Gestión de energía en microrredes interconectadas usando D-ADMM

dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.authorParra Acuña, Óscar Iván
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2023-05-29T20:38:40Z
dc.date.available2023-05-29T20:38:40Z
dc.date.issued2023-02-13
dc.descriptionilustraciones, graficasspa
dc.description.abstractLas microrredes eléctricas son el resultado de la alta integración de las energías renovables en los sistemas eléctricos y el constante esfuerzo por mejorar los índices de calidad, confiabilidad y seguridad. El incremento de estos sistemas ha derivado en la interacción por medio de sistemas interconectados. Como resultado de esta interacción, la asignación económica de recursos a cargo del sistema de gestión de energía se ha vuelto una tarea compleja, a menudo resuelta con métodos de optimización centralizados. En este trabajo se presenta una formulación del problema de gestión de energía utilizando las ecuaciones de flujo de potencia AC, para que represente el comportamiento de cualquier sistema eléctrico. Además, se propone un algoritmo de optimización distribuido basado en el método de multiplicadores de dirección alternante, que con el uso de estimadores locales distribuye el problema entre todas las microrredes. De esta manera se evita la centralización parcial de información eliminando puntos únicos de falla y violaciones de privacidad. El algoritmo es puesto a prueba a través de tres casos de estudio que simulan diferentes condiciones de red y recurso. De igual manera, se verifica la convergencia utilizando los residuales primales y duales del problema planteado. (Texto tomado de la fuente)spa
dc.description.abstractMicrogrids result from the evolution of electrical systems and the high penetration of renewable energy resources. Due to the increasing number of these systems, their interaction is inevitable. Consequently, economic resource allocation has become one of the most challenging tasks in operation and control, usually solved with centralized optimization algorithms. In this work, we present an energy management problem formulation, considering AC power flow equations, to represent the behavior of every electrical system. Moreover, we propose a fully distributed optimization algorithm based on the alternating direction method of multipliers, using local estimates to avoid data privacy violations. Then, the optimization algorithm is validated through some study cases to show its convergence and applicability.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Eléctricaspa
dc.description.researchareaMicrorredes eléctricasspa
dc.format.extentx, 75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83903
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[Abhinav et al., 2018] Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., and Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6):6731-6741.spa
dc.relation.references[Ahmadi and Rezaei, 2020] Ahmadi, S. E. and Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power and Energy Systems, 118(September 2019):105760.spa
dc.relation.references[Alam et al., 2019] Alam, M. N., Chakrabarti, S., and Ghosh, A. (2019). Networked Microgrids : State-of-the-Art and Future Perspectives. IEEE Transactions on Industrial Informatics, 15(3):1238-1250.spa
dc.relation.references[Alam et al., 2020] Alam, M. N., Chakrabarti, S., and Liang, X. (2020). A Benchmark Test System for Networked Microgrids. IEEE Transactions on Industrial Informatics, 16(10):6217-6230.spa
dc.relation.references[Bertsekas and Tsitsiklis, 1989] Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., USA.spa
dc.relation.references[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundation and trains in machine learning, 3(1):1-122.spa
dc.relation.references[Bui et al., 2018] Bui, V. H., Hussain, A., and Kim, H. M. (2018). A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid, 9(2):1323-1333.spa
dc.relation.references[Bullich-Massagué et al., 2018] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(December 2017):340-361.spa
dc.relation.references[Cao et al., 2020] Cao, X., Wang, J., Wang, J., and Zeng, B. (2020). A Risk-Averse Conic Model for Networked Microgrids Planning with Recon guration and Reorganizations. IEEE Transactions on Smart Grid, 11(1):696-709.spa
dc.relation.references[Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., and Woodruff, D. L. (2021). Pyomo-optimization modeling in python, volume 67. Springer Science & Business Media, third edition.spa
dc.relation.references[Castro et al., 2020] Castro, M. V., Moreira, C., and Carvalho, L. M. (2020). Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids. IET Renewable Power Generation, 14(1):27-38.spa
dc.relation.references[Che et al., 2015] Che, L., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6):3042-3051.spa
dc.relation.references[Chen et al., 2021] Chen, B., Wang, J., Lu, X., Chen, C., and Zhao, S. (2021). Networked Microgrids for Grid Resilience, Robustness, and Effciency: A Review. IEEE Transactions on Smart Grid, 12(1):18-32.spa
dc.relation.references[Erseghe, 2014] Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on Power Systems, 29(5):2370-2380.spa
dc.relation.references[Farzin et al., 2016] Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi- Microgrids. IEEE Transactions on Smart Grid, 7(6):2869-2879.spa
dc.relation.references[Gao et al., 2018] Gao, H., Liu, J., Wang, L., and Wei, Z. (2018). Decentralized Energy Management for Networked Microgrids in Future Distribution Systems. IEEE Transactions on Power Systems, 33(4):3599-3610.spa
dc.relation.references[Gazijahani and Salehi, 2017] Gazijahani, F. S. and Salehi, J. (2017). Stochastic multiobjective framework for optimal dynamic planning of interconnected microgrids. IET Renewable Power Generation, 11(14):1749-1759.spa
dc.relation.references[Golsorkhi et al., 2021] Golsorkhi, M. S., Hill, D. J., and Baharizadeh, M. (2021). A Secondary Control Method for Voltage Unbalance Compensation and Accurate Load Sharing in Networked Microgrids. IEEE Transactions on Smart Grid, 12(4):2822-2833.spa
dc.relation.references[Golsorkhi et al., 2018] Golsorkhi, M. S., Hill, D. J., and Karshenas, H. R. (2018). Distributed voltage control and power management of networked microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4):1892-1902.spa
dc.relation.references[Harmon et al., 2018] Harmon, E., Ozgur, U., Cintuglu, M. H., De Azevedo, R., Akkaya, K., and Mohammed, O. A. (2018). The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262-1274.spa
dc.relation.references[Hussain et al., 2018] Hussain, A., Bui, V. H., and Kim, H. M. (2018). A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 9(3):2127-2139.spa
dc.relation.references[Islam et al., 2021] Islam, M., Yang, F., and Amin, M. (2021). Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 15(6):1133-1148.spa
dc.relation.references[Jafari et al., 2020] Jafari, A., Ganjeh Ganjehlou, H., Khalili, T., and Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270(May):115170.spa
dc.relation.references[Karimi and Jadid, 2020] Karimi, H. and Jadid, S. (2020). Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework. Energy, 195:116992.spa
dc.relation.references[Khavari et al., 2020] Khavari, F., Badri, A., and Zangeneh, A. (2020). Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems, 115(August 2019):105465.spa
dc.relation.references[Li et al., 2019] Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4):58-72.spa
dc.relation.references[Li et al., 2017] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., and Al-Turki, Y. (2017). Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105(7):1289-1310.spa
dc.relation.references[Liu et al., 2016] Liu, G., Starke, M. R., Ollis, B., and Xue, Y. (2016). Networked Microgrids Scoping Study. Number October.spa
dc.relation.references[Liu et al., 2018] Liu, T., Tan, X., Sun, B., Wu, Y., and Tsang, D. H. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power and Energy Systems, 96(October 2017):335-346.spa
dc.relation.references[Schneider et al., 2018] Schneider, K. P., Member, S., Tuffner, F. K., Elizondo, M. A., Liu, C.-c., Xu, Y., Backhaus, S., and Ton, D. (2018). Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 9(5):4755-4764.spa
dc.relation.references[Toro and Mojica-Nava, 2016] Toro, V. and Mojica-Nava, E. (2016). Droop-free control for networked microgrids. 2016 IEEE Conference on Control Applications, CCA 2016, pages 374-379.spa
dc.relation.references[Wang et al., 2018] Wang, D., Qiu, J., Reedman, L., Meng, K., and Lai, L. L. (2018). Two-stage energy management for networked microgrids with high renewable penetration. Applied Energy, 226(March):39-48.spa
dc.relation.references[Wang et al., 2020a] Wang, Y., Nguyen, T. L., Xu, Y., Tran, Q. T., and Caire, R. (2020a). Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design. IEEE Transactions on Smart Grid, 11(6):4688-4699.spa
dc.relation.references[Wang et al., 2017] Wang, Y., Wu, L., and Wang, S. (2017). A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF with Demand Response. IEEE Transactions on Smart Grid, 8(6):2637-2647.spa
dc.relation.references[Wang et al., 2015] Wang, Z., Chen, B., Wang, J., Begovic, M. M., and Chen, C. (2015). Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45-53.spa
dc.relation.references[Wang et al., 2016] Wang, Z., Chen, B., Wang, J., and Kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2):1097-1105.spa
dc.relation.references[Wang et al., 2020b] Wang, Z., Yu, X., Mu, Y., and Jia, H. (2020b). A distributed Peer-to- Peer energy transaction method for diversi ed prosumers in Urban Community Microgrid System. Applied Energy, 260(92):114327.spa
dc.relation.references[Wu et al., 2020] Wu, X., Xu, Y., Wu, X., He, J., Guerrero, J. M., Liu, C. C., Schneider, K. P., and Ton, D. T. (2020). A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 11(2):942-957.spa
dc.relation.references[Yao et al., 2021] Yao, W., Wang, Y., Xu, Y., Lin, P., Qi, Y., and Wu, Q. (2021). Distributed layered control and stability analysis of islanded networked-microgrids. International Journal of Electrical Power and Energy Systems, 129(December 2020):106889.spa
dc.relation.references[Zaery et al., 2021] Zaery, M., Wang, P., Wang, W., and Xu, D. (2021). A novel fully distributed fi xed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power and Energy Systems, 129(July 2020):106792.spa
dc.relation.references[Zambroni de Souza and Castilla, 2018] Zambroni de Souza, A. C. and Castilla, M. (2018). Microgrids design and implementation.spa
dc.relation.references[Zhou et al., 2020] Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. (2020). Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys and Tutorials, 22(4):2586-2633.spa
dc.relation.references[Zou et al., 2019] Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of Energy Management in Interconnected Multi-Microgrids. IEEE Access, 7:72158-72169.spa
dc.relation.references[Hart et al., 2011] Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3(3):219-260.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalOptimización Distribuidaspa
dc.subject.proposalMicrorredes Eléctricasspa
dc.subject.proposalMicrorredes Interconectadasspa
dc.subject.proposalADMM
dc.subject.proposalDistributed Optimizationeng
dc.subject.proposalMicrogridseng
dc.subject.proposalNetworked Microgridseng
dc.subject.wikidataRed eléctricaspa
dc.subject.wikidataElectrical grideng
dc.titleGestión de energía en microrredes interconectadas usando D-ADMMspa
dc.title.translatedEnergy management for interconnected microgrids using D-ADMMeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032483912.2023.pdf
Tamaño:
6.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: