mayoría de procesos que allí se desarrollan, pero el crecimiento de actividades antropogénicas agroindustriales ha traído consigo la alteración de los ecosistemas y un deterioro marcado de la calidad de las aguas superficiales y subterráneas, así el uso de fertilizantes nitrogenados ha sido de los factores que ha llevado a la contaminación progresiva de la calidad del agua generando un riesgo para la salud humana, de las especies químicas asocias a estos fertilizantes, el contaminante que mayor atención tiene son los nitratos. Con el fin de analizar la influencia de contaminantes como el nitrato en la calidad de agua en un sistema cuenca donde están presenten los suelos andisoles, se realizó una división de la zona de estudio en cuatro áreas de interés (cultivo de papa, pastizales, bosques y el cauce de la quebrada Las Palmas), en las zonas de uso del suelo cultivos de papa, pastizales y bosques, se trabajó con dos parcelas experimentales, con los instrumentos hidrometeorológicos suficientes para la obtención de datos de precipitación, escorrentía superficial, infiltración a 0,20 y 0,50 m de profundidad, además de un análisis fisicoquímico de las aguas de cada uno de estos sistemas y un análisis de la de dinámica del hierro en suelos Andisoles como indicador de movilidad de iones. Para poder relacionar los procesos hidrológicos en función de las especies químicas estudiadas, se aplicaron métodos estadístico multivariantes, como análisis de varianza de tres factores y componentes principales (PCA), junto a regresiones lineales (ANCOVA). con el propósito de generar información para diseñar mejores estrategias del manejo de los diferentes usos del suelo y mitigar los impactos a los cuerpos de agua. Los resultados encontrados muestran un menor almacenamiento de agua en el suelo para suelos forestales (bosque de galería o ripario) debido a la alta interceptación por parte de las coberturas; mientras los suelos bajo cultivos de papa (Solanum tuberosum) y pastoreo (Pennisetum clandestinum) tienen una alta retención de humedad. Dada la alta disponibilidad de agua en estos ecosistemas prevalecen las condiciones asociadas a procesos anaeróbicos en épocas húmedas y procesos aeróbicos en épocas secas, en donde los flujos de agua en estaciones húmedas tienen concentraciones inferiores a 50 mg/L NO3- , lo cual no representa un riesgo para la salud humana, en épocas secas se pueden superar estas concentraciones especialmente en la zona de bosques con concentraciones de hasta 139 mg/L NO3- (junio). El alto contenido de humedad del suelo, las altas precipitaciones, alta infiltración (83 - 99 %) y la baja escorrentía (< 1 %), así como la acidez y un potencial redox inferior a los 450 mV, condicionan la movilidad de contaminantes en estos ambientes favoreciendo la resiliencia de estos ecosistemas. (Texto tomado de la fuente)spa
dc.description.abstractThe dynamics of water in basins is regulated by its interaction with soil moisture, vegetation, temperature and precipitation among other factors. The changes in these interactions can be used as tools for the analysis of hydrological processes and generate ecosystem management proposals. The soil is a key element in the water cycle, which regulates most of the processes that take place there, but the growth of anthropogenic agro-industrial activities has brought with it the alteration of ecosystems and a significant deterioration in the quality of surface and underground waters, thus the use of nitrogenous fertilizers has been one of the factors that has led to the progressive pollution of water quality, generating a risk to human health, from the chemical species associated with these fertilizers, the contaminant that requires the most attention is nitrates. In order to analyze the influence of pollutants such as nitrate on water quality in a basin system where andisol soils are present, the study area was divided into four areas of interest (potato cultivation, pastures, forests and the channel of Las Palmas brook), in the land-use-zones potato crops, grasslands and forests, two experimental plots with sufficient hydrometeorological instruments were used to obtain data on precipitation, surface runoff, infiltration at 0,20 and 0,50 m deep, in addition to a physicochemical analysis of the waters of each of these systems and an analysis of the dynamics of iron in Andisol soils as an indicator of ion mobility. In the interest to relate the hydrological processes based on the chemical species studied, multivariate statistical methods were applied such as the variant analysis of three factors and principal components (PCA), together with linear regressions (ANCOVA); with the purpose of generating information to design better management strategies for the different land uses and mitigate the impacts on bodies of water. The results found show a lower storage of water in the soil for the forest soils (gallery or riparian forest) due to the high interception by the covers; while soils under crops (Solanum Tuberosum) and grazing (Pennisetum Clandestinum) have high moisture retention. Given the high availability of water in these ecosystems, conditions associated with anaerobic processes prevail in wet seasons and aerobic processes in dry seasons, where water flows in wet seasons have concentrations of less than 50 mg/L NO3-, which does not represent a risk to human health, in dry seasons these concentrations can be exceeded, especially in the forest area with concentrations up to 139 ml/L NO3- (June). The high moisture content of the soil, high rainfall, high infiltration (83-99%) and low runoff (<1%), as well as acidity and a redox potential of less than 450 mV, condition the mobility of contaminants in these environments favoring the resilience of these ecosystems.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería- Recursos Hidráulicosspa
dc.description.researchareaHidrogeoquímicaspa
dc.format.extent122 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85460
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdelaziz, S., Gad, M. I., y El Tahan, A. H. M. (2020). Groundwater quality index based on PCA: wadi El-Natrun, Egypt. Journal of African Earth Sciences, 172, 103964. https://doi.org/10.1016/j.jafrearsci.2020.103964spa
dc.relation.referencesAbdollahi, K., Bazargan, A., McKay, G. (2019). Water Balance Models in Environmental Modeling. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_119spa
dc.relation.referencesAgencia para Sustancias Tóxicas y el Registro de Enfermedades. (2015). Resumen de Salud Pública Nitrato y Nitrito. Re: https://www.atsdr.cdc.gov/es/phs/es_phs204.htmlspa
dc.relation.referencesAi, L., Shi, Z. H., Yin, W., & Huang, X. (2015). Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. Journal of Hydrology, 523, 398-408. https://doi.org/10.1016/j.jhydrol.2015.01.082spa
dc.relation.referencesAkbariyeh, S., Pena, C.A.G., Wang, T., Mohebbi, A., Bartelt-Hunt, S., Zhang, J., Li, Y (2019). Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Science of The Total Environment, 685, 514-526. https://doi.org/10.1016/j.scitotenv.2019.05.417spa
dc.relation.referencesAllbrook, R. F. (1983). Some physical properties of allophane soils from the North Island, New Zealand. New Zealand Journal of Science, 26(4), 481-492.spa
dc.relation.referencesAllen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Fao, Rome. https://www.fao.org/3/X0490E/x0490e00.htmspa
dc.relation.referencesAlvarado, A., Mata, R., & Chinchilla, M. (2014). Arcillas identificadas en suelos de Costa Rica a nivel generalizado durante el período 1931-2014: I. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense, 38(1), 75-106.spa
dc.relation.referencesÁlvarez, J. (1982). Tectónicas dunitas de Medellín, Departamento de Antioquia, Colombia. Boletín Geológico, 28(3), 13-44. https://doi.org/10.32685/0120-1425/bolgeol28.3.1987.305spa
dc.relation.referencesAPHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and Wastewater (22nd ed.)spa
dc.relation.referencesAryal, J. P., Sapkota, T. B., Krupnik, T. J., Rahut, D. B., Jat, M. L., y Stirling, C. M. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research, 28(37), 51480-51496.spa
dc.relation.referencesAsano, M., y Wagai, R. (2014). Evidence of aggregate hierarchy at micro-to submicron scales in an allophanic Andisol. Geoderma, 216, 62-74. https://doi.org/10.1016/j.geoderma.2013.10.005spa
dc.relation.referencesAshagrie, Y., y Zech, W. (2010). Water and nutrient inputs in rainfall into natural and managed forest ecosystems in south-eastern highlands of Ethiopia. Ecohydrology & Hydrobiology, 10(2-4), 169-181. https://doi.org/10.2478/v10104-011-0009-4spa
dc.relation.referencesBalocchi, F., Galleguillos, M., Rivera, D., Stehr, A., Arumi, J.L., Pizarro, R., y de Arellano, P.R. (2022). Forest hydrology in Chile: Past, present, and future. Journal of Hydrology, 616, 128681. https://doi.org/10.1016/j.jhydrol.2022.128681spa
dc.relation.referencesBasile-Doelsch, I., Amundson, R., Stone, W. E. E., Borschneck, D., Bottero, J. Y., Moustier, S., ... y Colin, F. (2007). Mineral control of carbon pools in a volcanic soil horizon. Geoderma, 137(3-4), 477-489.spa
dc.relation.referencesBelmonte Serrato, F., Romero Díaz, A., y López Bermúdez, F. (1999). Efectos sobre la cubierta vegetal, la escorrentía y la erosión del suelo, de la alternancia cultivo-abandono en parcelas experimentales. Investigaciones geográficas, 22, 95-107.spa
dc.relation.referencesBesoain, E. (1985). Minerales de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura. San José, Costa Rica. Re: https://repositorio.iica.int/handle/11324/12993spa
dc.relation.referencesBeverskog, B., & Puigdomenech, I. (1996). Revised pourbaix diagrams for iron at 25–300 C. Corrosion Science, 38(12), 2121-2135. https://doi.org/10.1016/S0010-938X(96)00067-4spa
dc.relation.referencesBhatnagar, A., y Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. https://doi.org/10.1016/j.cej.2011.01.103spa
dc.relation.referencesBigham, J. M., Fitzpatrick, R. W., & Schulze, D. G. (2002). Iron oxides. Soil mineralogy with environmental applications, 7, 323-366.spa
dc.relation.referencesBodek, I., Lyman, W. J., Reehl, W. F., & Rosenblatt, D. H. (Eds.). (1988). Environmental inorganic chemistry: properties, processes, and estimation methods, Pergamon press.1199.spa
dc.relation.referencesBotero, A.M., Vélez, J.P. (2005). Caracterización Hidrogeológica del Municipio de Envigado. (Tesis pregrado). Universidad Nacional de Colombia, Facultad de Minas, Medellín, Colombia.spa
dc.relation.referencesBowen, H. J. M. (1979). Environmental chemistry of the elements. Academic Press.spa
dc.relation.referencesBurrough, P. A., and McDonell, R. A., (1998). Principles of Geographical Information Systems (Oxford University Press, New York), 190.spa
dc.relation.referencesCáceres, L., Escudey, M., Fuentes, E., & Báez, M. E. (2010). Modeling the sorption kinetic of metsulfuron-methyl on Andisols and Ultisols volcanic ash-derived soils: Kinetics parameters and solute transport mechanisms. Journal of hazardous materials, 179(1-3), 795-803. https://doi.org/10.1016/j.jhazmat.2010.03.074spa
dc.relation.referencesCahyana, D., Sulaeman, Y., Barus, B., & Mulyanto, B. (2023). Improving digital soil mapping in Bogor, Indonesia using parent material information. Geoderma Regional, 33, e00627. https://doi.org/10.1016/j.geodrs.2023.e00627spa
dc.relation.referencesCarrión-Paladines, V., Benítez, Á., & García-Ruíz, R. (2022). Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador's Podocarpus National Park. Forest Ecosystems, 9, 100076. https://doi.org/10.1016/j.fecs.2022.100076spa
dc.relation.referencesCasamitjana, M & Loaiza-Usuga, J.C. (2019). Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas”. in: Movimientos en masa. Casamitjana, M; Sidley, R (Eds). Editorial EIA. Colombia. 111 – 134. ISBN: 978-958-52367-0-7spa
dc.relation.referencesCascaredo, A. C., Oleschko, K., Huerta, L. C., Etchevers, J. D., & Hidalgo, C. (2001). Estimación de alófono y su relación con otros parámetros químicos en Andisoles de montaña del volcán Cofre de Perote. Terra Latinoamericana, 19(2), 105-116. Re: https://www.redalyc.org/articulo.oa?id=57319201spa
dc.relation.referencesCasso-Hartmann, L., Rojas-Lamos, P., McCourt, K., Vélez-Torres, I., Barba-Ho, L. E., Bolaños, B. W., y Vanegas, D. (2022). Water pollution and environmental policy in artisanal gold mining frontiers: The case of La Toma, Colombia. Science of The Total Environment, 852, 158417. https://doi.org/10.1016/j.scitotenv.2022.158417spa
dc.relation.referencesCastro Franco, H. E., & Gómez Sánchez, M. I. (2015). Génesis y evolución de los suelos sulfatados ácidos del Valle Alto del Río Chicamocha. Re: https://repositorio.uptc.edu.co/spa
dc.relation.referencesCastro Franco, H. E., & Gómez Sánchez, M. I. (2015). Suelos sulfatados ácidos: el caso del valle alto del río Chicamocha Boyacá–Colombia. Editorial UPTC.spa
dc.relation.referencesChedadi, M., Amakdouf, H., El Barnossi, A., El Moussaoui, A., Kara, M., El Asmi, H., ... & Bari, A. (2023). Impact of Anthropogenic Activities on the Physicochemical and Bacteriological Quality of Water Along Oued Fez River (Morocco). Scientific African, 19, e01549. https://doi.org/10.1016/j.sciaf.2023.e01549spa
dc.relation.referencesChen, A., Yang, X., Guo, J., Zhang, M., Xing, X., Yang, D., ... & Jiang, L. (2022). Dynamic of land use, landscape, and their impact on ecological quality in the northern sand-prevention belt of China. Journal of Environmental Management, 317, 115351.spa
dc.relation.referencesCheremisinoff, N. P. (1998). Groundwater remediation and treatment technologies. Elsevier.spa
dc.relation.referencesChilds, C. W., Matsue, N., y Yoshinaga, N. (1991). Ferrihydrite in volcanic ash soils of Japan. Soil Science and Plant Nutrition, 37(2), 299-311.spa
dc.relation.referencesChilds, C.W. (1992). Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanzenernaehr. Bodenkd. 155,441–448.spa
dc.relation.referencesChoi, Y., Kang, J., & Kim, J. (2021). Urban flood adaptation planning for local governments: Hydrology analysis and optimization. International Journal of Disaster Risk Reduction, 59, 102213. https://doi.org/10.1016/j.ijdrr.2021.102213spa
dc.relation.referencesChow, V. T., Maidment, D. R., y Mays, L. W. (1994). Hidrología aplicada (1a. ed.). Bogotá: Mc Graw Hill.spa
dc.relation.referencesContraloría Municipal de Envigado (2016) Informe del Estado de los Recursos Naturales y el Ambiente Municipio de Envigado 2015.spa
dc.relation.referencesCorrea, A., Breuer, L., Crespo, P., Célleri, R., Feyen, J., Birkel, C., y Windhorst, D. (2019). Spatially distributed hydro-chemical data with temporally high-resolution is needed to adequately assess the hydrological functioning of headwater catchments. Science of the Total Environment, 651, 1613-1626.spa
dc.relation.referencesCorrea, A., Windhorst, D., Tetzlaff, D., Crespo, P., Célleri, R., Feyen, J., y Breuer, L. (2017). Temporal dynamics in dominant runoff sources and flow paths in the A ndean P áramo. Water Resources Research, 53(7), 5998-6017.spa
dc.relation.referencesCruz-Hernández, M., Velázquez-Herrera, F. D., y Fetter, G. (2023). Synthetic hydroxyapatites as high-performance fertilizers for lettuce plant growth. Rhizosphere, 100718.spa
dc.relation.referencesCuello, C., Correa, P., Haenszel, W., Gordillo, G., Brown, C., Archer, M., y Tannenbaum, S. (1976). Gastric Cancer in Colombia. I. Cancer Risk and Suspect Environmental Agents 2. Journal of the National Cancer Institute, 57(5), 1015-1020.spa
dc.relation.referencesDahlgren, R. A., Saigusa, M. y Ugolini, F. C. (2004). The nature, properties and management of volcanic soils. Advances in agronomy, 82(3), 113-182. https://doi.org/10.1016/S0065-2113(03)82003-5spa
dc.relation.referencesde Carvalho, T. C., da Mota Borges, A. K., & da Silva, I. F. (2023). Stomach cancer incidence trends in selected Latin America countries: Age, period, and birth-cohort effects. Cancer Epidemiology, 85, 102392. https://doi.org/10.1016/j.canep.2023.102392spa
dc.relation.referencesDe las Salas, G. (1987). Suelos y ecosistemas forestales: con énfasis en América tropical. San José de Costa Rica. (Colección de Libros y Materiales Educativos/IICA No. 80).spa
dc.relation.referencesDeng, H., Li, L., Kim, JJ, Ling, FT, Beckingham, LE y Wammer, KH (2022). Bridging environmental geochemistry and hydrology. Journal of Hydrology, 128448. https://doi.org/10.1016/j.jhydrol.2022.128448spa
dc.relation.referencesDixon, E. R., Cardenas, L., Alfaro, M., Salazar, F., & Hatch, D. J. (2011). High rates of nitrogen cycling in volcanic soils from Chilean grasslands. Rapid Communications in Mass Spectrometry, 25(11), 1521-1526.spa
dc.relation.referencesDörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L. y Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693-702.spa
dc.relation.referencese Silva, G. M., Garcia, J. A., de Alencar Garitta, J., Cunha, D. G. F., Finkler, N. R., Mendiondo, E. M., & Ghiglieno, F. (2022). Smartphone-based spectrometry system as a prescreening assessment of copper and iron for real time control of water pollution. Journal of Environmental Management, 323, 116214. https://doi.org/10.1016/j.jenvman.2022.116214spa
dc.relation.referencesEchavarría, N. P., Jaramillo, D. F. J., Villadiego, O. S. R. y Sánchez, L. N. P. (2017). Caracterización de un Andisol de la cuenca alta de la quebrada Santa Elena, Oriente Antioqueño, Colombia. Revista de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, 6(1), 24-38. https://doi.org/10.15446/rev.fac.cienc.v6n1.60628spa
dc.relation.referencesEcheverría, C., Huber, A. y Taberlet, F. (2007). Estudio comparativo de los componentes del balance hídrico en un bosque nativo y una pradera en el sur de Chile. Bosque (Valdivia), 28(3), 271-280. Re: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002007000300013spa
dc.relation.referencesEgbi, C. D., Anornu, G. K., Ganyaglo, S. Y., Appiah-Adjei, E. K., Li, S. L., & Dampare, S. B. (2020). Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks. Ecotoxicology and environmental safety, 191, 110227.spa
dc.relation.referencesEspinosa, J. y Molina E. (1999). Acidez y encalado de los suelos. International Plant Nutrition Institutespa
dc.relation.referencesEvangelou, V. P. (1998). Environmental soil and water chemistry: principles and applications (No. 631.455 E6).spa
dc.relation.referencesFAO (2005). Optimizacion de la Humedad Del Suelo Para la Producción Vegetal: El Significado de la Porosidad Del Suelo (Boletines de Suelos de la Fao) ,79. Food & Agriculture Org. Re: https://www.fao.org/3/y4690s/y4690s00.htmspa
dc.relation.referencesFAO. (2019). World fertilizer trends and outlook to 2022. Re: https://www.fao.org/3/ca6746en/CA6746EN.pdfspa
dc.relation.referencesFekiacova, Z., Pichat, S., Cornu, S., y Balesdent, J. (2013). Inferences from the vertical distribution of Fe isotopic compositions on pedogenetic processes in soils. Geoderma, 209, 110-118. https://doi.org/10.1016/j.geoderma.2013.06.007spa
dc.relation.referencesFilimonova, S., Kaufhold, S., Wagner, F. E., Häusler, W. y Kögel-Knabner, I. (2016). The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol. Geochimica et Cosmochimica Acta, 180, 284-302. https://doi.org/10.1016/j.gca.2016.02.033spa
dc.relation.referencesFlórez, M. T., Zapata, R., Malagón, D. y Madriñán, R. (2004). Alteración química de los fragmentos de matriz y de los vidrios volcánicos. Acad. Colomb. Cienc. 30 (114), 47-66spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO) (2015). World fertilizer trends and outlook to 2018.spa
dc.relation.referencesFrene, C., Núñez-Ávila, M., Castro, B. y Armesto, J.J. (2022). Seasonal partitioning of rainfall in second-growth evergreen temperate rainforests in chiloé island, southern Chile. Front. For. Global Change 4, 781663.spa
dc.relation.referencesGarzón-Sánchez, H., Loaiza-Usuga, J. C. y Vélez-Upégui, J. I. (2021). Soil Moisture Behavior in Relation to Topography and Land Use for Two Andean Colombian Catchments. Water, 13(11), 1448.spa
dc.relation.referencesGaspar-Santos, E. S., González-Espinosa, M., Ramírez-Marcial, N. y Álvarez-Solís, J. D. (2015). Acumulación y descomposición de hojarasca en bosques secundarios del sur de la Sierra Madre de Chiapas, México. Bosque (Valdivia), 36(3), 467-480. Re: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002015000300013spa
dc.relation.referencesGleick, P. H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329-344.spa
dc.relation.referencesGómez, E. H., y Marín, C. T. (2012). Dinámica del agua en Andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2). https://revistas.unal.edu.co/index.php/refame/article/view/36490spa
dc.relation.referencesHansen, É., de Aquim, P. M., Hansen, A. W., Cardoso, J. K., Ziulkoski, A. L. y Gutterres, M. (2020). Impact of post-tanning chemicals on the pollution load of tannery wastewater. Journal of Environmental Management, 269, 110787. https://doi.org/10.1016/j.jenvman.2020.110787spa
dc.relation.referencesHe, B., He, J., Wang, L., Zhang, X., Bi, E. (2019). Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Research, 163, 114880. https://doi.org/10.1016/j.watres.2019.114880spa
dc.relation.referencesHerrera, L, (2003) Carso De Alta Montaña En Santa Elena; Implicaciones Hidrológicas E Hidrogeológicas En El Valle De Aburrá, (tesis maestría) Universidad Nacional de Colombia, Facultad de Minas, Medellín, Colombia.spa
dc.relation.referencesHerrera-Ardila, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia-estudio fundamental e implicaciones en ingeniería, Uniandes. Re: https://repositorio.uniandes.edu.co/handle/1992/7812?locale-attribute=enspa
dc.relation.referencesHiemstra, T. (2013). Surface and mineral structure of ferrihydrite. Geochimica et Cosmochimica Acta, 105, 316-325. https://doi.org/10.1016/j.gca.2012.12.002spa
dc.relation.referencesHincapié Gómez, E. y Tobón Marín, C. (2012). Dinámica del agua en Andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2), 6765-6777.spa
dc.relation.referencesHolton, J. R. (2004). An Introduction to Dynamic Meteorology. 4 edition. Department of Atmo.spa
dc.relation.referencesHu, M., Liu, Y., Zhang, Y., Dahlgren, R. A., y Chen, D. (2019). Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water research, 150, 418-430. https://doi.org/10.1016/j.watres.2018.11.082spa
dc.relation.referencesHuber, A., Iroumé, A., Mohr, C. y Frene, C. (2010). Efecto de plantaciones de Pinus radiata y Eucalyptus globulus sobre el recurso agua en la Cordillera de la Costa de la región del Biobío. Chile. Bosque (Valdivia) 31 (3), 219–230. https://doi.org/10.4067/S0717-92002010000300006.spa
dc.relation.referencesHusson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389-417.spa
dc.relation.referencesICONTEC. (2004). Calidad de agua. Muestreo. Parte 3: Directrices para la preservación y manejo de las muestras NTC-ISO 5667-3.spa
dc.relation.referencesIGAC (2012): Atlas de la distribución de la propiedad rural en Colombia. Instituto Geográfico Agustín Codazzi, Universidad de los Andes, Bogotá.spa
dc.relation.referencesIGAC, I. (2014). Metodología para la clasificación de las tierras por su capacidad de uso. Re: http://igacnet2. igac. gov. co/intranet/UserFiles/File/procedimientos/instructivos/2014/M40100-02% 2014V2% 20Para% 20la% 20clasificacion% 20de% 20las% 20tierras% 20por% 20s u% 20capacidad% 20de% 20uso. pdf.spa
dc.relation.referencesImanudin, MS y Armanto, E. (2012). Effect of Water Management Improvement on Soil Nutrient Content, Iron and Aluminum Solubility at Tidal Low Land Area. APCBEE Procedia, 4 , 253-258. https://doi.org/10.1016/j.apcbee.2012.11.043spa
dc.relation.referencesInternational Agency for Research on Cancer. (2017). IARC Monographs on the evaluation of Carcinogenic Risk to Humans. Agents Classified by the IARC Monographs, Volumes 1-119. Re: https://www.iarc.fr/ , http://monographs.iarc.fr/ENG/Classification/spa
dc.relation.referencesIroumé, A., y Huber, A. (2002). Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrological Processes, 16(12), 2347-2361.spa
dc.relation.referencesIUSS Working Group WRB (2022). Worl Reference Base for Soil Resources. International soil classification system for naming soil and creating legends for soil maps. International Union of Soil Sciences (IUSS). Vienna, Austria.spa
dc.relation.referencesJaramillo Jaramillo, D. F. (1999). Caracterización química de Andisoles repelentes al agua del oriente Antioqueño. Revista Facultad Nacional de Agronomía Medellín, 52(2), 657-673.Re: https://revistas.unal.edu.co/index.php/refame/article/view/23909spa
dc.relation.referencesJaramillo, D. F. (2014). El suelo: origen, propiedades, espacialidad. Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias, Escuela de Geociencias.spa
dc.relation.referencesJaramillo, D.F. (2011), Caracterización de la materia orgánica del horizonte superficial de un Andisol hidromórfico del Oriente Antioqueño (Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35(134), 23-34.spa
dc.relation.referencesJaramillo-Jaramillo, D. F. (2002). Introducción a la ciencia del suelo. Escuela de Geociencias y Medio Ambiente. Re: https://repositorio.unal.edu.co/handle/unal/70085spa
dc.relation.referencesJenny, H. (1941). Factors of soil formation: a system of quantitative pedology. Courier Corporation.spa
dc.relation.referencesJenny, H., BINGHAM, F., PADILLA, B., y Gessel, S. P. (1953). El contenido de nitrógeno y materia orgánica en los suelos ecuatoriales de Colombia y Estudio comparativo sobre la velocidad de descomposición de la materia orgánica en regiones tropicales y templadas. Boletín Técnico No.1(8), CENICAFE 39. Re: https://biblioteca.cenicafe.org/handle/10778/464/simple-search?filterquery=BINGHAM%2C+F.T.&filtername=author&filtertype=equalsspa
dc.relation.referencesJoshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental science & technology, 43(15), 5884-5889.spa
dc.relation.referencesKom, K. P., Gurugnanam, B., & Bairavi, S. (2022). Non-carcinogenic health risk assessment of nitrate and fluoride contamination in the groundwater of Noyyal basin, India. Geodesy and Geodynamics, 13(6), 619-631. https://doi.org/10.1016/j.geog.2022.04.003spa
dc.relation.referencesKorzoun VI, Sokolov AA (1978) World water balance and water resources of the earth. Water Development, Supply and Management, United Nations Educational, Scientific and Cultural Organization, 75 – Paris (France). International Hydrological Decade, Moscow (USSR). USSR National Committeespa
dc.relation.referencesLefèvre, C., Rekik, F., Alcantara, V., y Wiese, L. (2017). Soil organic carbon: The hidden potential (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.) https://doi.org/10.1038/nrg2350spa
dc.relation.referencesLenhart, S., Ortmeyer, F., y Banning, A. (2021). Denitrification in the vadose zone: modelling with percolating water prognosis and denitrification potential. Journal of Contaminant Hydrology, 242, 103843.spa
dc.relation.referencesLi, C., Yue, F. J., Zhong, J., Xu, S., y Li, S. L. (2023a). Hydrological regulation of nitrate sources, transformation and transport pathway in a karstic river. Journal of Hydrology, 617, 128998. https://doi.org/10.1016/j.jhydrol.2022.128998spa
dc.relation.referencesLi, Q., Kang, X., Lin, G., Yang, G., Wu, P., Zuo, W., y Liu, Y. (2023b). Groundwater quality characteristics and health risk assessment in the valley plain area of the western Qinghai–Tibet plateau. Journal of Contaminant Hydrology, 104221.spa
dc.relation.referencesLindsay, W. L. (1979). Chemical Equilibria in Soils, WileyÁ. New York, NY.spa
dc.relation.referencesLiu, W., Jiang, H., Guo, X., Li, Y., & Xu, Z. (2022). Time-series monitoring of river hydrochemistry and multiple isotope signals in the Yarlung Tsangpo River reveals a hydrological domination of fluvial nitrate fluxes in the Tibetan Plateau. Water Research, 225, 119098. https://doi.org/10.1016/j.watres.2022.119098spa
dc.relation.referencesLoaiza Usuga, J. C., y Pauwels, V. (2009). The impact of land use on surface runoff generating processes in a Mediterranean mountainous basin. In Handbook of Environmental Research. Nova Science. Re: https://biblio.ugent.be/publication/771871spa
dc.relation.referencesLoaiza-Usuga, J. C y Poch, R. M. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan Pre-Pyrenees NE Spain). Zeitschrift für Geomorphologie, 519-537.spa
dc.relation.referencesLoaiza-Úsuga, J.C. y Pauwels, V. (2008). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo (Ecuaciones de Calibración). Suelos Ecuat. 2008, 38, 24–33.spa
dc.relation.referencesLoaiza-Usuga, J.C. y Pauwels, V. (2011). Desarrollo de modelos hidrológicos y modelación de procesos superficiales. Caso de estudio para vertientes de alta montaña. Gestión y Ambiente, 14(3), 23-31spa
dc.relation.referencesLoaiza-Usuga, J.C., Monsalve, G., Pertuz, A., Arce, L., Sanín, M., Ramírez, L.F. y Pauwels, V. . (2018). Desentrañar la dinámica de una pendiente creciente en el noroeste de Colombia: variables hidrológicas y firmas geoeléctricas y sísmicas. Agua, 10, 1-17.spa
dc.relation.referencesLopes, T. R., Zolin, C. A., Mingoti, R., Vendrusculo, L. G., de Almeida, F. T., de Souza, A. P., y Uliana, E. M. (2021). Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. Journal of South American Earth Sciences, 108, 103224.spa
dc.relation.referencesMa, J., Faqir, Y., Chai, Y., Wu, S., Luo, T., Liao, S., y Hadir, W. (2023). Chitosan microspheres-based controlled release nitrogen fertilizers enhance the growth, antioxidant, and metabolite contents of Chinese cabbage. Scientia Horticulturae, 308, 111542.spa
dc.relation.referencesMackay-Smith, T. H., Burkitt, L. L., López, I. F., y Reid, J. I. (2022). The impact of a kānuka silvopastoral system on surface runoff and sediment and nutrient losses in New Zealand hill country. Catena, 213, 106215.spa
dc.relation.referencesMaeda M, Hara H, Ota T (2008) Deep-soil adsorption of nitrate in a Japanese Andisol in response todifferent nitrogen sources. Soil Science Society of America Journal 72, 702-710.spa
dc.relation.referencesMaeda, M., Zhao, B., Ozaki, Y. y Yoneyama, T. (2003). Nitrate leaching in an Andisol treated with different types of fertilizers. Environmental Pollution, 121(3), 477-487.spa
dc.relation.referencesMartins, M., Lunardi, S., de Andrade Puhl, V., Pizzolatti, B. S., & Soares, M. (2021). Enzymatic analysis in bank filtration sites as a tool for assessing biological clogging—A column study. Journal of Water Process Engineering, 44, 102375.spa
dc.relation.referencesMartí-Roura, M., Hagedorn, F., Rovira, P., & Romanya, J. (2019). Effect of land use and carbonates on organic matter stabilization and microbial communities in Mediterranean soils. Geoderma, 351, 103-115.spa
dc.relation.referencesMateos Rodríguez, A. B., y Schnabel, S. (1998). Medición de la interceptación de las precipitaciones por la encina (Quercus rotundifolia Lam.): Metodología e instrumentalización. Norba. Revista de Geografía.spa
dc.relation.referencesMayo, A.L., Ritter, D.J., Bruthans, J., Tingey, D. (2019). Contributions of commercial fertilizer, mineralized soil nitrate, and animal and human waste to the nitrate load in the Upper Elbe River Basin, Czech Republic. HydroResearch, 1, 25-35.spa
dc.relation.referencesMcDaniel, P. A., & Wilson, M. A. (2007). Physical and chemical characteristics of ash-influenced soils of Inland Northwest forests. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44,31-45.spa
dc.relation.referencesMermut, A. R., y Eswaran, H. (1997). Opportunities for soil science in a milieu of reduced funds. Canadian Journal of Soil Science, 77(1), 1-7.spa
dc.relation.referencesMosquera, G. M., Crespo, P., Breuer, L., Feyen, J., y Windhorst, D. (2020). Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge. Hydrological Processes, 34(9), 2032-2047.spa
dc.relation.referencesMosquera, G. M., Marín, F., Stern, M., Bonnesoeur, V., Ochoa-Tocachi, B. F., Román-Dañobeytia, F., y Crespo, P. (2022). Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use. Science of the Total Environment, 804, 150112.spa
dc.relation.referencesMunicipio de Envigado - Instituto de Estudios Ambientales (IDEA) Universidad Nacional de Colombia. Sede Medellín (2014). Estudio hidropedológico (Escala 1:25.000) de las Veredas Perico y Pantanillo - Municipio de Envigado Antioquia.spa
dc.relation.referencesNanzyo M, Dahlgren R, y Shoji S (1993a) Chemical characteristics of volcanic ash soils. In ‘Volcanic ash soils:genesis, properties and utilization’. S Shoji, S., R Dahlgren, R. y Nanzyo, M.( Eds), 153, 166-167. (Elsevier, Amsterdam).spa
dc.relation.referencesNanzyo, M., Dahlgren, R., y Shoji, S. (1993b). Chemical characteristics of volcanic ash soils. In Developments in soil science, 21, 145-187. Elsevier.spa
dc.relation.referencesNational Research Council (2012) Challenges and Opportunities in the Hydrologic Sciences.spa
dc.relation.referencesOMS (2018) «Guias para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda». Ginebraspa
dc.relation.referencesOrtiz, P. (2006). Análisis de las coberturas vegetales en el Municipio de Envigado (Antioquia).spa
dc.relation.referencesOsorio, A., y Bahamon, C. (2008). Dinámica de la humedad del suelo en bosques alto andinos en el páramo de guerrero, Cundinamarca-Colombia (tesis doctoral), Universidad Nacional de Colombia, sede Medellín).spa
dc.relation.referencesPan, B., Xia, L., Lam, S. K., Wang, E., Zhang, Y., Mosier, A., y Chen, D. (2022). A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems & Environment, 327, 107850.spa
dc.relation.referencesParedes, P. M., y Verdugo, A. R. (2004). Génesis y estructura de los suelos alofánicos en Chile. In V Congreso Chileno de Ingeniería Geotécnica. Universidad de Chile.spa
dc.relation.referencesPark, S., Anggraini, T. M., Chung, J., Kang, P. K., y Lee, S. (2021). Microfluidic pore model study of precipitates induced by the pore-scale mixing of an iron sulfate solution with simulated groundwater. Chemosphere, 271, 129857.spa
dc.relation.referencesPerrott KW (1978) Influence of organic-matter extracted from humified clover on properties of amorphous aluminosilicates. 1. Surface charge. Australian Journal of Soil Research 16, 327-339.spa
dc.relation.referencesPertuz-Paz, A., Monsalve, G., Loaiza-Úsuga, JC, Caballero-Acosta, JH, Agudelo-Vélez, LI, y Sidle, RC (2020). Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences, 10 (11), 472.spa
dc.relation.referencesQuintero-Gallego, M. E., Quintero-Angel, M., y Vila-Ortega, J. J. (2018). Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindío. Science of The Total Environment, 634, 1288-1299.spa
dc.relation.referencesQuintero-Gallego, M. E., Quintero-Angel, M., y Vila-Ortega, J. J. (2018). Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindío. Science of The Total Environment, 634, 1288-1299.spa
dc.relation.referencesRahman, M., Frame, JM, Lin, J. y Nearing, GS (2022). Hydrology research articles are becoming more topically diverse. Journal of Hydrology, 614 , 128551.spa
dc.relation.referencesRydberg, J., Lindborg, T., Lidman, F., Tröjbom, M., Berglund, S., Lindborg, E., y Laudon, H. (2023). Ciclo biogeoquímico en un entorno periglacial: un presupuesto de balance de masa de elementos múltiples para una cuenca en el oeste de Groenlandia. CATENA , 231 , 107311.spa
dc.relation.referencesSalazar, S., Ochoa, A. y McCarthy, P. (2023). How the visit of pedologist Hans Jenny to Colombia (1946–1947) contributed to the theory of soil-forming factors. Geoderma , 437 , 116575.spa
dc.relation.referencesSalome, J. P., Amutha, R., Jagannathan, P., Josiah, J. J. M., Berchmans, S. y Yegnaraman, V. (2009). Electrochemical assay of the nitrate and nitrite reductase activities of Rhizobium japonicum. Biosensors and Bioelectronics, 24(12), 3487-3491.spa
dc.relation.referencesSapkota, T. B., Singh, B. y Takele, R. (2022). Improving nitrogen use efficiency and reducing nitrogen surplus through best fertilizer nitrogen management in cereal production: The case of India and China. Advances in Agronomy, 178, 233-294.spa
dc.relation.referencesSchmukat, A., Duester, L., Goryunova, E., Ecker, D., Heininger, P. y Ternes, T. A. (2016). Influence of environmental parameters and of their interactions on the release of metal (loid) s from a construction material in hydraulic engineering. Journal of Hazardous Materials, 304, 58-65.spa
dc.relation.referencesSchwertmann, U., y Taylor, R. (1989). Iron oxides. Minerals in soil environments, 1, 379-438.spa
dc.relation.referencesSeidenfaden, I. K., Sonnenborg, T. O., Børgesen, C. D., Trolle, D., Olesen, J. E. y Refsgaard, J. C. (2022). Impacts of land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties. Science of The Total Environment, 830, 154671.spa
dc.relation.referencesShioiri, M. (1952). Chemical study on sesquioxide of clay fraction in allophanic soil. Study on soil science, 148-155.spa
dc.relation.referencesShoji, S. y Takahashi, T. (2002). Environmental and agricultural significance of volcanic ash soils. Global Environmental Research-English Edition-, 6(2), 113-135.spa
dc.relation.referencesShoji, S., Nanzyo, M., y Dahlgren, R. A. (1994). Volcanic ash soils: genesis, properties and utilization. Elsevier Science (Eds)spa
dc.relation.referencesSidle, R. C., Gomi, T., Loaiza-Usuga, J. C., & Jarihani, B. (2017). Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Science Reviews, 175, 75-96.spa
dc.relation.referencesSilva, T. P., Bressiani, D., Ebling, É. D., y Reichert, J. M. (2023). Best management practices to reduce soil erosion and change water balance components in watersheds under grain and dairy production. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.06.003spa
dc.relation.referencesSim, S. I., & Teow, Y. H. (2023). Integrated Membrane-adsorption system as a sustainable development approach for semiconductor-industry wastewater treatment. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.102spa
dc.relation.referencesSmith, G. D., Wetselaar, R., Fox, J. J., Van de Graaff, R. H., Moeljohardjo, D., Sarwono, J., y Basuki. (1999). The origin and distribution of nitrate in groundwater from village wells in Kotagede, Yogyakarta, Indonesia. Hydrogeology Journal, 7, 576-589.spa
dc.relation.referencesSnoeyink V. L., & Jenkins, D. (2002). Química del Agua (No. 968-18-1608-0. 01-A3 LU. AL-QAG.).spa
dc.relation.referencesSoil Survery Staff (SSS). (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.spa
dc.relation.referencesSoil Survery Staff (SSS). (2014). Keys to soil taxonomy. 12th ed. United States Department of Agriculture (USDA). Natural Resources Conservation Service (NRCS).spa
dc.relation.referencesSparks, D. L. (1995). Environmental soil chemistry. Academic press, INC.spa
dc.relation.referencesSposito, G. (1981). The thermodynamic of the soil solution. Clarendon Press, Oxford. U.K. 223.spa
dc.relation.referencesSposito, G. (1989). The chemestry of soils .Oxford, University Press, N.Y. 277.spa
dc.relation.referencesStevenson, F. J., & Cole, M. A. (1986). Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients John Wiley & Sons. New York.spa
dc.relation.referencesSugimoto, R., Tsuboi, T. y Fujita, M.S. (2019) Comprehensive and quantitative assessment of nitrate dynamics in two contrasting forested basins along the Sea of Japan using dual isotopes of nitrate. Science of The Total Environment, 687, 667-678.spa
dc.relation.referencesSun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F. y Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of The Total Environment, 626, 1394-1401.spa
dc.relation.referencesTakahashi, T., y Dahlgren, R. A. (2016). Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma, 263, 110-121.spa
dc.relation.referencesTani M, Okuten T, Koike M, Kuramochi K, y Kondo R (2004) Nitrate adsorption in some andisols developedunder different moisture conditions. Soil Science and Plant Nutrition 50, 439-446.spa
dc.relation.referencesTaniwaki, R. H., Cassiano, C. C., Fransozi, A. A., Vásquez, K. V., Posada, R. G., Velásquez, G. V., y Ferraz, S. F. (2019). Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica, 74, 1-7.spa
dc.relation.referencesTargulian, V. (1964) The Future of Soil Science. Alfred E. Hartemink. (Eds) Wageningen: IUSS International Union of Soil Sciences.spa
dc.relation.referencesTobón, C., Bruijnzeel, L. A., & Frumau, A. (2004). Physical and hydraulic properties of Tropical Montane Cloud Forest soils and their changes after conversion to pasture. In Proceedings of the Second International Symposium: Science for Conserving and Managing Tropical Montane Cloud Forests, Waimea, Hawaii.spa
dc.relation.referencesTobón, C., Bruijnzeel, L. A., Frumau, K. A. y Calvo-Alvarado, J. C. (2010). Changes in soil physical properties after conversion of tropical montane cloud forest to pasture in northern Costa Rica. Tropical montane cloud forests: Science for conservation and management, 502-515.spa
dc.relation.referencesTsai, C. C., Chen, Z. S., Kao, C. I., Ottner, F., Kao, S. J. y Zehetner, F. (2010). Pedogenic development of volcanic ash soils along a climosequence in Northern Taiwan. Geoderma, 156(1-2), 48-59.spa
dc.relation.referencesUpadhyay, S., Singh, R., Verma, P., & Raghubanshi, A. S. (2021). Spatio-temporal variability in soil CO2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes. Journal of Environmental Management, 295, 113141.spa
dc.relation.referencesUSEPA. (2001). Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals)spa
dc.relation.referencesVacca, A., Adamo, P., Pigna, M., & Violante, P. (2003). Genesis of tephra‐derived soils from the Roccamonfina volcano, south central Italy. Soil Science Society of America Journal, 67(1), 198-207.spa
dc.relation.referencesValenzuela-Diaz, MJ, Navarrete-Calvo, A., Caraballo, MA, McPhee, J., Garcia, A., Correa-Burrows, JP, y Navarro-Valdivia, L. (2020). Hydrogeochemical and environmental water quality standards in the overlap between high mountainous natural protected areas and copper mining activities (Mapocho river upper basin, Santiago, Chile). Journal of Hydrology, 588 , 125063.spa
dc.relation.referencesVanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K. y Castro-Nunez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land use policy, 114, 105981.spa
dc.relation.referencesVilcáez, J. (2020). Reactive transport modeling of produced water disposal into dolomite saline aquifers: Controls of barium transport. Journal of contaminant hydrology, 233, 103600.spa
dc.relation.referencesVillalobos, M., y Antelo, J. (2011). A unified surface stuctural model for ferrihydrite: proton charge, electrolyte binding, and arsenate adsorption. Revista internacional de contaminación ambiental, 27(2), 139-151.spa
dc.relation.referencesWang, S., Chen, J., Zhang, S., Zhang, X., Chen, D. y Zhou, J. (2023). Hydrochemical evolution characteristics, controlling factors, and high nitrate hazards of shallow groundwater in a typical agricultural area of Nansi Lake Basin, North China. Environmental Research, 223, 115430.spa
dc.relation.referencesWang, Y., Lin, J., Wang, F., Tian, Q., Zheng, Y. y Chen, N. (2023). Hydrological connectivity affects nitrogen migration and retention in the land‒river continuum. Journal of Environmental Management, 326, 116816.spa
dc.relation.referencesWang, X., Wells, N. S., Xiao, W., Hamilton, J. L., Jones, A. M. y Collins, R. N. (2023). Abiotic reduction of nitrate to ammonium by iron (oxy)(hydr) oxides and its stable isotope (δ15N, δ18O) dynamics. Geochimica et cosmochimica acta, 347, 28-41.spa
dc.relation.referencesWang, Y., Zhang, Y., Yu, X., Jia, G., Liu, Z., Sun, L. y Zhu, X. (2021). Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecological Indicators, 131, 108196.spa
dc.relation.referencesWatanabe, T., Ueda, S., Nakao, A., Ze, A. M., Dahlgren, R. A., y Funakawa, S. (2023). Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line. Geoderma, 430, 116289.spa
dc.relation.referencesWeerasinghe, V., y Handapangoda, K. (2019). Surface water quality analysis of an urban lake; East Beira, Colombo, Sri Lanka. Environmental Nanotechnology, Monitoring & Management, 12, 100249.spa
dc.relation.referencesWeiner, E.R. (2010). Applications of environmental chemistry: a practical guide for environmental professionals. CRC press, Boca Raton, FL, USAspa
dc.relation.referencesWhite, D.A., Silberstein, R.P., Balocchi-Contreras, F., Quiroga, J.J., Meason, D.F., Palma, J.H., y de Arellano, P.R. (2021). Growth, water use, and water use efficiency of Eucalyptus globulus and Pinus radiata plantations compared with natural stands of Roble-Hualo forest in the coastal mountains of central Chile. For. Ecol. Manage. 501, 119676 https://doi.org/10.1016/j.foreco.2021.119676.spa
dc.relation.referencesWHO, (2006). Guías para la calidad del agua potable. Primer Apéndice a la Tercera Edición. World Health Organization.spa
dc.relation.referencesWiechmann, H., Bohn, H.L., McNeal, B.L. y O'Connor, G.A. (1986). Soil Chemistry. 2. Auflage, 341 S., John Wiley a. Sons, New York, Chichester (1985). Zeitschrift Für Pflanzenernährung Und Bodenkd. 149 (1986) 357–357. doi: https://doi.org/10.1002/jpln.19861490315.spa
dc.relation.referencesWilcke, W., Yasin, S., Valarezo, C., Zech, W. (2001). Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry, 55(1), 45-72.spa
dc.relation.referencesWilliams, M. R., & Filoso, S. (2023). Changes in hydrology and pollutant loads from stream restoration in an urban headwater catchment. Journal of Hydrology, 618, 129164.spa
dc.relation.referencesWorld Health Organization. (2017). Guias para lacalidad del agua de consumo humano: cuarta edición que incorpora la primera adenda. Geneva: WHO.spa
dc.relation.referencesXi, Y., Templeton, E. J., & Salin, E. D. (2010). Rapid simultaneous determination of nitrate and nitrite on a centrifugal microfluidic device. Talanta, 82(4), 1612-1615.spa
dc.relation.referencesXinwei, Z., Yunchao, Z., & Qiulan, F. (2023). Main influencing factors of soil particle distribution in the karst basin. Catena, 224, 107002.spa
dc.relation.referencesXiong, F., Chen, Y., Zhang, S., Xu, Y., Lu, Y., Qu, X., ... & Lin, L. S. (2022). Land use, hydrology, and climate influence water quality of China's largest river. Journal of Environmental Management, 318, 115581.spa
dc.relation.referencesYang, T., Ala, M., Zhang, Y., Wu, J., Wang, A., & Guan, D. (2018). Characteristics of soil moisture under different vegetation coverage in Horqin Sandy Land, northern China. PLoS One, 13(6), e0198805.spa
dc.relation.referencesYi, H., Cui, J., Sun, J., Zhou, X., Ye, T., Gan, S., ... & Xiao, T. (2023). Key drivers regulating arsenic enrichment in shallow groundwater of the Pearl River Delta: Comprehensive analyses of iron, competitive anions, and dissolved organic matter. Applied Geochemistry, 151, 105602.spa
dc.relation.referencesYifru, B. A., Chung, I. M., Kim, M. G., & Chang, S. W. (2021). Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model. Journal of Hydrology: Regional Studies, 37, 100926.spa
dc.relation.referencesYounis, A., Trujillo, Y., Benders, R., y Faaij, A. (2021). Regionalized cost supply potential of bioenergy crops and residues in Colombia: A hybrid statistical balance and land suitability allocation scenario analysis. Biomass and Bioenergy, 150, 106096spa
dc.relation.referencesZAPATA R. (2002). Química de los procesos pedogenéticos. Escuela de Geociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín. Colombia. 358.spa
dc.relation.referencesZapata, R. (2014). Los procesos químicos del suelo. Medellín, Colombia: Editorial Universidad Nacional, 686.spa
dc.relation.referencesZhang, Y., Li, Y., Walker, J.P., Pauwels, V.R. y Shahrban, M. (2015). Towards operational hydrological model calibration using streamflow and soil moisture measurements. In 21st International Congress on Modelling and Simulation. Gold Coast, Australia, 2089-2095.spa
dc.relation.referencesZhang, Z. y Furman, A. (2021). Soil redox dynamics under dynamic hydrologic regimes-A review. Science of The Total Environment, 763, 143026.spa
dc.relation.referencesZhao, F., Wu, Y., Qiu, L., Sivakumar, B., Zhang, F., Sun, Y. y Voinov, A. (2018). Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecological Indicators, 91, 542-554.spa
dc.relation.referencesZhou, H., Rao, K., Yao, M., Xiong, Y., Wang, Y. y Yin, Y. (2022). Effects of land use, meteorology, and hydrology on nutrients, biochemical indexes, and heavy metals in Qingjiang River Basin, China. Journal of Cleaner Production, 370, 133416.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembGeoquímica
dc.subject.lembCalidad del agua
dc.subject.proposalAndisolesspa
dc.subject.proposalFlujos hidrológicosspa
dc.subject.proposalBiogeoquímicaspa
dc.subject.proposalPotencial redoxspa
dc.subject.proposalHydrological flowseng
dc.subject.proposalAndisolseng
dc.subject.proposalBiogeochemistryeng
dc.subject.proposalRedox potentialeng
dc.subject.proposalAndean mountaineng
dc.subject.proposalAndean Mountainspa
dc.subject.wikidataAndisol
dc.subject.wikidataRedox
dc.titleDinámica geoquímica en andisoles alto andinos, caso de estudio, la microcuenca Las Palmasspa
dc.title.translatedGeochemical dynamic in high andean Andisols, case study, Las Palmas microbasineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094248827.2023.pdf
Tamaño:
2.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería- Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: