Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct

dc.contributor.advisorVaca González, Juan Jairo
dc.contributor.advisorGarzón-Alvarado, Diego Alexander
dc.contributor.authorQuevedo Blandón, Lis Angélica
dc.date.accessioned2024-08-02T13:35:36Z
dc.date.available2024-08-02T13:35:36Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractNowadays, there is no consensus about the range of electrical parameters that should be used when applying them to three-dimensional muscle constructs, this variability presents a huge difficulty in recreating and comparing results between the studies. Electrical stimulation (ES) has been used in muscle tissue as a technique to replace electric potentials and preserve muscular tissue functions, on the other hand, human-based three-dimensional cell culture methods have appeared to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscles. Therefore, determining the optimal electrical parameters for use in a muscle construct is essential for ensuring correct experimental models. One way to achieve this is the use of theoretical and computational models, which are cost-efficient tools such as the finite elements method. This work presents a combined computational and experimental approach to better understand the physiology of skeletal muscle and its response to electrical stimulation under healthy and diseased conditions. To achieve this first the electrical properties of the three-dimensional tissues (electrical conductivity and permittivity) were obtained using electrochemical spectroscopy impedance, and then a multi-physical computational model was developed and validated in a patient-derived functional three-dimensional skeletal muscle model. The computational model calculates the intensity of the electric field in the domains of interest and the displacement of the biomaterial. Experimentally, was measured the calcium flux signals. In general, the evaluation of electrical stimulation in skeletal muscle tissues is a useful tool that can contribute to the current knowledge of the pathophysiological process and therapies focused on the function of these tissues.eng
dc.description.abstractLa contracción del músculo esquelético que se produce durante el movimiento se imita con la aplicación de estimulación eléctrica (EE) in vitro. La EE se ha utilizado en el tejido muscular como una técnica útil para reemplazar los potenciales eléctricos y preservar las funciones del tejido muscular. Los métodos de cultivo celular tridimensionales de origen humano aparecen como un enfoque novedoso para acelerar la investigación al mejorar la reproducción de procesos fisiopatológicos en el músculo con la aplicación de estímulos físicos como la EE. Sin embargo, determinar los parámetros eléctricos óptimos a usar es esencial. El uso de modelos teóricos y computacionales son herramientas rentables, específicamente el método de elementos finitos es una de las opciones más precisas. Este trabajo presenta un enfoque computacional y experimental para comprender la fisiología del músculo esquelético y su respuesta a la EE en condiciones de salud y enfermedad. Las propiedades eléctricas del modelo fueron medidas con impedancia de espectroscopía electroquímica y de la literatura, luego con esta información se desarrolló y validó un modelo computacional multifísico sobre un modelo 3D de músculo esquelético. El modelo computacional calculó la intensidad del campo eléctrico en los dominios de interés, además, se cuantificó cómo respondían al desplazamiento EE del biomaterial. El cultivo in vitro de la enfermedad presentó flujo de calcio, pero no desplazamiento. En general, la evaluación de las EE en tejidos del músculo esquelético es una herramienta útil que puede contribuir al conocimiento actual del proceso fisiopatológico y de las terapias enfocadas a la función de estos tejidos (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.technicalinfoCOMSOL Multiphysics software version 5.4eng
dc.format.extentxiii, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86687
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesMonebhurrun V. IEEE Standard 211-2018: IEEE Standard Definitions of Terms for Radio Wave Propagation [Stand on Standards]. IEEE Antennas Propag Mag. 2019 Jun;61(3):126–126.spa
dc.relation.referencesBraslavsky SE. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry. 2007 Jan 1;79(3):293–465.spa
dc.relation.referencesDavid M, Feldman Y, Ben Ishai P. Dielectric spectroscopy and techniques. In: Non-Destructive Material Characterization Methods. Elsevier; 2024. p. 587–619spa
dc.relation.referencesHook JR, & HHE. Solid state physic. John Wiley & Sons. 2013.spa
dc.relation.referencesHuray PG. Maxwell’s equations. John Wiley & Sons. 2009.spa
dc.relation.referencesArchie GE. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME. 1942 Dec 1;146(01):54–62.spa
dc.relation.referencesLasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer New York; 2014.spa
dc.relation.referencesPonce FA. Electrostimulation. In: Encyclopedia of the Neurological Sciences. Elsevier; 2014. p. 1110–1.spa
dc.relation.referencesTasu JP, Vesselle G, Herpe G, Richer JP, Boucecbi S, Vélasco S, et al. Irreversible electroporation for locally advanced pancreatic cancer. Diagn Interv Imaging. 2016 Dec;97(12):1297–304.spa
dc.relation.referencesIanowski JP, O’Donnell MJ. Electrochemical gradients for Na+, K+,Cl– and H+ across the apical membrane in Malpighian (renal) tubule cells of Rhodnius prolixus. Journal of Experimental Biology. 2006 May 15;209(10):1964–75.spa
dc.relation.referencesArfken GB, Griffing DF, Kelly DC, Priest J. ELECTRIC FIELD AND GAUSS’ LAW. In: University Physics. Elsevier; 1984. p. 490–513.spa
dc.relation.referencesGinn C, Patel B, Walker R. Existing and emerging applications for the neuromodulation of nerve activity through targeted delivery of electric stimuli. International Journal of Neuroscience. 2019 Oct 3;129(10):1013–23.spa
dc.relation.referencesMarquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020 Dec 24;19(1):34.spa
dc.relation.referencesLou F, Chen D. Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry. 2015 Sep;24(5):559–86.spa
dc.relation.referencesShiraishi S. Electric Double Layer Capacitors. In: Carbon Alloys. Elsevier; 2003. p. 447–57.spa
dc.relation.referencesMcCuller C, Jessu R, Callahan AL. Physiology, Skeletal Muscle. In StatPearls; 2024 [cited 2024 Apr 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537139/spa
dc.relation.referencesDao TT, Tho MCHB. A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations. Appl Bionics Biomech. 2018 Dec 6;2018:1–17.spa
dc.relation.referencesChiego DJ, Avery JK. Principios de histología y embriología bucal con orientación clínica. In: 5th edition. Madrid, Spain: Elsevier Mosby; 2007 [cited 2023 Dec 23]. Available from: https://www.berri.es/pdf/PRINCIPIOS%20DE%20HISTOLOGIA%20Y%20EMBRIOLOGIA%20BUCAL/9788413820231spa
dc.relation.referencesDissertations OD, Russell RP. Retinoic Acid Receptor Signaling During Paraxial Mesoderm Differentiation of Pluripotent Stem Cells [Internet]. 2018. Available from: https://opencommons.uconn.edu/dissertationsspa
dc.relation.referencesD. Dave H, Shook M, Varacallo M. Anatomy, Skeletal Muscle. StatPearls Publishing [Internet]. 2023 Aug 28 [cited 2023 Dec 27]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK537236/spa
dc.relation.referencesLamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.spa
dc.relation.referencesOregon State University. Skeletal Muscle.spa
dc.relation.referencesE. Hall J, Guyton AC. Tratado de Fisiología médica. 11th edition. Barcelona, España: Elseiver; 2011.spa
dc.relation.referencesPham S, Puckett Y. StatPearls. 2023 [cited 2023 Nov 23]. Physiology, Skeletal Muscle Contraction. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559006/#:~:text=Skeletal%20muscle%20contraction%20begins%20first,channels%20of%20the%20presynaptic%20membrane.spa
dc.relation.referencesBravo-Sagua R, Parra V, Muñoz-Cordova F, Sanchez-Aguilera P, Garrido V, Contreras-Ferrat A, et al. Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. Int Rev Cell Mol Biol. 2020;350:197–264.spa
dc.relation.referencesBarrett KE, Ganong WF. Fisiología Médica: 24a edición. 24th ed. Ciudad de México, México: McGraw-Hill Interamericana; 2013.spa
dc.relation.referencesVesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. Elife [Internet]. 2022 May 23 [cited 2024 Apr 23];11. Available from: https://elifesciences.org/articles/77204spa
dc.relation.referencesShiels HA. DESIGN AND PHYSIOLOGY OF THE HEART | Cardiac Excitation–Contraction Coupling: Routes of Cellular Calcium Flux. In: Encyclopedia of Fish Physiology. Manchester, UK: Elsevier; 2011. p. 1045–53.spa
dc.relation.referencesRosero D, Moreno F. Aspectos histológicos y moleculares del tendón como matriz extracelular extramuscular. Salutem Scientia Spiritus [Internet]. 2016 [cited 2023 Nov 23];2(1):26–39. Available from: https://www.researchgate.net/publication/304782689_Aspectos_histologicos_y_moleculares_del_tendon_como_matriz_extracelular_extramuscularspa
dc.relation.referencesOzimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews [Internet]. 2021 Apr 2 [cited 2023 Oct 23];96(2):716–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33269537/spa
dc.relation.referencesBird TD. Myotonic Dystrophy Type 1. In: GeneReviews [Internet]. University of Washington, Seattle; : GeneReviews®; 1999 [cited 2023 Oct 23]. p. 1993–2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1165/spa
dc.relation.referencesMuscular Dystrophy Association (MDA). Myotonic Dystrophy (DM) - Medical Management [Internet]. [cited 2023 Sep 21]. Available from: https://www.mda.org/disease/myotonic-dystrophy/medical-managementspa
dc.relation.referencesSmith CA, Gutmann L. Myotonic Dystrophy Type 1 Management and Therapeutics. Curr Treat Options Neurol [Internet]. 2016 Dec 8 [cited 2023 Sep 23];18(12):52. Available from: https://link.springer.com/article/10.1007/s11940-016-0434-1spa
dc.relation.referencesTurner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry [Internet]. 2010 Apr 1 [cited 2023 Aug 23];81(4):358–67. Available from: https://pubmed.ncbi.nlm.nih.gov/20176601/spa
dc.relation.referencesBird TD. Myotonic Dystrophy Type 1. 1993.spa
dc.relation.referencesFoff EP, Mahadevan MS. Therapeutics development in myotonic dystrophy type 1. Muscle Nerve [Internet]. 2011 Aug 23 [cited 2023 Sep 23];44(2):160–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mus.22090spa
dc.relation.referencesUdd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol [Internet]. 2012 Oct [cited 2023 Aug 23];11(10):891–905. Available from: https://pubmed.ncbi.nlm.nih.gov/22995693/spa
dc.relation.referencesFernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).spa
dc.relation.referencesOkano T, Matsuda T. Tissue Engineered Skeletal Muscle: Preparation of Highly Dense, Highly Oriented Hybrid Muscular Tissues. Cell Transplant [Internet]. 1998 Jan 22 [cited 2023 Nov 23];7(1):71–82. Available from: https://pubmed.ncbi.nlm.nih.gov/9489765/spa
dc.relation.referencesVandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology [Internet]. 1988 Mar [cited 2023 Oct 23];24(3):166–74. Available from: https://pubmed.ncbi.nlm.nih.gov/3350785/spa
dc.relation.referencesFernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, et al. Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication. 2021 Jul 1;13(3):035035.spa
dc.relation.referencesMadden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife [Internet]. 2015 Jan 9 [cited 2023 Aug 23];4. Available from: https://pubmed.ncbi.nlm.nih.gov/25575180/spa
dc.relation.referencesMaffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, et al. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep. 2018 Apr;23(3):899–908.spa
dc.relation.referencesShahriyari M, Islam MR, Sakib SM, Rinn M, Rika A, Krüger D, et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle. 2022 Dec 18;13(6):3106–21.spa
dc.relation.referencesSerena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N. Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integrative Biology. 2010;2(4):193.spa
dc.relation.referencesEbrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, et al. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021 Sep;132:227–44.spa
dc.relation.referencesNguyen CT, Ebrahimi M, Gilbert PM, Stewart BA. Electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues. American Journal of Physiology-Cell Physiology. 2021 Oct 1;321(4):C749–59.spa
dc.relation.referencesVandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB Journal. 2009 Oct;23(10):3325–34.spa
dc.relation.referencesFernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.spa
dc.relation.referencesRose N, Estrada Chavez B, Sonam S, Nguyen T, Grenci G, Bigot A, et al. Bioengineering a miniaturized in vitro 3D myotube contraction monitoring chip to model muscular dystrophies. Biomaterials. 2023 Feb;293:121935.spa
dc.relation.referencesAfshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife. 2019 May 14;8.spa
dc.relation.referencesFaustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, et al. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell. 2020 Feb;26(2):172-186.e6.spa
dc.relation.referencesCarraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol. 2022 Jul 11;10.spa
dc.relation.referencesCudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.spa
dc.relation.referencesChisari C, Bertolucci F, Dalise S, Rossi B. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in Myotonic Dystrophy: a pilot study. J Neuroeng Rehabil. 2013;10(1):94.spa
dc.relation.referencesLeone E, Pandyan A, Rogers A, Kulshrestha R, Hill J, Philp F. Effectiveness of conservative non-pharmacological interventions in people with muscular dystrophies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023 Dec 12;jnnp-2023-331988.spa
dc.relation.referencesCudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.spa
dc.relation.referencesBultot L, Jensen TE, Lai YC, Madsen ALB, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2016 Oct 1;311(4):E706–19.spa
dc.relation.referencesEsposito F, Cè E, Rampichini S, Limonta E, Venturelli M, Monti E, et al. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscular Disorders. 2016 Jan;26(1):60–72.spa
dc.relation.referencesMagar HS, Hassan RYA, Mulchandani A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors. 2021 Oct 1;21(19):6578.spa
dc.relation.referencesLazanas ACh, Prodromidis MI. Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au. 2023 Jun 21;3(3):162–93.spa
dc.relation.referencesMetrohm AG [Internet]. 2023 [cited 2023 Jul 23]. Application note AN-EIS-001 electrochemical impedance spectroscopy. Available from: https://www.metrohm.com/content/metrohm/en_us/applications/application-notes/autolab-applikationen-anautolab/an-eis-001.download.pdfspa
dc.relation.referencesCheng J, Yu P, Huang Y, Zhang G, Lu C, Jiang X. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture. 2022 Sep 22;12(10):1525.spa
dc.relation.referencesAkay M, Miklavcic D, Pavselj N, Hart F. Electric properties of tissues. In: Wiley-Interscience, editor. Wiley Encyclopedia of biomedical engineering [Internet]. Hoboken, New Jersey; 2006 [cited 2024 Apr 24]. Available from: https://www.novocontrol.de/pdf_s/Accuracy_of_Measurements.pdfspa
dc.relation.referencesKwon H, Nagy JA, Taylor R, Rutkove SB, Sanchez B. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues. Phys Med Biol. 2017 Nov 1;62(22):8616–33.spa
dc.relation.referencesMazzoleni AP, Sisken BF, Kahler RL. Conductivity values of tissue culture medium from 20°C to 40°C. Bioelectromagnetics. 1986 Jan 19;7(1):95–9.spa
dc.relation.referencesPark S, Zhang Y, Wang TH, Yang S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip. 2011;11(17):2893.spa
dc.relation.referencesSimon MG. Microfluidic Tools for Stem Cell Biology [Internet]. University of California; 2014 [cited 2024 Apr 23]. 1–118 p. Available from: https://escholarship.org/content/qt5fx1z5q3/qt5fx1z5q3_noSplash_dadbea65bc236a51e3842f2baf17bcda.pdfspa
dc.relation.referencesHuang Y, Wang XB, Becker FF, Gascoyne PR. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997 Aug;73(2):1118–29.spa
dc.relation.referencesDeivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani A Bin, Mohamed MA, et al. A correlation of conductivity medium and bioparticle viability on dielectrophoresis‐based biomedical applications. Electrophoresis. 2023 Mar 16;44(5–6):573–620.spa
dc.relation.referencesPan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens Bioelectron. 2019 Apr;130:344–51.spa
dc.relation.referencesGabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 2009 Aug 21;54(16):4863–78.spa
dc.relation.referencesCarbone F, Mazzulla A, Ciuchi F, Scaramuzza N. Dielectric relaxation in non-polar nematic liquid crystal devices. The European Physical Journal Plus. 2015 Jul 29;130(7):151.spa
dc.relation.referencesNobre MAL, Lanfredi S. Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater Lett. 2001 Feb;47(6):362–6.spa
dc.relation.referencesPervaiz E, Gul IH. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J Magn Magn Mater. 2012 Nov;324(22):3695–703.spa
dc.relation.referencesJoshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull. 2017 Sep;93:63–73.spa
dc.relation.referencesFanari F, Iacob C, Carboni G, Desogus F, Grosso M, Wilhelm M. Broadband Dielectric Spectroscopy (BDS) investigation of molecular relaxations in durum wheat dough at low temperatures and their relationship with rheological properties. LWT. 2022 May;161:113345.spa
dc.relation.referencesMei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.spa
dc.relation.referencesChoi W, Shin HC, Kim JM, Choi JY, Yoon WS. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology. 2020 Feb 29;11(1):1–13.spa
dc.relation.referencesMei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.spa
dc.relation.referencesVaca González JJ, Escobar Huertas JF, Garzón Alvarado DA. The effect of frequency in the electrical stimulation of chondrocytes. Visión electrónica. 2020 Jan 31;14(1):6–18.spa
dc.relation.referencesZhadobov M, Augustine R, Sauleau R, Alekseev S, Di Paola A, Le Quément C, et al. Complex permittivity of representative biological solutions in the 2–67 GHz range. Bioelectromagnetics. 2012 May 19;33(4):346–55.spa
dc.relation.referencesTsai HF, Cheng JY, Chang HF, Yamamoto T, Shen AQ. Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Sci Rep. 2016 May 19;6(1):26222.spa
dc.relation.referencesAisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020 May 27;5(7):539–51.spa
dc.relation.referencesKangasmaa O, Laakso I. Estimation method for the anisotropic electrical conductivity of in vivo human muscles and fat between 10 kHz and 1 MHz. Phys Med Biol. 2022 Nov 21;67(22):225002.spa
dc.relation.referencesQiu Y, Liu X, Zhu Y, Jiang D, Li F, Yu W, et al. Vertical impedance electrode array for spatiotemporal dynamics monitoring of 3D cells under drug diffusion effect. iScience. 2023 Dec;26(12):107962.spa
dc.relation.referencesScarlat AI. Animal-free matrix for organoids culturing [Internet]. Utretch University; 2023 [cited 2024 Apr 24]. Available from: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/43842/AdrianScarlat_Thesis_0559121.pdf?sequence=1spa
dc.relation.referencesSchaumburg G, Wilmer D. Novocontrol Technologies. 2018. p. 1 Improving the Accuracy of Dielectric Measurements. Novocontrol Technologies.spa
dc.relation.referencesHughes MP. Understanding the Dielectric Constant in Organic Photovoltaic Materials . [Santa Barbara, California]; 2019.spa
dc.relation.referencesVeal BW, Baldo PM, Paulikas AP, Eastman JA. Understanding Artifacts in Impedance Spectroscopy. J Electrochem Soc. 2015 Nov 22;162(1):H47–57.spa
dc.relation.referencesPSTrace5. User manual version 5.9. In 2021 [cited 2024 Apr 24]. Available from: https://idm-instrumentos.es/wp-content/uploads/2019/04/PSTrace-5.9-Manual.pdfspa
dc.relation.referencesLe Floch P, Molinari N, Nan K, Zhang S, Kozinsky B, Suo Z, et al. Fundamental Limits to the Electrochemical Impedance Stability of Dielectric Elastomers in Bioelectronics. Nano Lett. 2020 Jan 8;20(1):224–33.spa
dc.relation.referencesKyle AH, Chan CTO, Minchinton AI. Characterization of Three-Dimensional Tissue Cultures Using Electrical Impedance Spectroscopy. Biophys J [Internet]. 1999 May [cited 2024 Jan 24];76(5):2640–8. Available from: https://www.thermofisher.com/co/en/home/technical-resources/media-formulation.178.htmlspa
dc.relation.referencesMetrohm AG. Electrochemical Impedance Spectroscopy (EIS) Part 5 – Parameter Estimation. [Internet]. 2019 [cited 2024 Apr 24]. Available from: https://metrohm.com/en/applications/application-notes/autolab-applikationen-anautolab/an-eis-005.htmlspa
dc.relation.referencesMERCK. 1X Phosphate-Buffered Saline (PBS) Recipe Calculator [Internet]. [cited 2024 Apr 24]. Available from: https://www.sigmaaldrich.com/CO/es/support/calculators-and-apps/1x-phosphate-buffered-saline?&msclkid=fddcbad4b34114984ba7de5d51e08ade&utm_source=bing&utm_medium=cpc&utm_campaign=all%20product_dsa_WW_(bing%20ebizpfs)&utm_term=product%20&utm_content=all%2spa
dc.relation.referencesThermoFisher. 61965 - DMEM, high glucose, GlutaMAX(TM).spa
dc.relation.referencesZhang Y, Le Friec A, Chen M. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm. 2021 Sep;606:120841.spa
dc.relation.referencesDokos S. Modelling organs, tissues, cells and devices using MATLAB and Comsol Multiphysics. First Edition. Berlin, Germany: Springer Berlin; 2017.spa
dc.relation.referencesTeklemariam A. A finite element approach to study skeletal muscle tissue [Internet]. [Manchester]: Manchester Metropolitan University; 2016 [cited 2024 Jan 24]. Available from: https://e-space.mmu.ac.uk/617509/1/PhD_Thesis_Aron_Teklemariam.pdfspa
dc.relation.referencesRöhrle O, Davidson JB, Pullan AJ. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function. Front Physiol. 2012;3.spa
dc.relation.referencesHernández-Gascón B, Grasa J, Calvo B, Rodríguez JF. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J Theor Biol. 2013 Oct;335:108–18.spa
dc.relation.referencesBöl M, Weikert R, Weichert C. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed Mater. 2011 Oct;4(7):1299–310.spa
dc.relation.referencesRöhrle O, Davidson JB, Pullan AJ. Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle. SIAM Journal on Scientific Computing. 2008 Jan;30(6):2882–904.spa
dc.relation.referencesvon Wegner F, Schurmann S, Fink R, Vogel M, Friedrich O. Motor Protein Function in Skeletal Muscle—A Multiple Scale Approach to Contractility. IEEE Trans Med Imaging. 2009 Oct;28(10):1632–42.spa
dc.relation.referencesLamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.spa
dc.relation.referencesStefanati M, Villa C, Torrente Y, Rodriguez Matas JF. A mathematical model of healthy and dystrophic skeletal muscle biomechanics. J Mech Phys Solids. 2020 Jan;134:103747.spa
dc.relation.referencesShamoon D. Multiscale and Multiphysics analysis of the deformation of cellular arrangements under an electric-field excitation : application to electroporation [Internet]. Université de Bretagne occidentale ; 2020 [cited 2023 Apr 24]. Available from: https://theses.hal.science/tel-03274239/documentspa
dc.relation.referencesNagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2011;11(3):513–7.spa
dc.relation.referencesJo B, Morimoto Y, Takeuchi S. Skeletal muscle‐adipose cocultured tissue fabricated using cell‐laden microfibers and a hydrogel sheet. Biotechnol Bioeng. 2022 Feb 23;119(2):636–43.spa
dc.relation.referencesCapel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, et al. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol. 2019 Feb 14;7.spa
dc.relation.referencesNagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C 2 C 12 myotubes embedded in a fibrin gel. Biotechnol Bioeng. 2010 Apr 15;105(6):1161–7.spa
dc.relation.referencesNagamine K, otani S, Takeda M, Kanzaki M, Nishizawa M. Hydrogel-supported skeletal muscle cell-based bioassay system. In: 2011 International Symposium on Micro-NanoMechatronics and Human Science. IEEE; 2011. p. 180–5.spa
dc.relation.referencesFleming JW, Capel AJ, Rimington RP, Player DJ, Stolzing A, Lewis MP. Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins. Cytoskeleton. 2019 Jun 19;76(6):371–82.spa
dc.relation.referencesZhang C, Shi J, Wang W, Xi N, Wang Y, Liu L. Fabrication and Characterization of Muscle Rings Using Circular Mould and Rotary Electrical Stimulation for Bio-Syncretic Robots. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019. p. 4825–30.spa
dc.relation.referencesSato M, Ito A, Kawabe Y, Nagamori E, Kamihira M. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng. 2011 Sep;112(3):273–8.spa
dc.relation.referencesWang J, Zhang X, Park J, Park I, Kilicarslan E, Kim Y, et al. Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines. Advanced Intelligent Systems. 2021 May 29;3(5).spa
dc.relation.referencesElhebeary M, Emon MAB, Aydin O, Saif MTA. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. Lab Chip. 2019;19(7):1153–61.spa
dc.relation.referencesGarcía-Lizarribar A, Villasante A, Lopez-Martin JA, Flandez M, Soler-Vázquez MC, Serra D, et al. 3D Bioprinted Functional Skeletal Muscle Models Have Potential Applications for Studies of Cancer Cachexia. SSRN Electronic Journal. 2022spa
dc.relation.referencesFernández‐Costa JM, Ortega MA, Rodríguez‐Comas J, Lopez‐Muñoz G, Yeste J, Mangas‐Florencio L, et al. Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro. Adv Mater Technol. 2023 Apr 23;8(7).spa
dc.relation.referencesLivermore C, Voldman J. MIT. 2004 [cited 2024 Apr 24]. Material Property Database . Available from: https://www.mit.edu/~6.777/matprops/pdms.htmspa
dc.relation.referencesIzdihar K, Abdul Razak HR, Supion N, Karim MKA, Osman NH, Norkhairunnisa M. Structural, Mechanical, and Dielectric Properties of Polydimethylsiloxane and Silicone Elastomer for the Fabrication of Clinical-Grade Kidney Phantom. Applied Sciences. 2021 Jan 27;11(3):1172.spa
dc.relation.referencesMüller A, Wapler MC, Wallrabe U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter. 2019;15(4):779–84.spa
dc.relation.referencesFukushima J, Tsubaki S, Matsuzawa T, Kashimura K, Mitani T, Namioka T, et al. Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating. Materials. 2018 Jan 22;11(1):169.spa
dc.relation.referencesRavikumar K, Palanivelu K, Ravichandran K. Dielectric Properties of Natural Rubber Composites filled with Graphite. Mater Today Proc. 2019;16:1338–43.spa
dc.relation.referencesBoylan J. 2023. [cited 2024 Apr 24]. Properties: Carbon - graphite materials . Available from: https://www.azom.com/properties.aspx?ArticleID=516spa
dc.relation.referencesChen S. Dielectric constant measurement of P3HT, polystyrene, and polyethylene. [Groningen, Netherlands]spa
dc.relation.referencesQi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, et al. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Appl Mater Interfaces. 2011 Aug 24;3(8):3130–3.spa
dc.relation.referencesOral I, Guzel H, Ahmetli G. Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method. Polymer Bulletin. 2011 Dec 8;67(9):1893–906.spa
dc.relation.referencesModulus of elasticity and Poisson’s coefficient of polymeric materials [Internet]. [cited 2024 Apr 24]. Available from: https://www.sonelastic.com/en/fundamentals/tables-of-materials-properties/polymers.htmlspa
dc.relation.referencesGadonna K, Leroy O, Leprince P, Alves LL, Boisse-Laporte C. Study of Gas Heating by a Microwave Plasma Torch. Journal of Modern Physics. 2012;03(10):1603–15.spa
dc.relation.referencesSeran E, Godefroy M, Pili E, Michielsen N, Bondiguel S. What we can learn from measurements of air electric conductivity in 222 Rn‐rich atmosphere. Earth and Space Science. 2017 Feb 23;4(2):91–106.spa
dc.relation.referencesSoofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.spa
dc.relation.referencesGuz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.spa
dc.relation.referencesCOMSOL. Stress and Equations of Motion [Internet]. Multiphysics ciclopedia. 2018 [cited 2024 Apr 24]. Available from: https://www.comsol.com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202spa
dc.relation.referencesCOMSOL documentation. Linear Elastic Material [Internet]. [cited 2024 Mar 24]. Available from: https://doc.comsol.com/5.4/doc/com.comsol.help.sme/sme_ug_solid.07.06.htmlspa
dc.relation.referencesCOMSOL documentation. Hyperelastic Material Models [Internet]. [cited 2024 Feb 24]. Available from: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.28.htmlspa
dc.relation.referencesCOMSOL. Introduction to MEMS Module [Internet]. 2018 [cited 2024 Jan 24]. Available from: https://doc.comsol.com//5.4/doc/com.comsol.help.mems/IntroductionToMEMSModule.pdfspa
dc.relation.referencesTejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication. 2023 Oct 1;15(4):045024.spa
dc.relation.referencesPavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 2015 Jul 2;5(1):11800.spa
dc.relation.referencesGuz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.spa
dc.relation.referencesSoofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.spa
dc.relation.referencesŠmerc R, Ramirez DA, Mahnič-Kalamiza S, Dermol-Černe J, Sigg DC, Mattison LM, et al. A Multiscale Computational Model of Skeletal Muscle Electroporation Validated Using In Situ Porcine Experiments. IEEE Trans Biomed Eng. 2023 Jun;70(6):1826–37.spa
dc.relation.referencesTorii R, Velliou RI, Hodgson D, Mudera V. Modelling multi-scale cell–tissue interaction of tissue-engineered muscle constructs. J Tissue Eng. 2018 Jan 13;9:204173141878714.spa
dc.relation.referencesCarter S, Solomon TPJ. In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch. 2019 Mar 5;471(3):413–29.spa
dc.relation.referencesAbati E, Sclarandi E, Comi G Pietro, Parente V, Corti S. Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci. 2021 Sep 6;22(17):9630.spa
dc.relation.referencesMondragon-Gonzalez R, Perlingeiro RCR. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 iPS cells: a tool for disease modeling and drug discovery. Dis Model Mech. 2018 Jan 1;spa
dc.relation.referencesKawada R, Jonouchi T, Kagita A, Sato M, Hotta A, Sakurai H. Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs. Sci Rep. 2023 Jan 11;13(1):94.spa
dc.relation.referencesLudovic A, Micaela PE, Magdalena M, Audrey B, Damily DDD, Naïra N, et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech. 2017 Jan 1;spa
dc.relation.referencesOzimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews. 2021 Apr 2;96(2):716–30.spa
dc.relation.referencesCulligan KG, Ohlendieck K. Abnormal Calcium Handling in Muscular Dystrophy . Basic Appl Myol [Internet]. 2002 [cited 2024 Apr 24];12(4):147–57. Available from: http://www.bio.unipd.it/bam/PDF/12-4/02491Culligan.pdfspa
dc.relation.referencesMareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol. 2021 Apr 9;12.spa
dc.relation.referencesFernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).spa
dc.relation.referencesAgrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip. 2017;17(20):3447–61.spa
dc.relation.referencesShoji J, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ‐on‐Chip Research. Adv Healthc Mater. 2023 Aug 7spa
dc.relation.referencesFarhang Doost N, Srivastava SK. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors (Basel). 2024 May 1;14(5):225.spa
dc.relation.referencesChameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, et al. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci. 2019 Sep 16;99(3):375–403.spa
dc.relation.referencesMa H, Xing F, Yu P, Xu J, Wu X, Luo R, et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: Current status and future perspectives. Mater Des. 2023 Jan;225:111591.spa
dc.relation.referencesSung B. In silico modeling of endocrine organ-on-a-chip systems. Math Biosci. 2022 Oct;352:108900.spa
dc.relation.referencesFernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.spa
dc.relation.referencesKodzius R, Schulze F, Gao X, Schneider MR. Organ-on-Chip Technology: Current State and Future Developments. Genes (Basel). 2017 Oct 11;8(10):266.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsCélulas Musculares
dc.subject.decsMuscle Cells
dc.subject.decsEstimulación Eléctrica
dc.subject.decsElectric Stimulation
dc.subject.decsTécnicas de Cultivo Tridimensional de Células
dc.subject.decsCell Culture Techniques, Three Dimensional
dc.subject.proposalEstimulación eléctricaspa
dc.subject.proposalmodelo computacionalspa
dc.subject.proposaltejido muscular esqueléticospa
dc.subject.proposaldistrofia miotónica tipo 1spa
dc.subject.proposalingeniería de tejidosspa
dc.subject.proposalElectric stimulationeng
dc.subject.proposalcomputational modeleng
dc.subject.proposalskeletal muscle tissueeng
dc.subject.proposaldystrophy myotonic type Ieng
dc.subject.proposaltissue engineeringeng
dc.titleComputational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional constructeng
dc.title.translatedModelo computacional de la distribución de campo eléctrico dentro de un dispositivo muscle-on-a-chip utilizado para estimular células musculares encapsuladas en un constructo tridimensionalspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1122138389.2024.pdf
Tamaño:
6.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica.

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: