En 2 día(s), 21 hora(s) y 16 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Caracterización de las propiedades estructurales, eléctricas y magnéticas de las perovskitas dobles Ca2TiMO6 M= (Fe, Ru)

dc.contributor.advisorRoa Rojas, Jairospa
dc.contributor.authorParra Mesa, Laura Vanessaspa
dc.contributor.orcidV.P. Mesa[0009000345090054]
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2025-09-16T18:19:43Z
dc.date.available2025-09-16T18:19:43Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos materiales tipo perovskita Ca₂TiFeO₆ y Ca₂TiRuO₆ exhiben propiedades prometedoras para aplicaciones en espintrónica, con comportamientos estructurales, electrónicos y magnéticos diferenciados. Ambos materiales cristalizan en un grupo espacial monoclínico P2₁/n, formando superestructuras ordenadas mediante la disposición catiónica. Ca₂TiFeO₆ presenta comportamiento ferromagnético, con medio-metalicidad originada por fuertes hibridaciones entre los orbitales 4d-Fe y los estados 2p-O, lo que da lugar a una conductividad metálica para una orientación de espín, mientras que la otra se mantiene semiconductora con un band gap 2.3 eV, influenciada por la contribución de estados 3d-Fe y 3d-Ti en la banda de conducción. Ca₂TiRuO₆ muestra irreversibilidad magnética y una débil histéresis ferromagnética, atribuida al acantamiento de los espines Ru⁴⁺ debido a las distorsiones octaédricas, junto con un band gap de 0.89 eV, lo que confirma su comportamiento semiconductor. Los análisis de transporte eléctrico revelan transporte por salto de rango variable a bajas temperaturas y salto de pequeño polarón a altas temperaturas, con curvas I-V que exhiben comportamiento tipo varistor. Los cálculos de estructura de bandas confirman la medio-metalicidad, con orbitales 4d-Ru⁴⁺ cruzando el nivel de Fermi en la configuración de espín descendente, mientras que la polarización de espín ascendente se mantiene semiconductora, gobernada por fuertes efectos de acoplamiento espín-órbita. Estos hallazgos destacan la multifuncionalidad de ambos materiales, con Ca₂TiFeO₆ exhibiendo una robusta medio-metalicidad ferromagnética, mientras que Ca₂TiRuO₆ combina medio-metalicidad con mecanismos de transporte semiconductores, lo que los posiciona como candidatos valiosos para futuros dispositivos espintrónicos. (Texto tomado de la fuente).spa
dc.description.abstractThe perovskite materials Ca₂TiFeO₆ and Ca₂TiRuO₆ exhibit promising properties for spintronics applications, with distinct structural, electronic, and magnetic behaviors. Both materials crystallize in a monoclinic P2₁/n space group, forming ordered superstructures through the cation arrangement. Ca₂TiFeO₆ demonstrates ferromagnetic behavior, with half-metallicity arising from strong 4d-Fe and 2p-O hybridizations, leading to metallic conductivity for one spin orientation, while the other remains semiconducting with a band gap of 2.3 eV, influenced by 3d-Fe and 3d-Ti states in the conduction band. Ca₂TiRuO₆ presents magnetic irreversibility and weak ferromagnetic hysteresis, attributed to Ru⁴⁺ spin canting due to octahedral distortions, alongside an optical band gap of 0.89 eV, confirming semiconducting behavior. Electrical transport analyses reveal variable range hopping at low temperatures and small polaron hopping at high temperatures, with I-V characteristics showing varistor-type behavior. Band structure calculations confirm half-metallic behavior, with 4d-Ru⁴⁺ orbitals crossing the Fermi level in the spin-down configuration, while spin-up polarization remains semiconducting, governed by strong spin-orbit coupling effects. These findings highlight the multifunctionality of both materials, with Ca₂TiFeO₆ displaying robust ferromagnetic half-metallicity, whereas Ca₂TiRuO₆ combines half-metallicity with semiconducting transport mechanisms, making them valuable candidates for future spintronic devices.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaNuevos materialesspa
dc.format.extent67 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88818
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesPark, N. G. (2015). Perovskite solar cells: An emerging photovoltaic technology. Materials Today, 18(2), 65–72. https://doi.org/10.1016/J.MATTOD.2014.07.007.
dc.relation.referencesBhalla, A. S., Guo, R., & Roy, R. (2000). The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 4(1), 3–26. https://doi.org/10.1007/S100190000062.
dc.relation.referencesQuan, L. N., Rand, B. P., Friend, R. H., Mhaisalkar, S. G., Lee, T. W., & Sargent, E. H. (2019). Perovskites for next-generation optical sources. Chemical Reviews, 119(12), 7444–7477.
dc.relation.referencesAnderson, M. T., Greenwood, K. B., Taylor, G. A., & Poeppelmeier, K. R. (1993). B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 22(3), 197–233.
dc.relation.referencesZhao, F., Yue, Z., Gui, Z., & Li, L. (2005). Preparation, characterization and microwave dielectric properties of A₂BWO₆ (A = Sr, Ba; B = Co, Ni, Zn) double perovskite ceramics. Japanese Journal of Applied Physics, 44(11R), 8066.
dc.relation.referencesFu, W. T., & IJdo, D. J. W. (2005). On the space group of the double perovskite Ba₂PrIrO₆. Journal of Solid State Chemistry, 178(4), 1312–1316.
dc.relation.referencesDias, A. C., Lima, M. P., & Da Silva, J. L. (2021). Role of structural phases and octahedra distortions in the optoelectronic and excitonic properties of CsGeX₃ (X = Cl, Br, I) perovskites. The Journal of Physical Chemistry C, 125(35), 19142–19155.
dc.relation.referencesAlkathy, M. S., Zabotto, F. L., Lente, M. H., & Eiras, J. A. (2020). Octahedral distortion and oxygen vacancies induced band-gap narrowing and enhanced visible light absorption of Co/Fe co-doped Bi₃.₂₅Nd₀.₇₅Ti₃O₁₂ ferroelectrics for photovoltaic applications. Journal of Physics D: Applied Physics, 53(46), 465106.
dc.relation.referencesZhou, Y., Dong, S., Shan, C., Ji, K., & Zhang, J. (2022). Two-dimensional ferroelectricity induced by octahedral rotation distortion in perovskite oxides. Physical Review B, 105(7), 075408.
dc.relation.referencesAso, R., Kan, D., Shimakawa, Y., & Kurata, H. (2013). Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Scientific Reports, 3(1), 2214.
dc.relation.referencesGao, Y., Wang, J., Wu, L., Bao, S., Shen, Y., Lin, Y., & Nan, C. (2015). Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Science China Materials, 58, 302–312.
dc.relation.referencesThomas, N. W. (1996). The compositional dependence of octahedral tilting in orthorhombic and tetragonal perovskites. Acta Crystallographica Section B: Structural Science, 52(1), 16–31.
dc.relation.referencesGlazer, A. M., Mabud, S. A., & Clarke, R. (1972). Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.
dc.relation.referencesShirokov, V. B., & Torgashev, V. I. (2004). Tilting structures in perovskites. Crystallography Reports, 49, 20–28.
dc.relation.referencesWoodward, P. M. (1997). Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1), 32–43.
dc.relation.referencesLufaso, M. (2002). Perovskite synthesis and analysis using structure prediction diagnostic software (Doctoral dissertation).
dc.relation.referencesHummel, R. E. (1998). Electrical properties of materials. In Understanding Materials Science: History, Properties, Applications (pp. 180–216).
dc.relation.referencesJayendran, A., & Jayendran, R. (1996). Conductors, insulators and semiconductors. Englisch für Elektroniker: Ein Lehr-und Übungsbuch für das technische Englisch, 1–7.
dc.relation.referencesKittel, C. (2003). Introducción a la física del estado sólido (3rd ed.). Barcelona: Editorial Reverté S.A.
dc.relation.referencesMizutani, U. (2001). Introduction to the electron theory of metals. Cambridge University Press.
dc.relation.referencesSingleton, J. (2001). Band theory and electronic properties of solids (Vol. 2). Oxford University Press.
dc.relation.referencesJeong, U., Teng, X., Wang, Y., Yang, H., & Xia, Y. (2007). Superparamagnetic colloids: Controlled synthesis and niche applications. Advanced Materials, 19(1), 33–60.
dc.relation.referencesPurcell, E. M. (1969). Electricidad y magnetismo. España: Reverté.
dc.relation.referencesAlarcón, C. (2011). Síntesis y caracterización estructural, eléctrica y magnética de la perovskita compleja Sr₂TiMoO₆ utilizando el método de reacción de estado sólido (Tesis de grado). Universidad Nacional de Colombia.
dc.relation.referencesCardona, J. (2014). Producción y caracterización de nuevos materiales multiferróicos de la familia RMn₁₋ₓFeₓO₃ (R = Ho, Dy, Gd) (Tesis de grado). Universidad Nacional de Colombia.
dc.relation.referencesCallister, W. D. (1995). Introducción a la ciencia e ingeniería de los materiales. Barcelona, España: Editorial Reverté.
dc.relation.referencesBlanco, F. (2001). Materiales cerámicos, sinterización, estado sólido. Universidad de Oviedo, Escuela de Minas, España.
dc.relation.referencesGuinier, A. (1994). X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies.
dc.relation.referencesElton, L. R. B., & Jackson, D. F. (1969). X-ray Diffraction and the Bragg Law. https://doi.org/10.1119/1.1972439.
dc.relation.referencesRietveld, H. M. (2002). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.
dc.relation.referencesPérez, G. A., & Colorado, H. D. (2011). Difracción de rayos X y el método Rietveld: teoría y software de refinamiento. Universidad del Valle.
dc.relation.referencesVilla Hernández, J. I. Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A₂BB'O₆.Villa Hernández, J. I. Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A₂BB'O₆.
dc.relation.referencesZhou, W., Apkarian, R., Wang, Z. L., & Joy, D. (2006). Fundamentals of Scanning Electron Microscopy (SEM). En W. Zhou & Z. L. Wang (Eds.), Scanning Microscopy for Nanotechnology. Springer, New York, NY.
dc.relation.referencesInkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. https://doi.org/10.1016/B978-0-08-100040-3.00002-X.
dc.relation.referencesSteyn, J. B., Giles, P., & Holt, D. B. (1976). An efficient spectroscopic detection system for cathodoluminescence mode scanning electron microscopy (SEM). https://doi.org/10.1111/j.1365-2818.1976.tb02430.x.
dc.relation.referencesNieto, L. I. (2008). Determinación de las propiedades espectroscópicas y estudio de reacciones en fase heterogénea de nuevos compuestos orgánicos oxigenados presentes en la troposfera (Tesis de doctorado). Repositorio institucional de la UNLP.
dc.relation.referencesLandi Jr, S., Segundo, I. R., Freitas, E., Vasilevskiy, M., Carneiro, J., & Tavares, C. J. (2022). Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Communications, 341, 114573.
dc.relation.referencesYuan, L. D., Deng, H. X., Li, S. S., Wei, S. H., & Luo, J. W. (2018). Unified theory of direct or indirect band-gap nature of conventional semiconductors. Physical Review B, 98(24), 245203.
dc.relation.referencesRosales, A., & Rivera, J. A. (2007). Funcionamiento de un magnetómetro (VSM). Revista Colombiana de Física, 38(77).
dc.relation.referencesHossain, A., Volegov, A. S., Sakthipandi, K., Kiselev, E. A., Cherepanov, V. A., Mukhanova, E. A., & Soldatov, A. V. (2023). Structural and electrical properties of ceramics. Ceramics International, 49, 29229–29236.
dc.relation.referencesSubudhi, D. K., Biswal, B., Jena, S., Pattanaik, P., & Mishra, D. K. (2024). Phase transformations and electrical transport mechanisms. Phase Transitions, 97, 557–570.
dc.relation.referencesHoward, C. J., Kennedy, B. J., & Woodward, P. M. (2003). Crystallographic studies of perovskites. Acta Crystallographica Section B, 59, 463–471.
dc.relation.referencesAlbrecht, E. K., & Karttunen, A. J. (2023). Advances in perovskite chemistry. Dalton Transactions, 52, 12461–12469.
dc.relation.referencesBrown, I. D. (2009). Bond valence model and its applications. Chemical Reviews, 109, 6858–6919.
dc.relation.referencesDeluque Toro, C. E., Vergara, V. E., Gil Rebaza, A. V., Landínez Téllez, D. A., & Roa-Rojas, J. (2023). Electronic and structural properties of oxides. Physica B, 666, 415132.
dc.relation.referencesLufaso, M. W., Barnes, P. W., & Woodward, P. M. (2006). Distortions in double perovskites. Acta Crystallographica Section B, 62, 397–410.
dc.relation.referencesCuervo Farfán, J. A., Deluque Toro, C. E., Parra Vargas, C. A., Landínez Téllez, D. A., & Roa-Rojas, J. (2020). Electrical and magnetic responses of perovskites. Journal of Materials Chemistry C, 8, 14925–14938.
dc.relation.referencesDeluque-Toro, C. E., Ariza-Echeverri, E. A., Landínez-Téllez, D. A., Vergara, D., & Roa-Rojas, J. (2024). Optical analysis of perovskite materials. Applied Sciences, 14, 7326.
dc.relation.referencesHe, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J., & Pantelides, S. T. (2010). Atomic-scale studies of perovskite defects. Physical Review Letters, 105, 227203.
dc.relation.referencesAllen, P. B., Berger, H., Chauvet, O., Forro, L., Jarlborg, T., Junod, A., Revaz, B., & Santi, G. (1996). Electronic properties of transition-metal oxides. Physical Review B, 53, 4393–4398.
dc.relation.referencesMaiti, K. (2006). Spectroscopic investigation of electronic structures. Physical Review B, 73, 235110.
dc.relation.referencesKresse, G., & Furthmüller, J. (1996). Computational methods for materials science. Computational Materials Science, 6, 15–50.
dc.relation.referencesKresse, G., & Joubert, D. (1999). Advanced modeling techniques for solid-state physics. Physical Review B, 59, 1758–1775.
dc.relation.referencesBlöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953–17979.
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation method. Physical Review Letters, 77, 3865–3868.
dc.relation.referencesMonkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188–5192.
dc.relation.referencesMethfessel, M., & Paxton, A. T. (1989). Electronic structure calculations. Physical Review B, 40, 3616–3621.
dc.relation.referencesToby, B. H., & Von Dreele, R. B. (2013). Refinement techniques for crystallographic analysis. Journal of Applied Crystallography, 46, 544–549.
dc.relation.referencesSands, D. E. (1993). Introduction to crystallography. Dover Publications.
dc.relation.referencesSarmiento Vanegas, J. A., Cuervo Farfán, J. A., Deluque Toro, C. E., Landínez Téllez, D. A., & Roa-Rojas, J. (2024). Magnetic and structural properties of complex oxides. Physica B, 687, 416079.
dc.relation.referencesIslam, M. A., Rondinelli, J. M., & Spanier, J. E. (2013). Electronic correlations in oxides. Journal of Physics: Condensed Matter, 25, 175902.
dc.relation.referencesCuervo Farfán, J. A., Aljure García, D. M., Cardona, R., Rodríguez, J. A., Landínez Téllez, D. A., & Roa-Rojas, J. (2017). Low-temperature studies of perovskite oxides. Journal of Low Temperature Physics, 186, 295–315.
dc.relation.referencesKubelka, P., & Munk, F. (1931). Theory of diffuse reflectance. Zeitschrift für Technische Physik, 12, 593–601.
dc.relation.referencesKumar, V., Sharma, S. K., Sharma, T. P., & Singh, V. (1999). Optical properties of semiconductors. Optical Materials, 12, 115–119.
dc.relation.referencesGusakova, J., Tay, B. K., & Gusakov, V. (2016). Semiconductor properties in solid-state physics. Physica Status Solidi A, 213, 2834–2837.
dc.relation.referencesLu, P., Liang, D., Chen, Y., Zhang, C., Quhe, R., & Wang, S. (2017). Computational analysis of semiconductor properties. Scientific Reports, 7, 10594.
dc.relation.referencesHeikes, R., & Urc, R. (1961). Thermoelectricity: Science and Engineering. New York.
dc.relation.referencesHan, H., Lee, J. S., Ryu, J. H., Kim, K. M., Jones, J. L., Lim, J., Guillemet-Fritsch, S., Lee, H. C., & Mhin, S. (2016). Influence of structural properties on thermoelectric performance. Journal of Physical Chemistry C, 120, 13667–13674.
dc.relation.referencesNieto Camacho, J. A., Cardona Vásquez, J. A., Sarmiento Santos, A., Landínez Téllez, D. A., & Roa-Rojas, J. (2020). Structural and electronic properties of perovskites. Journal of Materials Research and Technology, 9, 10686–10697.
dc.relation.referencesJüngel, A. (2001). The Quantum Hydrodynamic Model. En Quasi-hydrodynamic Semiconductor Equations (Vol. 41). Birkhäuser, Basel.
dc.relation.referencesBlatter, G., & Greuter, F. (1986). Charge transport phenomena in semiconductors. Physical Review B, 33, 3952.
dc.relation.referencesZhao, G., Joshi, R. P., Lakdawala, V. K., & Hjalmarson, H. P. (2007). Electrical breakdown mechanisms in dielectric materials. IEEE Transactions on Dielectrics and Electrical Insulation, 14, 1007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalEspintrónicaspa
dc.subject.proposalEstructura de bandasspa
dc.subject.proposalSemiconductorspa
dc.subject.proposalMedio-metalicidad ferromagnéticaspa
dc.subject.proposalPerovskiteeng
dc.subject.proposalSpintronicseng
dc.subject.proposalBand structureeng
dc.subject.proposalSemiconductingeng
dc.subject.proposalFerromagnetic half-metallicityeng
dc.subject.wikidataPerovskitaspa
dc.subject.wikidataperovskiteeng
dc.subject.wikidatamineralogíaspa
dc.subject.wikidatamineralogyeng
dc.subject.wikidatasemiconductorspa
dc.subject.wikidatasemiconductoreng
dc.titleCaracterización de las propiedades estructurales, eléctricas y magnéticas de las perovskitas dobles Ca2TiMO6 M= (Fe, Ru)spa
dc.title.translatedCharacterization of the structural, electrical and magnetic properties of double perovskites Ca2TiMO6 M= (Fe, Ru)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Caracterización de las propiedades estructurales, eléctricas y magnéticas de las perovskitas dobles Ca2TiMO6 M= (Fe, Ru)..pdf
Tamaño:
3.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: