Relación entre las respuestas espectrales y la fertilización con nitrógeno y potasio en el cultivo de palma de aceite (Híbrido OxG)

dc.contributor.advisorMartínez Martínez, Luis Joel
dc.contributor.advisorTorres León, Jorge Luis
dc.contributor.authorMontero Espinosa, Jhon Eder
dc.date.accessioned2022-03-17T15:14:49Z
dc.date.available2022-03-17T15:14:49Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa presente investigación se realizó en la plantación Guaicaramo ubicada en el municipio de Cabuyaro departamento del Meta, con el objetivo de determinar la relación entre las respuestas espectrales y el contenido nitrógeno y potasio en el cultivo de palma de aceite (Híbrido OxG, Coarí x LaMé). Se utilizó un diseño completamente al azar, con seis tratamientos de diferentes dosis de nitrógeno y potasio. Se efectuaron 3 muestreos, para cada uno se muestrearon siete palmas por tratamiento para un total de 42 palmas por muestreo y de cada palma se analizaron los datos de 6 foliolos. En cada uno de los muestreos se tomaron fotografías aéreas con UAV y una cámara multiespectral MicaSense de 5 bandas (rojo, azul, verde, RedEdge y NIR); se realizaron análisis de contenidos foliares en laboratorio; se midió la reflectancia de 6 foliolos por palma con el espectroradiómetro FieldSpect4 y para el segundo muestreo se realizó un análisis edáfico. Se encontró que, a menor contenido de nitrógeno foliar, la reflectancia en el rango visible fue mayor; por otra parte, las mediciones de la reflectancia con el espectroradiómetro para el primer muestreo tuvieron la mayor cantidad de índices con correlaciones significativas para el nitrógeno foliar, destacando el índice de vegetación Datt, como el de mejor desempeño en estas pruebas. Para potasio y fósforo foliar, en ninguno de los tres muestreos se presentó correlaciones mayores a 0.5 entre los índices espectrales y la concentración de potasio y fósforo foliar. Para la construcción de los modelos PLSR la longitud de onda de mayor influencia, fue cercana a los 718 nm, donde el modelo generado para nitrógeno puede ser usado para realizar predicciones cuantitativas. Por otra parte, se encontró que las correlaciones para los índices espectrales y el contenido de Nitrógeno a partir de las fotografías aéreas fueron mejores que las obtenidas a partir de las mediciones de reflectancia con el espectroradiómetro para los tres muestreos. (Texto tomado de la fuente)spa
dc.description.abstractThe present investigation was carried out in the Guaicaramo plantation located in the municipality of Cabuyaro department of Meta, with the objective of determining the relationship between the spectral responses and the nitrogen and potassium content in the oil palm cultivation (Hybrid OxG, Coarí x LaMé) for non-destructive nutritional diagnostic purposes. For the above, a completely randomized design was used, with six treatments of different doses of nitrogen and potassium. 3 samplings were carried out, for each one seven palms were sampled per treatment for a total of 42 palms per sample and from each palm the data of 6 leaflets were analyzed. In each of the samplings aerial photographs were taken with UAV integrating the MicaSense multispectral camera with 5 bands (red, blue, green, RedEdge and NIR); leaf content analyzes were carried out in the laboratory; The reflectance of 6 leaflets was measured with the FieldSpect4 spectroradiometer; edaphic analysis where done for the second sampling. It was found that for a lower nitrogen content, the reflectance was greater in the visible range; Based on the reflectance measurements with the spectroradiometer, for the first sampling the highest number of indices with significant correlations for foliar nitrogen were obtained, highlighting the Datt vegetation index, as the one with the best performance in these tests; for potassium and foliar phosphorus, in none of the three samplings there were correlations greater than 0.5 between the spectral indices from reflectance measurements with the spectroradiometer and the concentration of potassium and foliar phosphorus; for the construction of the PLSR models, the wavelength of greatest influence is close to 718 nm, where the model generated for nitrogen can make quantitative predictions; It was found that the correlations for the spectral indices and the Nitrogen content from the aerial photographs were better than those obtained from the reflectance measurements with the spectroradiometer for the three samplings.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxv, 215 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81270
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAhamed, T., Tian, L., Zhang, Y., & Ting, K. C. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and Bioenergy, 35(7), 2455–2469. https://doi.org/10.1016/j.biombioe.2011.02.028spa
dc.relation.referencesAmmawath, W., Man, Y. B. C., Rahman, R. B. A., & Baharin, B. S. (2006). A Fourier Transform Infrared Spectroscopic Method for Determining Butylated Hydroxytoluene in Palm Olein and Palm Oil. Spectroscopy, 83(3), 187–191.spa
dc.relation.referencesApan, A., Held, A., Phinn, S., & Markley, J. (2004). Detecting sugarcane “orange rust” disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote Sensing, 25(2), 489–498. https://doi.org/10.1080/01431160310001618031spa
dc.relation.referencesASDinc. (2012). Chemometrics Training Manual. June.spa
dc.relation.referencesAtaga, D. O. (1978). Soil phosphorus status and response of oil palm to phosphate on some acid soils. Nigerian Inst. For Oil Palm Research, 5, 25– 36.spa
dc.relation.referencesBagchi, T. B., Sharma, S., & Chattopadhyay, K. (2016). Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry, 191, 21–27. https://doi.org/10.1016/j.foodchem.2015.05.038spa
dc.relation.referencesBalasundram, siva k, Memarian, H., & Khosla, R. (2013). Estimating Oil Palm Yields using Vegetation Indices Derived from Quickbird. Life Science Journal, 10(4).spa
dc.relation.referencesBlackburn, G. A. (1998). Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3), 273–285. https://doi.org/10.1016/S00344257(98)00059-5spa
dc.relation.referencesBoochs, F., Kupfer, G., Dockter, K., & Kuhbaüch, W. (1990). Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing, 11(10), 1741–1753. https://doi.org/10.1080/01431169008955127spa
dc.relation.referencesBotero Herrera, J. M., Parra Sánchez, L. N., & Cabrera Torres, K. R. (2009). Determinación del nivel de nutrición foliar en banano por espectrometría de reflectancia. Revista Facultad Nacional de Agronomía Medellín, 62(2), 5089– 5098. https://doi.org/https://revistas.unal.edu.co/index.php/refame/article/view/2491 9spa
dc.relation.referencesBroge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172. https://doi.org/10.1016/S0034-4257(00)00197-8spa
dc.relation.referencesBuchanan, G. M., Butchart, S. H. M., Dutson, G., Pilgrim, J. D., Steininger, M. K., Bishop, K. D., & Mayaux, P. (2008). Using remote sensing to inform conservation status assessment: Estimates of recent deforestation rates on New Britain and the impacts upon endemic birds. Biological Conservation, 141(1), 56–66. https://doi.org/10.1016/j.biocon.2007.08.023spa
dc.relation.referencesCamo Software SA. (2006). The Unscrambler Methods. 288.spa
dc.relation.referencesCarter, G.A., Dell, T. R., & Cibula, W. G. (1996). Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States. Can. J. Forest Res., 26, 402–407.spa
dc.relation.referencesCarter, Gregory A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15(3), 517–520. https://doi.org/10.1080/01431169408954109spa
dc.relation.referencesCastaño Vidriales, J. L. (1991). Espectrometria Derivada En Quimica Clinica. Revista de La Sociedad Espanola de Quimica Clinica, 10(5), 347–359.spa
dc.relation.referencesCastro Franco, H. E. (1998). Fundamentos para el conocimiento y manejo de suelos agrícolas. Manual técnico.spa
dc.relation.referencesChappelle, E. W., Kim, M. S., & McMurtrey, J. E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39(3), 239–247. https://doi.org/10.1016/0034-4257(92)90089-3spa
dc.relation.referencesChe Man, Y. B., & Mirghani, M. E. S. (2000). Rapid method for determining moisture content in crude palm oil by Fourier transform infrared spectroscopy. Journal of the American Oil Chemists’ Society, 77(6), 631–637. https://doi.org/10.1007/s11746-000-0102-9spa
dc.relation.referencesChen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229– 242. https://doi.org/10.1080/07038992.1996.10855178spa
dc.relation.referencesCho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193. https://doi.org/10.1016/j.rse.2005.12.011spa
dc.relation.referencesChong, K. L., Kanniah, K. D., Pohl, C., & Tan, K. P. (2017). A review of remote sensing applications for oil palm studies. Geo-Spatial Information Science, 20(2), 184–200. https://doi.org/10.1080/10095020.2017.1337317spa
dc.relation.referencesClarke, T. R., Moran, M. S., Barnes, E. M., Pinter, P. J., & Qi, J. (2001). Planar domain indices: A method for measuring a quality of a single component in two-component pixels. International Geoscience and Remote Sensing Symposium (IGARSS), 3(C), 1279–1281. https://doi.org/10.1109/igarss.2001.976818spa
dc.relation.referencesCloutis, E. A., Connery, D. R., Dover, F. J., & Major, D. J. (1996). Airborne multispectral monitoring of agricultural crop status: Effect of time of year, crop type and crop condition parameter. International Journal of Remote Sensing, 17(13), 2579–2601. https://doi.org/10.1080/01431169608949094spa
dc.relation.referencesCozzolino, D., & Moron, A. (2004). Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Animal Feed Science and Technology, 111(1–4), 161–173. https://doi.org/10.1016/j.anifeedsci.2003.08.001spa
dc.relation.referencesCrespo Gonzalez, J. J., Ruiz Villadiego, O. S., & Ospino Villalba, K. S. (2020). Determinación de nitrógeno foliar en palma de aceite con espectroscopía en el infrarrojo medio (mir) y cercano (nir) por el método de regresión de mínimos cuadrados parciales de componentes principales (pls). Revista de Investigación Agraria y Ambiental, 11(2), 43–57. https://doi.org/10.22490/21456453.3206spa
dc.relation.referencesCurran, P. J., Dungan, J. L., Macler, B. A., & Plummer, S. E. (1991). The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sensing of Environment, 35(1), 69–76. https://doi.org/10.1016/0034-4257(91)90066-Fspa
dc.relation.referencesDash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413. https://doi.org/10.1080/0143116042000274015spa
dc.relation.referencesDatt, B. (1999). Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741– 2759. https://doi.org/10.1080/014311699211778spa
dc.relation.referencesDatt, Bisun. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111–121. https://doi.org/10.1016/S0034-4257(98)000467spa
dc.relation.referencesDaughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. https://doi.org/10.1016/S0034-4257(00)00113-9spa
dc.relation.referencesEitel, J. U. H., Long, D. S., Gessler, P. E., & Smith, A. M. S. (2007). Using in-situ measurements to evaluate the new RapidEye TM satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190. https://doi.org/10.1080/01431160701422213spa
dc.relation.referencesElvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1), 38–48. https://doi.org/10.1016/0034-4257(95)00132-Kspa
dc.relation.referencesEscadafal, R., Belghith, A., & Ben Moussa, H. (1994a). Indices spectraux pour la dégradation des milieux naturels en Tunisie aride. 6ème Symp. Int. Mesures Physiques et Signatures En Télédétection, ISPRS-CNES, 253–259.spa
dc.relation.referencesEscadafal, R., Belghith, A., & Ben Moussa, H. (1994b). Indices spectraux pour la dégradation des milieux naturels en Tunisie aride. 6ème Symp. Int. Mesures Physiques et Signatures En Télédétection, ISPRS-CNES, 253– 259.spa
dc.relation.referencesFilella, I., & Peñuelas, J. (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 15(7), 1459–1470. https://doi.org/10.1080/01431169408954177spa
dc.relation.referencesFoody, G. M., Cutler, M. E., Mcmorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. A. N. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data ESTIMATION AND MAPPING. 379–387.spa
dc.relation.referencesFrampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83– 92. https://doi.org/10.1016/j.isprsjprs.2013.04.007spa
dc.relation.referencesGalvão, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94(4), 523–534. https://doi.org/10.1016/j.rse.2004.11.012spa
dc.relation.referencesGamon, J., Nuelas, J. P., & Field, C. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44. https://doi.org/10.1088/0305-4470/24/13/001spa
dc.relation.referencesGandia, S., Fernández, G., García, J. C., & Moreno, J. (2004). Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaing. European Space Agency, (Special Publication) ESA SP, 578, 40– 48.spa
dc.relation.referencesGao, B.-C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.spa
dc.relation.referencesGarrity, S. R., Eitel, J. U. H., & Vierling, L. A. (2011). Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sensing of Environment, 115(2), 628–635. https://doi.org/10.1016/j.rse.2010.10.007spa
dc.relation.referencesGitelson, A. A, & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 1812(July 2015), 2691–2697. https://doi.org/10.1080/014311697217558spa
dc.relation.referencesGitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology, B: Biology, 22(3), 247– 252. https://doi.org/10.1016/1011-1344(93)06963-4spa
dc.relation.referencesGitelson, Anatoly A., Buschmann, C., & Lichtenthaler, H. K. (1999). The chlorophyll fluorescence ratio F735F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment, 69(3), 296– 302. https://doi.org/10.1016/S0034-4257(99)00023-1spa
dc.relation.referencesGitelson, Anatoly A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887spa
dc.relation.referencesGitelson, Anatoly A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S00344257(96)00072-7spa
dc.relation.referencesGitelson, Anatoly A., Keydan, G. P., & Merzlyak, M. N. (2006). Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33(11), 2–6. https://doi.org/10.1029/2006GL026457spa
dc.relation.referencesGitelson, Anatoly A., Peng, Y., & Huemmrich, K. F. (2014). Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250m resolution data. Remote Sensing of Environment, 147, 108– 120. https://doi.org/10.1016/j.rse.2014.02.014spa
dc.relation.referencesGitelson, Anatoly A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), n/a-n/a. https://doi.org/10.1029/2002gl016450spa
dc.relation.referencesGuyot, G., & Frederic, B. (1988). Utilisation de la Haute Resolution Spectrale pour Suivre L’etat des Couverts Vegetaux. Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing Aussios, France, 18-22 January 1988, 287, 279.spa
dc.relation.referencesHaboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013spa
dc.relation.referencesHaboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. https://doi.org/10.1016/S00344257(02)00018-4spa
dc.relation.referencesHe, L., Zhang, H. Y., Zhang, Y. S., Song, X., Feng, W., Kang, G. Z., Wang, C. Y., & Guo, T. C. (2016). Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73, 170–185. https://doi.org/10.1016/j.eja.2015.11.017spa
dc.relation.referencesHenrich, V., Krauss, G., Götze, C., & Sandow, C. (2011). The IndexDatabase.spa
dc.relation.referencesHernández-Clemente, R., Navarro-Cerrillo, R. M., Suárez, L., Morales, F., & Zarco-Tejada, P. J. (2011). Assessing structural effects on PRI for stress detection in conifer forests. Remote Sensing of Environment, 115(9), 2360– 2375. https://doi.org/10.1016/j.rse.2011.04.036spa
dc.relation.referencesHernández-Clemente, R., Navarro-Cerrillo, R. M., & Zarco-Tejada, P. J. (2012). Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sensing of Environment, 127, 298–315. https://doi.org/10.1016/j.rse.2012.09.014spa
dc.relation.referencesHruschka, E. (2001). Data analysis: wavelength selection methods. Chapter 3. Near Infrared Technology in Agriculture and Food Industries, 2nd Edn (Eds P. Williams \& K. Norris), 39–160.spa
dc.relation.referencesHuete, A. (1998). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(0), 295–309.spa
dc.relation.referencesHuete, A. R., Liu, H. Q., Batchily, K., & VanLeeuwen, W. (1997). A comparison of vegetation indices global set of TM images for EOS–MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/doi:10.1016/s00344257(96)00112-5spa
dc.relation.referencesHunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., & Akhmedov, B. (2012). A visible band index for remote sensing leaf chlorophyll content at the Canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21(1), 103–112. https://doi.org/10.1016/j.jag.2012.07.020spa
dc.relation.referencesHunt, E. R., & Rock, B. N. (1989). Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sensing of Environment, 30(1), 43–54. https://doi.org/10.1016/0034-4257(89)90046-1spa
dc.relation.referencesInfrasoft International. (2005). WinISI III Manual.spa
dc.relation.referencesJames, H., Nawi, N. M., Wan, W. I., Mohamed, A., Juva, V., & Arulandoo, X. (2017). Application of Spectroscopy for Nutrient Prediction of Oil Palm. Journal of Experimental Agriculture International, 15(3), 1–9. https://doi.org/10.9734/JEAI/2017/31502spa
dc.relation.referencesJensen, J. R., & Lulla, K. (1987). Introductory digital image processing: A remote sensing perspective. In Geocarto International (Vol. 2, Issue 1). https://doi.org/10.1080/10106048709354084 Jspa
dc.relation.referencesJordan, C. F. (1969). Derivation of leaf-area index from quality of light on forest floor. Ecology, 50(4), 663–666. https://doi.org/10.1155/2012/651039spa
dc.relation.referencesKim, Moon S., Dougtry, C. S. ., Chappelle, E., Mcmurtrey, J. ., & Walthall, C. . (1993). The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (Apar). 299–306.spa
dc.relation.referencesKim, Moon Sung. (1994). The use of narrow spectral bands for improving remote sensing estimations of fractionally absorbed photosynthetically active radiation (fapar). 75.spa
dc.relation.referencesKokaly, Raymond, I., & Clark, R. N. (1999). Spectroscopic Determination of Leaf Biochemistry: Use of Normalized Band-Depths and Laboratory Measurements and Possible Extension to Remote Sensing Measurements. Remote Sensing of Environment, 67, 267–287. http://aviris.jpl.nasa.gov/proceedings/workshops/98_docs/30.pdfspa
dc.relation.referencesLamb, D. W., Steyn-ross, M., Schaares, P., Hanna, M. M., Silvester, W., & SteynRoss, A. (2002). Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. International Journal of Remote Sensing, 23(18), 3619–3648. https://doi.org/10.1080/01431160110114529spa
dc.relation.referencesLe Maire, G., François, C., & Dufrêne, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28. https://doi.org/10.1016/j.rse.2003.09.004spa
dc.relation.referencesle Maire, Guerric, François, C., Soudani, K., Berveiller, D., Pontailler, J. Y., Bréda, N., Genet, H., Davi, H., & Dufrêne, E. (2008). Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment, 112(10), 3846–3864. https://doi.org/10.1016/j.rse.2008.06.005spa
dc.relation.referencesLevin, N., Kidron, G. J., & Ben-Dor, E. (2007). Surface properties of stabilizing coastal dunes: Combining spectral and field analyses. Sedimentology, 54(4), 771–788. https://doi.org/10.1111/j.1365-3091.2007.00859.xspa
dc.relation.referencesLiaghat, S., Ehsani, R., Mansor, S., & Helmi, Z. M. (2014). International Journal of Remote Early detection of basal stem rot disease ( Ganoderma ) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. June, 37–41. https://doi.org/10.1080/01431161.2014.903353spa
dc.relation.referencesLiang, S. (2004). Quantitative remote sensing for land surface characterization.spa
dc.relation.referencesLichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Miehé, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148(5), 599–612. https://doi.org/10.1016/S0176-1617(96)80081-2spa
dc.relation.referencesLobell, D. B., Asner, G. P., Law, B. E., & Treuhaft, R. N. (2001). Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. Journal of Geophysical Research Atmospheres, 106(D6), 5151–5160. https://doi.org/10.1029/2000JD900739spa
dc.relation.referencesMaccioni, A., Agati, G., & Mazzinghi, P. (2001). New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 61(1–2), 52–61. https://doi.org/10.1016/S1011-1344(01)00145-2spa
dc.relation.referencesMarten, G., Shenk, J., & Barton, F. (1989). Near infrared reflectance spectroscopy (NIRS): Analysis of forage quality. Agriculture Handbook No. 63, 643, 1–110.spa
dc.relation.referencesMartens, H., & Næs, T. (1984). Multivariate Calibration. Chemometrics, 147–156. https://doi.org/10.1007/978-94-017-1026-8_5spa
dc.relation.referencesMartínez, L. J. (2017). Relationship between crop nutritional status , spectral measurements and Sentinel 2 images Relación entre el estado nutricional de los cultivos , las mediciones espectrales y las imágenes Sentinel 2. 35(2), 205–215. https://doi.org/10.15446/agron.colomb.v35n2.62857spa
dc.relation.referencesMcMorrow, J. (2001). Linear regression modelling for the estimation of oil palm age from Landsat TM. International Journal of Remote Sensing, 22(12), 2243–2264. https://doi.org/10.1080/01431160117188spa
dc.relation.referencesMcMurtrey, J. E., Chappelle, E. W., Kim, M. S., Meisinger, J. J., & Corp, L. A. (1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sensing of Environment, 47(1), 36–44. https://doi.org/10.1016/0034- 4257(94)90125-2spa
dc.relation.referencesMerzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non- destructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum, 106(1), 135–141.spa
dc.relation.referencesMetternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855–2877. https://doi.org/10.1080/01431160210163074spa
dc.relation.referencesMiller, J. R., Hare, E. W., & Wu, J. (1990). Quantitative characterization of the vegetation red edge reflectance 1. An inverted-gaussian reflectance model. International Journal of Remote Sensing, 11(10), 1755–1773. https://doi.org/10.1080/01431169008955128spa
dc.relation.referencesMirik, M., Michels, G. J., Kassymzhanova-Mirik, S., & Elliott, N. C. (2007). Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57(2), 123–134. https://doi.org/10.1016/j.compag.2007.03.002spa
dc.relation.referencesMulyadi, T., Hariyandi, Sudradjat, & Kustiyo. (2017). Nitrogen Content and Carbon Stock Prediction in Oil Palm using Satellite Image Analysis. 05(04), 677–683.spa
dc.relation.referencesMunévar, F. (2001). Palmas. Revista Palmas, 22(4), 9–17. https://publicaciones.fedepalma.org/index.php/palmas/article/view/888spa
dc.relation.referencesMunevar, F., Franco, P., & Arias, N. (2008). Guía general para el muestreo foliar y de suelos en palma de aceite (Issue 37).spa
dc.relation.referencesNagler, P. L., Inoue, Y., Glenn, E. P., Russ, A. L., & Daughtry, C. S. T. (2003). Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sensing of Environment, 87(2–3), 310–325. https://doi.org/10.1016/j.rse.2003.06.001spa
dc.relation.referencesNg, P. H. C., Totok, S., S.H., T., & K.J., G. (2013). Remote Sensing and Digital Technologies for Plantation Management. 34, 259–279.spa
dc.relation.referencesNg, S. (2002). Nutrition and nutrient management of oil palm-New thrust for the future perspective. … of Potassium in India New Delhi. International Potash …, 415–429. http://www.ipipotash.org/udocs/Nutrition and Nutrient Management of the Oil Palm.pdfspa
dc.relation.referencesNooni, I. K., Duker, A. A., Van Duren, I., Addae-Wireko, L., & Osei Jnr, E. M. (2014). Support vector machine to map oil palm in a heterogeneous environment. International Journal of Remote Sensing, 35(13), 4778–4794. https://doi.org/10.1080/01431161.2014.930201spa
dc.relation.referencesOllagnier, M., Ochis, R., & Martin, G. (1970). El abonamiento de la palma de aceite en el mundo. Fertilite, 36, 30–61.spa
dc.relation.referencesOppelt, N., & Mauser, W. (2004). Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. International Journal of Remote Sensing, 25(1), 145–159. https://doi.org/10.1080/0143116031000115300spa
dc.relation.referencesOsco, L. P., Junior, J. M., Ramos, A. P. M., Furuya, D. E. G., Santana, D. C., Teodoro, L. P. R., Gonçalves, W. N., Baio, F. H. R., Pistori, H., Junior, C. A. da S., & Teodoro, P. E. (2020). Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sensing, 12(19), 1–17. https://doi.org/10.3390/rs12193237spa
dc.relation.referencesOwen, E. (1992). Fertilización de la palma africana (Elaeis Guineensis Jacq.) en Colombia. Palmas, 13(2), 39–64. http://www.embase.com/search/results?subaction=viewrecord&from=export&i d=L127279692spa
dc.relation.referencesPapeş, M., Tupayachi, R., Martínez, P., Peterson, A. T., & Powell, G. V. N. (2010). Using hyperspectral satellite imagery for regional inventories: A test with tropical emergent trees in the Amazon Basin. Journal of Vegetation Science, 21(2), 342–354. https://doi.org/10.1111/j.1654-1103.2009.01147.xspa
dc.relation.referencesPeng, Y., Nguy-Robertson, A., Arkebauer, T., & Gitelson, A. A. (2017). Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030226spa
dc.relation.referencesPenuelas, J., Frederic, B., & Filella, I. (1995). Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica, 31, 221–230.spa
dc.relation.referencesPeñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48(2), 135– 146. https://doi.org/10.1016/0034-4257(94)90136-8spa
dc.relation.referencesPeñuelas, J., Piñol, J., Ogaya, R., & Filella, I. (1997). International Journal of Remote Estimation of plant water concentration by the reflectance Water Index WI ( R900 / R970 ). International Journal of Remote, 18(13), 2869– 2875.spa
dc.relation.referencesPereda, J. (2016). Calibración para determinar composición proximal de la quinua (Chenopodium quinoa W.) usando la espectroscopía de transmitancia en el infrarrojo cercano. Universidad Nacional Agraria La Molina.spa
dc.relation.referencesPerry, C. R., & Lautenschlager, L. F. (1984). Functional equivalence of spectral vegetation indices. Remote Sensing of Environment, 14(1–3), 169–182. https://doi.org/10.1016/0034-4257(84)90013-0spa
dc.relation.referencesPu, R., Gong, P., & Yu, Q. (2008). Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors, 8(6), 3744–3766. https://doi.org/10.3390/s8063744spa
dc.relation.referencesQi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1spa
dc.relation.referencesRao, N. R., Garg, P. K., & Ghosh, S. K. (2007). Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precision Agriculture, 8(4–5), 173–185. https://doi.org/10.1007/s11119-007-9037-xspa
dc.relation.referencesRendana, M., Abdul, S., Lihan, T., Mohd, W., & Ali, Z. (2015). A Review of Methods for Detecting Nutrient Stress of Oil Palm in Malaysia. J. Appl. Environ. Biol. Sci. Journal of Applied Environmental and Biological Sciences, 5(6), 60–64. www.textroad.comspa
dc.relation.referencesRey, L., Ayala, I., Gómez, P., & Ruiz, R. (2006a). Selección de palmas élite en plantaciones comerciales. Boletín Técnico, 20, 30.spa
dc.relation.referencesRey, L., Ayala, I., Gómez, P., & Ruiz, R. (2006b). Selección de palmas élite en plantaciones comerciales. Boletín Técnico, 20, 30.spa
dc.relation.referencesReyniers, M., & Vrindts, E. (2006). Measuring wheat nitrogen status from space and ground-based platform. International Journal of Remote Sensing, 27(3), 549–567. https://doi.org/10.1080/01431160500117907spa
dc.relation.referencesRondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7spa
dc.relation.referencesRoujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384. https://doi.org/10.1016/0034-4257(94)00114-3spa
dc.relation.referencesSantana, D. C., Cotrim, M. F., Flores, M. S., Rojo Baio, F. H., Shiratsuchi, L. S., Silva Junior, C. A. da, Teodoro, L. P. R., & Teodoro, P. E. (2021). UAV-based multispectral sensor to measure variations in corn as a function of nitrogen topdressing. Remote Sensing Applications: Society and Environment, 23(April), 100534. https://doi.org/10.1016/j.rsase.2021.100534spa
dc.relation.referencesSchlemmera, M., Gitelson, A., Schepersa, J., Fergusona, R., Peng, Y., Shanahana, J., & Rundquist, D. (2013). Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. International Journal of Applied Earth Observation and Geoinformation, 25(1), 47–54. https://doi.org/10.1016/j.jag.2013.04.003spa
dc.relation.referencesSelvaraja, S., Balasundram, S. K., Vadamalai, G., & Husni, M. H. A. (2013). Use of spectral reflectance to discriminate between potassium deficiency and orange spotting symptoms in oil palm (Elaeis guineensis). Life Science Journal, 10(4), 947–951.spa
dc.relation.referencesSerrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data. Remote Sensing of Environment, 81(2–3), 355–364. https://doi.org/10.1016/s00344257(02)00011-1spa
dc.relation.referencesShafri, H. Z. M., & Hamdan, N. (2011). Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. 32(8), 2095– 2115. https://doi.org/10.1080/01431161003662928spa
dc.relation.referencesShapiro, A. S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality ( Complete Samples ) Published by : Biometrika Trust Stable URL : http://www.jstor.org/stable/2333709. Biometrika, 52(3/4), 591–611.spa
dc.relation.referencesSims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-Xspa
dc.relation.referencesSmith, R. C. G., Adams, J., Stephens, D. J., & Hick, P. T. (1995). Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research, 46(1), 113–125. https://doi.org/10.1071/AR9950113spa
dc.relation.referencesTamburini, E., Ferrari, G., Marchetti, M. G., Pedrini, P., & Ferro, S. (2015). Development of FT-NIR models for the simultaneous estimation of chlorophyll and nitrogen content in fresh apple (Malus Domestica) leaves. Sensors (Switzerland), 15(2), 2662–2679. https://doi.org/10.3390/s150202662spa
dc.relation.referencesTeoh, K. C., & Chew, P. S. (1980). Fertiliser responses of oil palm on coastal clay soils in Peninsular Malaysia. Conference on Soil Science and Agricultural Development in Malaysia. Kuala Lumpur (Malaysia). 12-14 May 1980.spa
dc.relation.referencesThenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Wiegand and Richardson, † International Center for Agricultural Research in the Dry Areas 1990), natural vegetation (Friedl et al., 1994), and in (ICARDA). Environ, 71(99), 158–182.spa
dc.relation.referencesThenkabail, P. S., Smith, R. B., & De Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68(6), 607–621.spa
dc.relation.referencesTucker, C. J., Elgin, J. H., McMurtrey, J. E., & Fan, C. J. (1979). Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing of Environment, 8(3), 237–248. https://doi.org/10.1016/0034-4257(79)90004-Xspa
dc.relation.referencesTucker, Compton J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0spa
dc.relation.referencesVincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9(5), 303–319. https://doi.org/10.1007/s11119-008-9075-zspa
dc.relation.referencesVincini, Massimo, & Frazzi, E. (2006). Angular dependence of maize and sugar beet VIs from directional CHRIS/Proba data. Cuore, January, 5–9.spa
dc.relation.referencesVogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563–1575. https://doi.org/10.1080/01431169308953986spa
dc.relation.referencesWang, F., Huang, J., Tang, Y., & Wang, X. (2007). New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Science, 14(3), 195– 203. https://doi.org/10.1016/s1672-6308(07)60027-4spa
dc.relation.referencesWilliams, P. C., & Sobering, D. C. (1996). How do we do it: a brief summary of the methods we use in developing near infrared calibrations. Near Infrared Spectroscopy: The Future Waves, 185–188.spa
dc.relation.referencesWitt, C., Fairhurst, T., & Griffiths, W. (2005). Key Principles of Crop and Nutrient Management in Oil Palm. Better Crops, 89(3), 27–31. http://www.oilpalm.net/ppiweb/bcrops.nsf/$webindex/DF49AA8010785C14852570490074C 097/$file/05-3p27.pdfspa
dc.relation.referencesWu. (2014). The Generalized Difference Vegetation Index (GDVI) for dryland characterization. Remote Sensing, 6(2), 1211–1233. https://doi.org/10.3390/rs6021211spa
dc.relation.referencesWu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005spa
dc.relation.referencesWu, C., Niu, Z., Tang, Q., Huang, W., Rivard, B., & Feng, J. (2009). Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agricultural and Forest Meteorology, 149(6–7), 1015– 1021. https://doi.org/10.1016/j.agrformet.2008.12.007spa
dc.relation.referencesZarco-Tejada, P. J., González-Dugo, V., Williams, L. E., Suárez, L., Berni, J. A. J., Goldhamer, D., & Fereres, E. (2013). A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sensing of Environment, 138, 38–50. https://doi.org/10.1016/j.rse.2013.07.024spa
dc.relation.referencesZarco-Tejada, P. J., Pushnik, J. C., Dobrowski, S., & Ustin, S. L. (2003). Steadystate chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment, 84(2), 283–294. https://doi.org/10.1016/S0034-4257(02)00113-Xspa
dc.relation.referencesZarco-Tejada, Pablo J., & Miller, J. R. (1999). Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. Journal of Geophysical Research Atmospheres, 104(D22), 27921–27933. https://doi.org/10.1029/1999JD900161spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocuriElaeis guineensis
dc.subject.agrovocuriRadiómetros
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalPalma de aceitespa
dc.subject.proposalNitrógenospa
dc.subject.proposalPotasiospa
dc.subject.proposalÍndices espectralesspa
dc.subject.proposalPLSRspa
dc.subject.proposalUAVspa
dc.subject.proposalEspectrorradiómetrospa
dc.subject.proposalOil palmeng
dc.subject.proposalNitrogeneng
dc.subject.proposalPotassiumeng
dc.subject.proposalSpectral indiceseng
dc.subject.proposalPLSReng
dc.subject.proposalUAVeng
dc.subject.proposalspectroradiometereng
dc.titleRelación entre las respuestas espectrales y la fertilización con nitrógeno y potasio en el cultivo de palma de aceite (Híbrido OxG)spa
dc.title.translatedRelationship between spectral responses and nitrogen and potassium fertilization in oil palm crop (OxG hybrid)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCenipalmaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS_MAESTRIA_GEOMATICA_JHON_MONTERO.pdf
Tamaño:
9.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: