Numerical computation of the acoustic radiation force exerted by a standing wave on an object immersed in a fluid by using a Lattice Boltzmann method for waves
dc.contributor.advisor | Muñoz Castaño, José Daniel | spa |
dc.contributor.advisor | Malgaretti, Paolo | spa |
dc.contributor.author | Castro Ávila, Esteban | spa |
dc.contributor.orcid | Castro-Avila, Esteban [0009-0000-7867-2710] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Esteban-Castro-Avila | spa |
dc.contributor.researchgroup | Simulación de Sistemas Físicos | spa |
dc.date.accessioned | 2024-04-15T20:38:25Z | |
dc.date.available | 2024-04-15T20:38:25Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | The present work introduces a numerical procedure to compute the acoustic radiation force produced by standing waves on a compressible object immersed in an inviscid fluid. Instead of simulating the fluid mechanics equations directly, the proposal uses a Lattice Boltzmann model for waves to compute the first-order perturbations of the pressure and velocity fields, and it use them to compute the second-order acoustic radiation force on each surface element of the object, and it employs an interpolation scheme with kernel to increase the accuracy. The computed force can later be used to integrate the object’s motion by using molecular dynamics. The method is implemented in the LB3D lattice Boltzmann simulation software and in a self-developed C++ code, and it is employed to integrate the total force on a sphere and a disk, respectively. The results reproduce with good accuracy the theoretical expressions by Gor’kov and Wei for the sphere and the disk, respectively, even with a modest number of Lattice-Botzmann cells. In addition, the force computed in the 2D case, when coupled to a molecular dynamics integration scheme, reproduces the motion of the disk to the standing wave nodes, when the disk is denser than the surrounding medium. The proposed procedure shows to be a promising tool for simulating phenomena where the acoustic radiation force plays a relevant role, like acoustic tweezers and the acoustic manipulation of microswimmers, with applications in medicine, biology, pharmaceutic industry and hydraulic engineering. | eng |
dc.description.abstract | El presente trabajo introduce un procedimiento numérico para calcular la fuerza de radiación acústica producida por ondas estacionarias sobre un objeto comprimible sumergido en un fluido no viscoso. En lugar de simular directamente las ecuaciones de la mecánica de fluidos, la propuesta utiliza un modelo Lattice Boltzmann para ondas para calcular las perturbaciones de primer orden de los campos de presión y velocidad, y las utiliza para calcular la fuerza de radiación acústica de segundo orden sobre cada elemento de la superficie del objeto, empleando un esquema de interpolación con kernel para aumentar la precisión. La fuerza calculada se puede utilizar posteriormente para integrar el movimiento del objeto mediante dinámica molecular. El método se implementa en el software de simulación Lattice Boltzmann LB3D y en un código C++ de desarrollo propio, y se emplea para integrar la fuerza total sobre una esfera y un disco, respectivamente. Los resultados reproducen con buena precisión las expresiones teóricas de Gor’kov y Wei para la esfera y el disco, respectivamente, incluso con un número modesto de celdas de Lattice-Botzmann. Adicionalmente, la fuerza calculada en el caso 2D, cuando se combina con un esquema de integración de dinámica molecular, reproduce el movimiento del disco hacia los nodos de la onda estacionaria, cuando el disco es más denso que el medio circundante. El procedimiento propuesto se muestra como una herramienta prometedora para simular fenómenos donde la fuerza de la radiación acústica juega un papel relevante, como las pinzas acústicas y la manipulación acústica de micronadadores, con aplicaciones en medicina, biología, industria farmacéutica e ingeniería hidráulica. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.format.extent | ix, 104 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85917 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | Andrade, M. A. B.; P´erez, N.; Adamowski, J. C. Brazilian Journal of Physics 2018, 48, 190–213. | spa |
dc.relation.references | Mohanty, S.; Khalil, I. S. M.; Sarthak Misra1, 2. The royal society 2020, 476, DOI:10.1098/rspa.2020.0621. | spa |
dc.relation.references | Ahmed, D.; Sukhov, A.; Hauri, D.; Rodrigue, D.; Maranta, G.; Harting, J.; Nelson, B. J. Nat Mach Intell 2021, 3, 116–124. | spa |
dc.relation.references | Shi, J.; Ahmed, D.; Mao, X.; Lin, S.-C. S.; Lawit, A.; Huang, T. J. Lab Chip 2009,9, 2890–2895. | spa |
dc.relation.references | Marzo, A.; Seah, S. A.; et. al., B. W. D. NATURE COMMUNICATIONS 2015, 6, DOI: 10.1038/ncomms9661. | spa |
dc.relation.references | Ozcelik, A.; Rufo, J.; et. al., F. G. Nature Methods 2018, 15, 1021–1028 | spa |
dc.relation.references | Ghanem, M. A.; Maxwell, A. D.; Wang, Y.-N.; Cunitz, B. W.; Khokhlova, V. A.; Sapozhnikov, O. A.; Bailey, M. R. Proceedings of the National Academy of Sciences 2020, 117, 16848–16855 | spa |
dc.relation.references | Ashkin, A. Phys. Rev. Lett. 1970, 24, 156–159 | spa |
dc.relation.references | King, L. V. Proc. R. Soc. Lond. A 1934, 147, 212–240 | spa |
dc.relation.references | King, L. V. Proc. R. Soc. Lond. A 1935, 153, 1–16 | spa |
dc.relation.references | Gor’kov, L. P. SOVIET PHYSICS- DOKLADY 1962, 6, 773–776 | spa |
dc.relation.references | Wu, J.; Du, G. J. Acoust. Soc. Am. 1990, 87, 997–1003 | spa |
dc.relation.references | Wei Wei, D. B. T.; Marston, P. L. The Journal of the Acoustical Society of America 2004, 116, 201–208 | spa |
dc.relation.references | Bruus, H., Theoretical microfuidics, 3rd ed.; Lecture notes from Department of Micro and Nanotechnology, Technical University of Denmark: 2006; Vol. 6. | spa |
dc.relation.references | Bruus, H. Lab Chip 2011, 11, 3742–3751 | spa |
dc.relation.references | Bruus, H. Lab Chip 2012, 12, 20–28 | spa |
dc.relation.references | Bruus, H. Lab Chip 2012, 12, 1014–1021 | spa |
dc.relation.references | Medina-Sánchez, M.; Schmidt, O. G. Nature 2017, 545, 406–408 | spa |
dc.relation.references | Purcell, E. M. Am. J. Phys 1977, 45, DOI: 10.1119/1.10903 | spa |
dc.relation.references | Lauga, E. The Royal Society of Chemistry 2011, 7, 3060–3065 | spa |
dc.relation.references | Zhang, Z.; Sukhov, A.; Harting, J.; Malgaretti, P.; Ahmed, D. nature communications 2022, 13, DOI: 10.1038/s41467-022-35078-8 | spa |
dc.relation.references | Prasianakis, N. I.; Karlin, I. V. Phys. Rev. E 2008, 78, 016704 | spa |
dc.relation.references | Wei, S.; Scott, L.; Haihu, L.; Lei, W. Phys. Rev. E 2017, 96, 023309 | spa |
dc.relation.references | X., S.; G., D. Journal of Statistical Physics 1995, 81, 379–393 | spa |
dc.relation.references | H., L.; Q., K.; et al, L. C. Computational Geosciences 2016, 20, 777–805 | spa |
dc.relation.references | Chai, Z.; Shi, B.; Guo, Z.; Rong, F. Journal of Non-Newtonian Fluid Mechanics 2011, 166, 332–342 | spa |
dc.relation.references | Karlin, I. V.; Ansumali, S.; Angelis, E. D.; ¨ Ottinger, H. C.; Succi, S. 2003 | spa |
dc.relation.references | Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V. Phys. Rev. E 2015, 92, 061301 | spa |
dc.relation.references | Mendoza, M.; Muñoz, J. D. PRE 2010, 82, 056708 | spa |
dc.relation.references | Et al., M. M. Journal of Physics: Conference Series 2015, 640, DOI: 10.1088/1742- 6596/640/1/012018 | spa |
dc.relation.references | Ilseven, E.; Mendoza, M. Physical Review E 2016, 93, DOI: 10.1103/physreve.93. 023303 | spa |
dc.relation.references | J.A. Cosgrove, e. Ultrasonics 2004, 43, 21–25 | spa |
dc.relation.references | B. Chopard, P. L.; Wagen, J. IEE Proceedings - Microwaves, Antennas and Propagation 1997, 144, 251–255 | spa |
dc.relation.references | Velasco, A.; Mu˜noz, J.; Mendoza, M. Journal of Computational Physics 2019, 376, 76–97 | spa |
dc.relation.references | Mühlenstädt, T.; Kuhnt, S. Computational Statistics and Data Analysis 2011, 55, 2962–2974. | spa |
dc.relation.references | Landau, L. D.; Lifshitz, E. M., FLUID MECHANICS, 2nd ed.; Pergamon Press: Great Britain: England, 1987; Vol. 6 | spa |
dc.relation.references | Kr¨uger, T. e. a., The Lattice Boltzmann Method: Principles and Practice; Springer: Switzerland, 2017 | spa |
dc.relation.references | Manneberg, O. Multidimensional ultrasonic standing wave manipulation in microfluidic chips, Doctoral dissertation, KTH, Universidad Nacional de Colombia, 2018 | spa |
dc.relation.references | Pijush K. Kundu, I. M. C., Fluid Mechanics, Second edition, 2nd ed.; Academic Press, an Imprint of Elsevier Science: 1990; Vol. 1 | spa |
dc.relation.references | Elmore, W. C.; Heald, M. A., Physics of waves, 1st ed.; McGraw-Hill, Inc: New York: United States of America, 1969 | spa |
dc.relation.references | Jackson, J. D., Classical Electrodynamics Third edition, 3rd ed.; John Wiley & Sons, Inc.: 1999; Vol. 1 | spa |
dc.relation.references | Chopard B., D. M., Cellular Automata Modeling of Physical Systems, 1st ed.; Cambridge University Press: 1998; Vol. 1. | spa |
dc.relation.references | Peskin, C. S. Acta Numerica 2002, 479–517 | spa |
dc.relation.references | Ladd, A. J. C. Journal of Fluid Mechanics 1994, 271, 285–309 | spa |
dc.relation.references | Favier, J.; Revell, A.; Pinelli, A. Journal of Computational Physics 2014, 261, 145–161 | spa |
dc.relation.references | Omelyan, I.; Mryglod, I.; Folk, R. Computer Physics Communications 2002, 146, 188–202 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física::534 - Sonido y vibraciones relacionadas | spa |
dc.subject.proposal | Computational Acoustics | eng |
dc.subject.proposal | Microfluidics | eng |
dc.subject.proposal | Acoustofluidics | eng |
dc.subject.proposal | Computational methods | eng |
dc.subject.proposal | Paralellization | eng |
dc.subject.proposal | Acoustic radiation force | eng |
dc.subject.proposal | Gor’kov potential | eng |
dc.subject.proposal | Lattice- Boltzmann method | eng |
dc.subject.proposal | Acústica computacional | spa |
dc.subject.proposal | Microfluídica | spa |
dc.subject.proposal | Acustofluídica | spa |
dc.subject.proposal | Acoustical tweezers | eng |
dc.subject.proposal | Discrete transport Boltzmann equation | eng |
dc.subject.proposal | Conservation laws | eng |
dc.subject.proposal | Wave equation | eng |
dc.subject.proposal | Métodos computacionales | spa |
dc.subject.proposal | Paralelización | spa |
dc.subject.proposal | Pinzas acústicas | spa |
dc.subject.proposal | Fuerza de radiación acústica | spa |
dc.subject.proposal | Potencial de Gor’kov | spa |
dc.subject.proposal | Métodos de Lattice-Boltzmann | spa |
dc.subject.proposal | Ecuación de transporte de Boltzmann discreta | spa |
dc.subject.proposal | Leyes de conservación | spa |
dc.subject.proposal | Ecuación de ondas | spa |
dc.subject.unesco | Procesamiento de datos | spa |
dc.subject.unesco | Data processing | eng |
dc.subject.unesco | Propagación de ondas acústicas | spa |
dc.subject.unesco | Sound wave propagation | eng |
dc.subject.wikidata | Acústica | spa |
dc.subject.wikidata | acoustics | eng |
dc.subject.wikidata | Lattice Boltzmann methods | eng |
dc.title | Numerical computation of the acoustic radiation force exerted by a standing wave on an object immersed in a fluid by using a Lattice Boltzmann method for waves | eng |
dc.title.translated | Cómputo numérico de la fuerza de radiación acústica ejercida por una onda estacionaria en un objeto inmerso en un fluido usando un método de Lattice Boltzmann para ondas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Centro Universitario de Baviera para América Latina (BAYLAT) | spa |
oaire.fundername | Forschungszentrum Jülich | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020821915.2024.pdf
- Tamaño:
- 4.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: