Simulación molecular de una membrana de intercambio catiónico para un sistema de electrodiálisis inversa

dc.contributor.advisorCastañeda Ramírez, Sergio
dc.contributor.authorPérez Grisales, María Susana
dc.contributor.educationalvalidatorSánchez Sáenz Carlos Ignacio
dc.contributor.educationalvalidatorMoncayo Riascos Iván Darío
dc.contributor.orcidPérez Grisales, Susana [0000000229059968]spa
dc.contributor.researchgroupGrupo de Ingenieria Electroquímica Griequispa
dc.date.accessioned2024-10-09T21:36:57Z
dc.date.available2024-10-09T21:36:57Z
dc.date.issued2024-10-07
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLas membranas de intercambio iónico desempeñan un papel fundamental en diversas tecnologías de separación y generación de energía. En particular, su aplicación en dispositivos de electrodiálisis inversa es clave, ya que la eficiencia de estos dispositivos depende del transporte selectivo de iones a través de las membranas y es sensible a la presencia de iones multivalentes cuando se operan con aguas naturales. Estos últimos reducen significativamente la densidad de potencia (hasta la mitad) que se puede obtener y disminuyen la eficiencia del equipo. Una mayor comprensión de los fenómenos relacionados con el transporte de los iones contribuye al diseño y mejora de membranas de intercambio iónico que estén adaptadas a las necesidades de la tecnología. Típicamente, los efectos de los iones multivalentes se han evaluado experimentalmente, sin embargo, es importante realizar estudios que brinden una comprensión más detallada de los fenómenos involucrados. Para esto se usaron técnicas de simulación molecular, que permitieron estudiar la autodifusión de los iones sodio, magnesio y cloro en membranas del polímero poliéter éter cetona sulfonado (SPEEK). Este enfoque fue útil para determinar las interacciones específicas entre el grupo cargado fijo de la membrana y los iones, y para obtener información sobre el transporte de los iones monovalentes y el ion divalente, en relación con la estructura del polímero. Asimismo, se observó la transición de difusión normal a anómala cuando se disminuye el contenido de agua en la membrana, teniendo en cuenta diferentes grados de hidratación experimentalmente observados para esta membrana. También, en este trabajo se encontró que los iones divalentes se caracterizan por una difusión anómala y coeficientes de autodifusión hasta diez veces menores que los coeficientes de autodifusión observados para el sodio y los iones cloro. Finalmente, dado que los iones divalentes se unen con mayor fuerza a los grupos funcionales de la membrana, la presencia de este ion da lugar a una disminución de las distancias probables entre los grupos funcionales de la membrana y una mayor tortuosidad, lo que puede limitar la movilidad de los iones divalentes y afectar propiedades críticas como la conductividad eléctrica y la permselectividad de la membrana de intercambio iónico.spa
dc.description.abstractIonic exchange membranes are fundamental in various separation and energy generation technologies. Their application in reverse electrodialysis devices is crucial, as their efficiency relies on the selective transport of ions across the membranes. They are also sensitive to the presence of multivalent ions when operating in natural waters. The latter significantly reduces the obtainable power density (by up to half) and decreases the device’s efficiency. A deeper understanding of the phenomena related to ion transport contributes to the design and improvement of ion exchange membranes tailored according to the requirements of the technology. Typically, the effects of multivalent ions have been experimentally evaluated; however, it is important to conduct studies that offer a more detailed understanding of the phenomena involved. Molecular simulation techniques were used for this purpose, allowing the study of self-diffusion of sodium, magnesium, and chloride ions in membranes of the polymer sulfonated poly (ether ether ketone) (SPEEK). This approach was useful in determining the specific interactions between the fixed-charged group of the membrane and the ions and in obtaining information on the transport of monovalent ions and divalent ions concerning the polymer structure. The results showed the transition from normal to anomalous diffusion as the membrane water content decreased for experimentally reported levels of membrane hydration. Moreover, this work found that divalent ions exhibit anomalous diffusion and have self-diffusion coefficients up to ten times lower than those of sodium and chloride ions. Finally, since divalent ions bind stronger to membrane functional groups, the presence of this ion results in decreased probable distances between membrane functional groups and increased tortuosity, which may limit the mobility of divalent ions and affect critical properties such as electrical conductivity and permselectivity of the ion exchange membrane.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.notesContiene imágenes, ilustraciones y tablas.
dc.description.researchareaQuímica Computacionalspa
dc.format.extent1 recursos en línea (163 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86927
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesE. Rodil and J. Vera, “Individual activity coefficients of chloride ions in aqueous solu- tions of MgCl2, CaCl2 and BaCl2 at 298.2 k,” Fluid phase equilibria, vol. 187, pp. 15–27, 2001.spa
dc.relation.referencesM. Agarwal, M. P. Alam, and C. Chakravarty, “Thermodynamic, diffusional, and struc- tural anomalies in rigid-body water models,” The Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6935–6945, 2011. .spa
dc.relation.referencesK. E. Mueller, J. T. Thomas, J. X. Johnson, J. F. DeCarolis, and D. F. Call, “Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis,” Journal of Industrial Ecology, vol. 25, no. 5, pp. 1194–1206, 2021.spa
dc.relation.referencesD. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to ap- plications. Elsevier, 2023.spa
dc.relation.referencesM. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical simulation in fluid dynamics: a practical introduction. SIAM, 1998.spa
dc.relation.referencesG. Bahlakeh and M. Nikazar, “Molecular dynamics simulation analysis of hydration effects on microstructure and transport dynamics in sulfonated poly (2, 6-dimethyl- 1, 4-phenylene oxide) fuel cell membranes,” International journal of hydrogen energy, vol. 37, no. 17, pp. 12714–12724, 2012.spa
dc.relation.referencesX. Yang, K. Hu, F. Zhang, H. Chen, and Y. Liu, “Molecular dynamics simulations of microstructure and transport properties of sulfonated poly-p-phenoxybenzoyl-1, 4- phenylene membrane and their comparisons to sulfonated poly (ether ether ketone) membrane,” Materials Today Communications, vol. 21, p. 100642, 2019.spa
dc.relation.referencesP. Chen, C. Chiu, and C. Hong, “Molecular structure and transport dynamics in na- fion and sulfonated poly (ether ether ketone ketone) membranes,” Journal of Power Sources, vol. 194, no. 2, pp. 746–752, 2009.spa
dc.relation.referencesG. Bahlakeh, M. Nikazar, and M. M. Hasani-Sadrabadi, “Understanding structure and transport characteristics in hydrated sulfonated poly (ether ether ketone)–sulfonated poly (ether sulfone) blend membranes using molecular dynamics simulations,” Journal of membrane science, vol. 429, pp. 384–395, 2013spa
dc.relation.referencesE.-S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, S. J. Talley, R. B. Moore, D. R. Paul, and B. D. Freeman, “Effect of water content on sodium chloride sorption in cross-linked cation exchange membranes,” Macromolecules, vol. 52, no. 6, pp. 2569–2579, 2019.spa
dc.relation.referencesJ. Kamcev, D. R. Paul, and B. D. Freeman, “Ion activity coefficients in ion exchange polymers: applicability of Manning’s counterion condensation theory,” Macromolecules, vol. 48, no. 21, pp. 8011–8024, 2015.spa
dc.relation.referencesA. Zoungrana and M. C¸akmakcii, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” International Journal of Energy Research, vol. 45, no. 3, pp. 3495–3522, 2021.spa
dc.relation.referencesJ. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, “Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes,” Desalination, vol. 491, no. May, p. 114540, 2020.spa
dc.relation.referencesM. Perez and R. Perez, “Update 2022 – A fundamental look at supply side energy reserves for the planet,” Solar Energy Advances, vol. 2, no. March, p. 100014, 2022.spa
dc.relation.referencesA. T. Besha, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, “Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis,” Membranes, vol. 10, no. 1, 2020.spa
dc.relation.referencesS. Chae, H. Kim, J. Gi Hong, J. Jang, M. Higa, M. Pishnamazi, J. Y. Choi, R. Chandula Walgama, C. Bae, I. S. Kim, and J. S. Park, “Clean power generation from salinity gradient using reverse electrodialysis technologies: Recent advances, bottlenecks, and future direction,” Chemical Engineering Journal, vol. 452, no. P4, p. 139482, 2023.spa
dc.relation.referencesR. E. Pattle, “Production of electric power by mixing fresh and salt water in the hydroelectric pile,” 1954.spa
dc.relation.referencesM. N. Z. Abidin, M. M. Nasef, and J. Veerman, “Towards the development of new generation of ion exchange membranes for reverse electrodialysis: A review,” Desalination, vol. 537, no. May, p. 115854, 2022.spa
dc.relation.referencesVeerman, Joost, “Reverse electrodialysis design and optimization by modelling and experimentation,” University of Groningen, pp. 10–11, 2010.spa
dc.relation.referencesM. Eti, N. H. Othman, E. Guler, and N. Kabay, “Ion Exchange Membranes for Reverse Electrodialysis (RED) Applications - Recent Developments,” Journal of Membrane Science and Research, vol. 7, no. 4, pp. 260–267, 2021.spa
dc.relation.referencesA. Zoungrana and M. C¸ akmakci, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” International Journal of Energy Research, vol. 45, no. 3, pp. 3495–3522, 2021.spa
dc.relation.referencesM. Roldan-Carvajal, S. Vallejo-Castaño, O. Álvarez-Silva, S. Bernal-García, S. Arango-Aramburo, C. I. Sánchez-Sáenz, and A. F. Osorio, “Salinity gradient power by reverse electrodialysis: A multidisciplinary assessment in the Colombian context,” Desalination, vol. 503, no. January, 2021.spa
dc.relation.referencesA. Nazif, H. Karkhanechi, E. Saljoughi, S. M. Mousavi, and H. Matsuyama, “Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review,” Journal of Water Process Engineering, vol. 47, no. October 2021, p. 102706, 2022.spa
dc.relation.referencesJ. Veerman, “Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters,” 2023.spa
dc.relation.referencesL. Villafaña-López, D. M. Reyes-Valadez, O. A. González-Vargas, V. A. Suárez-Toriello, and J. S. Jaime-Ferrer, “Custom-made ion exchange membranes at laboratory scale for reverse electrodialysis,” Membranes, vol. 9, no. 11, pp. 1–19, 2019.spa
dc.relation.referencesM. Sharma, P. P. Das, A. Chakraborty, and M. K. Purkait, “Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review,” Sustainable Energy Technologies and Assessments, vol. 49, no. October 2021, p. 101687, 2022.spa
dc.relation.referencesJ. Jang, “Ion Exchange Membrane for Reverse Electrodialysis,” Academic Journal of Polymer Science, vol. 5, no. 1, 2021.spa
dc.relation.referencesS. Pawlowski, R. M. Huertas, C. F. Galinha, J. G. Crespo, and S. Velizarov, “On operation of reverse electrodialysis (RED) and membrane capacitive deionisation (MCDI) with natural saline streams: A critical review,” Desalination, vol. 476, p. 114183, 2020.spa
dc.relation.referencesJ. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, “Mitigation of the effects of multivalent ion transport in reverse electrodialysis,” Journal of Membrane Science, vol. 550, no. October 2017, pp. 155–162, 2018.spa
dc.relation.referencesH. Fan and N. Y. Yip, “Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes,” Journal of Membrane Science, vol. 573, no. October 2018, pp. 668–681, 2019.spa
dc.relation.referencesL. Liu and Q. Cheng, “Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 134, no. August, p. 110115, 2020.spa
dc.relation.referencesT. Wei and C. Ren, Theoretical simulation approaches to polymer research. INC, 2020.spa
dc.relation.referencesM. Fermeglia, A. Mio, S. Aulic, D. Marson, E. Laurini, and S. Pricl, “Multiscale molecular modelling for the design of nanostructured polymer systems: Industrial applications,” Molecular Systems Design and Engineering, vol. 5, no. 9, pp. 1447–1476, 2020.spa
dc.relation.referencesJ. Luque Di Salvo, G. De Luca, A. Cipollina, and G. Micale, “A full-atom multiscale modelling for sodium chloride diffusion in anion exchange membranes,” Journal of Membrane Science, vol. 637, no. May, p. 119646, 2021.spa
dc.relation.referencesS. Y. Sun, X. Y. Nie, J. Huang, and J. G. Yu, “Molecular simulation of diffusion behavior of counterions within polyelectrolyte membranes used in electrodialysis,” Journal of Membrane Science, vol. 595, no. October 2019, p. 117528, 2020.spa
dc.relation.referencesR. Zhang, X. Duan, M. Ding, and T. Shi, “Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies,” Journal of Physical Chemistry B, vol. 122, no. 25, pp. 6656–6665, 2018.spa
dc.relation.referencesT. Badessa and V. Shaposhnik, “The electrodialysis of electrolyte solutions of multi-charged cations,” Journal of Membrane Science, vol. 498, pp. 86–93, 2016.spa
dc.relation.referencesV. Soldatov, E. Kosandrovich, and T. Bezyazychnaya, “Quantum chemical evidence of a fundamental difference between hydrations and ion exchange selectivities of sodium and potassium ions on carboxylic and sulfonic acid cation exchangers,” Journal of Structural Chemistry, vol. 61, pp. 1898–1909, 2020.spa
dc.relation.referencesW. Kujawski, A. Yaroshchuk, E. Zholkovskiy, I. Koter, and S. Koter, “Analysis of membrane transport equations for reverse electrodialysis (RED) using irreversible thermodynamics,” International Journal of Molecular Sciences, vol. 21, pp. 1–13, 2020.spa
dc.relation.referencesR. S. Kingsbury and O. Coronell, “Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and manning’s counter-ion condensation theory,” Journal of Membrane Science, vol. 620, p. 118411, 2021.spa
dc.relation.referencesH. Zhu, B. Yang, C. Gao, and Y. Wu, “Ion transfer modeling based on Nernst–Planck theory for saline water desalination during electrodialysis process,” Asia-Pacific Journal of Chemical Engineering, vol. 15, pp. 1–11, 2020.spa
dc.relation.referencesH. Kim, N. Jeong, S. C. Yang, J. Choi, M. S. Lee, J. Y. Nam, E. Jwa, B. Kim, K. sang Ryu, and Y. W. Choi, “Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential,” Water Research, vol. 165, p. 114970, 2019.spa
dc.relation.referencesF. Liu, X. Du, Z. Zhang, X. Ma, F. Gao, X. Hao, L. Chang, Q. Wang, M. Liu, and J. Luo, “Ions transport modelling based on Nernst-Planck theory for a novel electrochemically switched ion permselectivity system,” Chemical Engineering and Processing - Process Intensification, vol. 143, p. 107628, 2019.spa
dc.relation.referencesM. Tedesco, H. V. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: I. effect of co-ion transport through the membranes,” Journal of Membrane Science, vol. 510, pp. 370–381, 2016.spa
dc.relation.referencesM. Tedesco, H. V. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: II. effect of water transport through ion-exchange membranes,” Journal of Membrane Science, vol. 531, pp. 172–182, 2017.spa
dc.relation.referencesF. Dong, D. Jin, S. Xu, L. Xu, X. Wu, P. Wang, Q. Leng, and R. Xi, “Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis,” Chemical Engineering Research and Design, vol. 157, pp. 77–91, 2020.spa
dc.relation.referencesM. Rezayani, F. Sharif, R. R. Netz, and H. Makki, “Insight into the relationship between molecular morphology and water/ion diffusion in cation exchange membranes: Case of partially sulfonated polyether sulfone,” Journal of Membrane Science, vol. 654, p. 120561, 2022.spa
dc.relation.referencesD. Bedrov, J. P. Piquemal, O. Borodin, A. D. MacKerell, B. Roux, and C. Schröder, “Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields,” Chemical Reviews, vol. 119, pp. 7940–7995, 2019.spa
dc.relation.referencesT. E. Gartner and A. Jayaraman, “Modeling and simulations of polymers: A roadmap,” Macromolecules, vol. 52, pp. 755–786, 2019.spa
dc.relation.referencesA. Gooneie, S. Schuschnigg, and C. Holzer, “A review of multiscale computational methods in polymeric materials,” Polymers, vol. 9, 2017.spa
dc.relation.referencesL. Chen, Y.-L. He, and W.-Q. Tao, “The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation,” Numerical Heat Transfer, Part A: Applications, vol. 65, no. 3, pp. 216–228, 2014.spa
dc.relation.referencesV. Dubey, A. Maiti, and S. Daschakraborty, “Predicting the solvation structure and vehicular diffusion of hydroxide ion in an anion exchange membrane using nonreactive molecular dynamics simulation,” Chemical Physics Letters, vol. 755, p. 137802, 2020.spa
dc.relation.referencesK. W. Han, K. H. Ko, K. Abu-Hakmeh, C. Bae, Y. J. Sohn, and S. S. Jang, “Molecular dynamics simulation study of a polysulfone-based anion exchange membrane in comparison with the proton exchange membrane,” The Journal of Physical Chemistry C, vol. 118, no. 24, pp. 12577–12587, 201spa
dc.relation.referencesK. Zhang, W. Yu, X. Ge, L. Wu, and T. Xu, “Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones,” Journal of Membrane Science, vol. 661, p. 120922, 2022.spa
dc.relation.referencesS. Castaneda and R. Ribadeneira, “Description of hydroxide ion structural diffusion in a quaternized SEBS anion exchange membrane using ab initio molecular dynamics,” The Journal of Physical Chemistry C, vol. 124, no. 18, pp. 9834–9851, 2020.spa
dc.relation.referencesZ. Long and M. E. Tuckerman, “Hydroxide diffusion in functionalized cylindrical nanopores as idealized models of anion exchange membrane environments: An ab initio molecular dynamics study,” The Journal of Physical Chemistry C, vol. 127, no. 6, pp. 2792–2804, 2023.spa
dc.relation.referencesT. Zelovich, Z. Long, M. Hickner, S. J. Paddison, C. Bae, and M. E. Tuckerman, “Ab initio molecular dynamics study of hydroxide diffusion mechanisms in nanoconfined structural mimics of anion exchange membranes,” The Journal of Physical Chemistry C, vol. 123, no. 8, pp. 4638–4653, 2019.spa
dc.relation.referencesI. A. Stenina and A. B. Yaroslavtsev, “Ionic mobility in ion-exchange membranes,” Membranes, vol. 11, no. 3, p. 198, 2021.spa
dc.relation.referencesV. I. Volkov, A. V. Chernyak, D. V. Golubenko, V. A. Tverskoy, G. A. Lochin, E. S. Odjigaeva, and A. B. Yaroslavtsev, “Hydration and diffusion of H+, Li+, Na+, Cs+ ions in cation-exchange membranes based on polyethylene-and sulfonated-grafted polystyrene studied by NMR technique and ionic conductivity measurements,” Membranes, vol. 10, no. 10, p. 272, 2020.spa
dc.relation.referencesJ. Wei, “Proton-conducting materials used as polymer electrolyte membranes in fuel cells,” in Polymer-based multifunctional nanocomposites and their applications, pp. 245–260, Elsevier, 2019.spa
dc.relation.referencesC. Chen, Y.-L. S. Tse, G. E. Lindberg, C. Knight, and G. A. Voth, “Hydroxide solvation and transport in anion exchange membranes,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 991–1000, 2016.spa
dc.relation.referencesQ. Berrod, S. Hanot, A. Guillermo, S. Mossa, and S. Lyonnard, “Water sub-diffusion in membranes for fuel cells,” Scientific Reports, vol. 7, no. 1, p. 8326, 2017.spa
dc.relation.referencesV. Dubey and S. Daschakraborty, “Translational jump-diffusion of hydroxide ion in anion exchange membrane: Deciphering the nature of vehicular diffusion,” The Journal of Physical Chemistry B, vol. 126, no. 12, pp. 2430–2440, 2022.spa
dc.relation.referencesM. Rezayani, F. Sharif, and H. Makki, “Understanding ion diffusion in anion exchange membranes; effects of morphology and mobility of pendant cationic groups,” Journal of Materials Chemistry A, vol. 10, no. 35, pp. 18295–18307, 2022.spa
dc.relation.referencesA. Sharifi-Viand, M. Mahjani, and M. Jafarian, “Investigation of anomalous diffusion and multifractal dimensions in polypyrrole film,” Journal of Electroanalytical Chemistry, vol. 671, pp. 51–57, 2012.spa
dc.relation.referencesD. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy and Environmental Science, vol. 7, no. 4, pp. 1434–1445, 2014.spa
dc.relation.referencesT. Rijnaarts, E. Huerta, W. van Baak, and K. Nijmeijer, “Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities,” Environmental Science & Technology, vol. 51, no. 21, pp. 13028–13035, 2017.spa
dc.relation.referencesG. M. Geise, D. R. Paul, and B. D. Freeman, “Fundamental water and salt transport properties of polymeric materials,” Progress in Polymer Science, vol. 39, no. 1, pp. 1–42, 2014.spa
dc.relation.referencesT. Luo, S. Abdu, and M. Wessling, “Selectivity of ion exchange membranes: A review,” Journal of Membrane Science, vol. 555, no. December 2017, pp. 429–454, 2018.spa
dc.relation.referencesJ. W. Post, H. V. Hamelers, and C. J. Buisman, “Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system,” Journal of Membrane Science, vol. 330, no. 1-2, pp. 65–72, 2009.spa
dc.relation.referencesP. Magnico, “Ion transport dependence on the ion pairing/solvation competition in cation-exchange membranes,” Journal of Membrane Science, vol. 483, pp. 112–127, 2015.spa
dc.relation.referencesA. Chapotot, G. Pourcelly, and C. Gavach, “Transport competition between monovalent and divalent cations through cation-exchange membranes: Exchange isotherms and kinetic concepts,” Journal of Membrane Science, vol. 96, no. 3, pp. 167–181, 1994.spa
dc.relation.referencesG. Pourcelly, P. Sistat, A. Chapotot, C. Gavach, and V. Nikonenko, “Self diffusion and conductivity in Nafion® membranes in contact with NaCl+CaCl₂ solutions,” Journal of Membrane Science, vol. 110, no. 1, pp. 69–78, 1996.spa
dc.relation.referencesE. Güler, W. van Baak, M. Saakes, and K. Nijmeijer, “Monovalent-ion-selective membranes for reverse electrodialysis,” Journal of Membrane Science, vol. 455, pp. 254–270, 2014.spa
dc.relation.referencesA. A. Moya, “Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A Nernst-Planck based study,” Journal of Membrane Science, vol. 598, no. November 2019, p. 117784, 2020.spa
dc.relation.referencesT. Rijnaarts, N. T. Shenkute, J. A. Wood, W. M. de Vos, and K. Nijmeijer, “Divalent cation removal by Donnan dialysis for improved reverse electrodialysis,” ACS Sustainable Chemistry & Engineering, vol. 6, no. 5, pp. 7035–7041, 2018.spa
dc.relation.referencesM. Vanoppen, G. Stoffels, C. Demuytere, W. Bleyaert, and A. R. Verliefde, “Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications,” Water Research, vol. 80, pp. 59–70, 2015.spa
dc.relation.referencesB. Van der Bruggen, “Ion-exchange membrane systems—Electrodialysis and other electromembrane processes,” in Fundamental Modelling of Membrane Systems, pp. 251–300, Elsevier, 2018.spa
dc.relation.referencesA. Galama, G. Daubaras, O. Burheim, H. Rijnaarts, and J. Post, “Seawater electrodialysis with preferential removal of divalent ions,” Journal of Membrane Science, vol. 452, pp. 219–228, 2014.spa
dc.relation.referencesB. Van der Bruggen, A. Koninckx, and C. Vandecasteele, “Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration,” Water Research, vol. 38, no. 5, pp. 1347–1353, 2004.spa
dc.relation.referencesV. Nikonenko, A. Nebavsky, S. Mareev, A. Kovalenko, M. Urtenov, and G. Pourcelly, “Modelling of ion transport in electromembrane systems: Impacts of membrane bulk and surface heterogeneity,” Applied Sciences (Switzerland), vol. 9, no. 1, 2018.spa
dc.relation.referencesJ. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, “Ion exchange membranes: New developments and applications,” Journal of Membrane Science, vol. 522, pp. 267–291, 2017.spa
dc.relation.referencesF. Helfferich, “Ion-Exchanger Membranes,” in Ion Exchange, ch. 8th, pp. 339–420, New York: McGraw-Hill, 1995.spa
dc.relation.referencesY. Tanaka, Ion Exchange Membranes: Fundamentals and Applications. Ibaraki: Elsevier, 2nd ed., 2015.spa
dc.relation.referencesY. Mei and C. Y. Tang, “Recent developments and future perspectives of reverse electrodialysis technology: A review,” Desalination, vol. 425, no. September 2017, pp. 156–174, 2018.spa
dc.relation.referencesW. Grot, “Experimental Methods,” in Fluorinated Ionomers, ch. 9th, pp. 211–233, Elsevier Inc., 2nd ed., 2011.spa
dc.relation.referencesP. Millet, “Hydrogen production by polymer electrolyte membrane water electrolysis,” in Compendium of Hydrogen Energy, pp. 255–286, Elsevier Ltd, 2015.spa
dc.relation.referencesK. Scott, “Membrane Materials, Preparation and Characterisation,” in Handbook of Industrial Membranes, pp. 187–269, 1995.spa
dc.relation.referencesH. Kim, J. Choi, N. Jeong, Y. G. Jung, H. Kim, D. Kim, and S. Yang, “Correlations between properties of pore-filling ion exchange membranes and performance of a reverse electrodialysis stack for high power density,” Membranes, vol. 11, no. 8, 2021.spa
dc.relation.referencesH. Fan, Y. Huang, and N. Y. Yip, “Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites,” Journal of Membrane Science, vol. 610, no. March, p. 118259, 2020.spa
dc.relation.referencesX. Sun, Y. Liu, R. Xu, and Y. Chen, “MOF-Derived Nanoporous Carbon Incorporated in the Cation Exchange Membrane for Gradient Power Generation,” Membranes, vol. 12, no. 3, p. 322, 2022.spa
dc.relation.referencesE. Güler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, “Performance-determining membrane properties in reverse electrodialysis,” Journal of Membrane Science, vol. 446, pp. 266–276, 2013.spa
dc.relation.referencesJ. Zhao, Q. Chen, L. Ren, and J. Wang, “Fabrication of hydrophilic cation exchange membrane with improved stability for electrodialysis: An excellent anti-scaling performance,” Journal of Membrane Science, vol. 617, no. April 2020, p. 118618, 2021.spa
dc.relation.referencesA. H. Avci, T. Rijnaarts, E. Fontananova, G. Di Profio, I. F. Vankelecom, W. M. De Vos, and E. Curcio, “Sulfonated polyethersulfone based cation exchange membranes for reverse electrodialysis under high salinity gradients,” Journal of Membrane Science, vol. 595, no. September 2019, p. 117585, 2020.spa
dc.relation.referencesI. Merino-Garcia, F. Kotoka, C. A. Portugal, J. G. Crespo, and S. Velizarov, “Characterization of poly(Acrylic) acid-modified heterogeneous anion exchange membranes with improved monovalent permselectivity for red,” Membranes, vol. 10, no. 6, 2020.spa
dc.relation.referencesR. Singh and D. Kim, “High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with Nanochannels for Reverse Electrodialysis,” ACS Applied Materials and Interfaces, vol. 13, no. 28, pp. 33437–33448, 2021.spa
dc.relation.referencesJ. Dong, H. Li, X. Ren, X. Che, J. Yang, and D. Aili, “Anion exchange membranes of bis-imidazolium cation crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with enhanced alkaline stability,” International Journal of Hydrogen Energy, vol. 44, no. 39, pp. 22137–22145, 2019.spa
dc.relation.referencesJ. Liao, H. Ruan, X. Gao, Q. Chen, and J. Shen, “Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis,” Journal of Membrane Science, vol. 621, no. September 2020, p. 118999, 2021.spa
dc.relation.referencesV. Yadav, N. Niluroutu, S. D. Bhat, and V. Kulshrestha, “Insight toward the Electrochemical Properties of Sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) via Impregnating Functionalized Boron Nitride: Alternate Composite Polymer Electrolyte for Direct Methanol Fuel Cell,” ACS Applied Energy Materials, vol. 3, no. 7, pp. 7091–7102, 2020.spa
dc.relation.referencesY. Sun and L. Song, “Accurate determination of electrical potential on ion exchange membranes in reverse electrodialysis,” Separations, vol. 8, no. 10, p. 170, 2021.spa
dc.relation.referencesB. A. Al-Sakaji, G. A. Husseini, and N. A. Darwish, “Impact of ionic strength and charge density on donnan potential in the NaCl-cation exchange membrane system,” Water, vol. 15, no. 21, p. 3830, 2023.spa
dc.relation.referencesG. S. Manning, “Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties,” The Journal of Chemical Physics, vol. 51, no. 3, pp. 924–933, 1969.spa
dc.relation.referencesY. Sasanuma, Conformational Analysis of Polymers: Methods and Techniques for Structure-property Relationships and Molecular Design. John Wiley & Sons, 2023.spa
dc.relation.referencesJ. G. Lee, Computational Materials Science: An Introduction. CRC Press, 2016.spa
dc.relation.referencesE. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer Dordrecht, 2011.spa
dc.relation.referencesA. R. Leach, Molecular Modelling: Principles and Applications. Pearson Education, 2001.spa
dc.relation.referencesM. González, “Force fields and molecular dynamics simulations,” École Thématique de la Société Française de la Neutronique, vol. 12, pp. 169–200, 2011.spa
dc.relation.referencesJ. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria. New Jersey: Prentice Hall PTR, third edition, 1999.spa
dc.relation.referencesL. Verlet, “Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Review, vol. 159, no. 1, p. 98, 1967.spa
dc.relation.referencesL. Monticelli and D. P. Tieleman, “Force fields for classical molecular dynamics,” in Biomolecular Simulations: Methods and Protocols (L. Monticelli and E. Salonen, eds.), ch. 8, pp. 197–211, Humana Press, Totowa, NJ, 1st edition, 2013.spa
dc.relation.referencesL. Yang, C.-H. Tan, M.-J. Hsieh, J. Wang, Y. Duan, P. Cieplak, J. Caldwell, P. A. Kollman, and R. Luo, “New-generation amber united-atom force field,” The Journal of Physical Chemistry B, vol. 110, no. 26, pp. 13166–13176, 2006.spa
dc.relation.referencesS. Patel and C. L. Brooks III, “CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations,” Journal of Computational Chemistry, vol. 25, no. 1, pp. 1–16, 2004.spa
dc.relation.referencesW. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids,” Journal of the American Chemical Society, vol. 118, no. 45, pp. 11225–11236, 1996.spa
dc.relation.referencesH. Sun, “COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds,” The Journal of Physical Chemistry B, vol. 102, no. 38, pp. 7338–7364, 1998.spa
dc.relation.referencesW. R. Scott, P. H. Hünenerger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Krüger, and W. F. Van Gunsteren, “The GROMOS biomolecular simulation program package,” The Journal of Physical Chemistry A, vol. 103, no. 19, pp. 3596–3607, 1999.spa
dc.relation.referencesP. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Physical Review, vol. 34, no. 1, p. 57, 1929.spa
dc.relation.referencesH. C. Urey and C. A. Bradley Jr., “The vibrations of pentatonic tetrahedral molecules,” Physical Review, vol. 38, no. 11, p. 1969, 1931.spa
dc.relation.referencesR. A. Buckingham, “The classical equation of state of gaseous helium, neon and argon,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 168, no. 933, pp. 264–283, 1938.spa
dc.relation.referencesK. Tang and J. P. Toennies, “An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients,” The Journal of Chemical Physics, vol. 80, no. 8, pp. 3726–3741, 1984.spa
dc.relation.referencesE. Darve, “The fast multipole method: numerical implementation,” Journal of Computational Physics, vol. 160, no. 1, pp. 195–240, 2000.spa
dc.relation.referencesJ. W. Eastwood, R. W. Hockney, and D. Lawrence, “P3M3DP—the three-dimensional periodic particle-particle/particle-mesh program,” Computer Physics Communications, vol. 19, no. 2, pp. 215–261, 1980.spa
dc.relation.referencesF. Reif, Fundamentals of Statistical and Thermal Physics, 1998.spa
dc.relation.referencesH. J. Berendsen, J. v. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984.spa
dc.relation.referencesH. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” The Journal of Chemical Physics, vol. 72, no. 4, pp. 2384–2393, 1980.spa
dc.relation.referencesW. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, vol. 31, no. 3, p. 1695, 1985.spa
dc.relation.referencesM. Parrinello and A. Rahman, “Crystal structure and pair potentials: A molecular-dynamics study,” Physical Review Letters, vol. 45, no. 14, p. 1196, 1980.spa
dc.relation.referencesJ. G. Kirkwood, “Molecular distribution in liquids,” The Journal of Chemical Physics, vol. 7, no. 10, pp. 919–925, 1939.spa
dc.relation.referencesA. S. Kim, Fundamentals of Irreversible Thermodynamics for Coupled Transport, IntechOpen, 2019.spa
dc.relation.referencesN. Lakshminarayanaiah, “Transport phenomena in artificial membranes,” Chemical Reviews, vol. 65, no. 5, pp. 491–565, 1965.spa
dc.relation.referencesJ. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, “Ion exchange membranes: New developments and applications,” Journal of Membrane Science, vol. 522, pp. 267–291, 2017.spa
dc.relation.referencesE. J. Maginn, R. A. Messerly, D. J. Carlson, D. R. Roe, and J. R. Elliot, “Best practices for computing transport properties 1. self-diffusivity and viscosity from equilibrium molecular dynamics [article v1. 0],” Living Journal of Computational Molecular Science, vol. 1, no. 1, pp. 6324–6324, 2019.spa
dc.relation.referencesE. Güler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, “Performance-determining membrane properties in reverse electrodialysis,” Journal of Membrane Science, vol. 446, pp. 266–276, 2013.spa
dc.relation.referencesN. A. M. Harun, N. Shaari, and N. F. H. Nik Zaiman, “A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly (ether ether ketone),” International Journal of Energy Research, vol. 45, no. 14, pp. 19671–19708, 2021.spa
dc.relation.referencesB. M. Mahimai, G. Sivasubramanian, K. Sekar, D. Kannaiyan, and P. Deivanayagam, “Sulfonated poly (ether ether ketone): efficient ion-exchange polymer electrolytes for fuel cell applications–a versatile review,” Materials Advances, vol. 3, no. 15, pp. 6085–6095, 2022.spa
dc.relation.referencesX. Meng, Q. Peng, J. Wen, K. Song, L. Peng, T. Wu, C. Cong, H. Ye, and Q. Zhou, “Sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid-covalent organic framework complex,” Journal of Applied Polymer Science, vol. 140, no. 18, p. e53802, 2023.spa
dc.relation.referencesP. P. Sharma, V. Yadav, A. Rajput, H. Gupta, H. Saravaia, and V. Kulshrestha, “Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis,” Desalination, vol. 496, p. 114755, 2020.spa
dc.relation.referencesB. G. Thiam, A. El Magri, and S. Vaudreuil, “An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications,” High Performance Polymers, vol. 34, no. 2, pp. 131–148, 2022.spa
dc.relation.referencesF. Chu, X. Chu, T. Lv, Z. Chen, Y. Ren, S. Zhang, N. Yuan, B. Lin, and J. Ding, “Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications,” ChemElectroChem, vol. 6, no. 19, pp. 5041–5050, 2019.spa
dc.relation.referencesJ. Kim, Y. Lee, J.-D. Jeon, and S.-Y. Kwak, “Ion-exchange composite membranes pore-filled with sulfonated poly (ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries,” Journal of Power Sources, vol. 383, pp. 1–9, 2018.spa
dc.relation.referencesA. Rajput, S. K. Raj, J. Sharma, N. H. Rathod, P. Maru, and V. Kulshrestha, “Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 614, p. 126157, 2021.spa
dc.relation.referencesG. Shukla and V. K. Shahi, “Sulfonated poly (ether ether ketone)/imidized graphene oxide composite cation exchange membrane with improved conductivity and stability for electrodialytic water desalination,” Desalination, vol. 451, pp. 200–208, 2019.spa
dc.relation.referencesM. Tripathy, P. S. Kumar, and A. P. Deshpande, “Molecular structuring and percolation transition in hydrated sulfonated poly (ether ether ketone) membranes,” The Journal of Physical Chemistry B, vol. 121, no. 18, pp. 4873–4884, 2017.spa
dc.relation.referencesY. Zhao, E. Tsuchida, Y.-K. Choe, T. Ikeshoji, M. A. Barique, and A. Ohira, “Ab initio studies on the proton dissociation and infrared spectra of sulfonated poly (ether ether ketone)(SPEEK) membranes,” Physical Chemistry Chemical Physics, vol. 16, no. 3, pp. 1041–1049, 2014.spa
dc.relation.referencesY. Marcus, “Effect of ions on the structure of water: structure making and breaking,” Chemical Reviews, vol. 109, no. 3, pp. 1346–1370, 2009.spa
dc.relation.referencesM. Andreev, J. J. de Pablo, A. Chremos, and J. F. Douglas, “Influence of ion solvation on the properties of electrolyte solutions,” The Journal of Physical Chemistry B, vol. 122, no. 14, pp. 4029–4034, 2018.spa
dc.relation.referencesD. Cao, T. Jiang, and J. Wu, “A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory,” The Journal of Chemical Physics, vol. 124, no. 16, p. 164904, 2006.spa
dc.relation.referencesC. V. Mahajan and V. Ganesan, “Atomistic simulations of structure of solvated sulfonated poly (ether ether ketone) membranes and their comparisons to Nafion: I. Nanophase segregation and hydrophilic domains,” The Journal of Physical Chemistry B, vol. 114, no. 25, pp. 8357–8366, 2010.spa
dc.relation.referencesM. J. Parnian, S. Rowshanzamir, and F. Gashoul, “Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications,” Energy, vol. 125, pp. 614–628, 2017.spa
dc.relation.referencesB. Hingerty, R. Ritchie, T. Ferrell, and J. Turner, “Dielectric effects in biopolymers: the theory of ionic saturation revisited,” Biopolymers: Original Research on Biomolecules, vol. 24, no. 3, pp. 427–439, 1985.spa
dc.relation.referencesP. Macchi and A. Sironi, “Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities,” Coordination Chemistry Reviews, vol. 238, pp. 383–412, 2003.spa
dc.relation.referencesF. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, “Tables of bond lengths determined by x-ray and neutron diffraction. part 1. bond lengths in organic compounds,” Journal of the Chemical Society, Perkin Transactions 2, no. 12, pp. S1–S19, 1987.spa
dc.relation.referencesS. Shirouzu, M. Yoshida, and N. Senda, “Conformational characteristics of polyether-ether-ketone and poly-ether-nitrile,” Japanese Journal of Applied Physics, vol. 34, no. 6R, p. 3186, 1995.spa
dc.relation.referencesW. van Scheppingen, E. Dorrestijn, I. Arends, P. Mulder, and H.-G. Korth, “Carbon-oxygen bond strength in diphenyl ether and phenyl vinyl ether: an experimental and computational study,” The Journal of Physical Chemistry A, vol. 101, no. 30, pp. 5404–5411, 1997.spa
dc.relation.referencesP. Wang, R. Shi, Y. Su, L. Tang, X. Huang, and J. Zhao, “Hydrated sodium ion clusters [Na+ (H2O)n (n= 1–6)]: An ab initio study on structures and non-covalent interaction,” Frontiers in Chemistry, vol. 7, p. 624, 2019.spa
dc.relation.referencesT. MA, G. EA, and S. MHA, “Aqueous micro-hydration of Na+ (H2O) n= 1-7 clusters: DFT study,” Open Chemistry, vol. 17, no. 1, pp. 260–269, 2019.spa
dc.relation.referencesM. Galib, M. Baer, L. Skinner, C. Mundy, T. Huthwelker, G. Schenter, C. Benmore, N. Govind, and J. L. Fulton, “Revisiting the hydration structure of aqueous Na+,” The Journal of Chemical Physics, vol. 146, no. 8, 2017.spa
dc.relation.referencesC. Liu, F. Min, L. Liu, and J. Chen, “Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study,” Chemical Physics Letters, vol. 727, pp. 31–37, 2019.spa
dc.relation.referencesF. Cipcigan, V. Sokhan, G. Martyna, and J. Crain, “Structure and hydrogen bonding at the limits of liquid water stability,” Scientific Reports, vol. 8, no. 1, p. 1718, 2018.spa
dc.relation.referencesV. Shaposhnik and E. Butyrskaya, “Computer simulation of cation-exchange membrane structure: An elementary act of hydrated ion transport,” Russian Journal of Electrochemistry, vol. 40, no. 7, pp. 767–770, 2004.spa
dc.relation.referencesM. L. Barabash, W. A. Gibby, C. Guardiani, D. G. Luchinsky, B. Luan, A. Smolyanitsky, and P. V. McClintock, “Field-dependent dehydration and optimal ionic escape paths for C2N membranes,” The Journal of Physical Chemistry B, vol. 125, no. 25, pp. 7044–7059, 2021.spa
dc.relation.referencesH. Luo, K. Chang, K. Bahati, and G. M. Geise, “Functional group configuration influences salt transport in desalination membrane materials,” Journal of Membrane Science, vol. 590, p. 117295, 2019.spa
dc.relation.referencesR. Diamond and D. Whitney, “Ion exchange,” A Series of Advances, vol. 1, p. 277, 1966.spa
dc.relation.referencesE. Tomasino, B. Mukherjee, V. D. Neelalochana, P. Scardi, and N. Ataollahi, “Computational modeling of hydrated polyamine-based anion exchange membranes via molecular dynamics simulation,” The Journal of Physical Chemistry C, vol. 128, no. 1, pp. 623–634, 2023.spa
dc.relation.referencesA. Karimi, M. S. Kalfati, and S. Rowshanzamir, “Investigation, modeling, and optimization of parameters affecting sulfonated polyether ether ketone membrane-electrode assembly,” International Journal of Hydrogen Energy, vol. 44, no. 2, pp. 1096–1109, 2019.spa
dc.relation.referencesL. Li, J. Zhang, and Y. Wang, “Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell,” Journal of Membrane Science, vol. 226, no. 1-2, pp. 159–167, 2003.spa
dc.relation.referencesJ. Xi, Z. Li, L. Yu, B. Yin, L. Wang, L. Liu, X. Qiu, and L. Chen, “Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery,” Journal of Power Sources, vol. 285, pp. 195–204, 2015.spa
dc.relation.referencesB. W. Ninham, P. N. Bolotskova, S. V. Gudkov, E. N. Baranova, V. A. Kozlov, A. V. Shkirin, M. T. Vu, and N. F. Bunkin, “Nafion swelling in salt solutions in a finite sized cell: Curious phenomena dependent on sample preparation protocol,” Polymers, vol. 14, no. 8, p. 1511, 2022.spa
dc.relation.referencesY. Wang, G. He, Z. Li, J. Hua, M. Wu, J. Gong, J. Zhang, L.-t. Ban, and L. Huang, “Novel biological hydrogel: swelling behaviors study in salt solutions with different ionic valence number,” Polymers, vol. 10, no. 2, p. 112, 2018.spa
dc.relation.referencesD. Laage and G. Stirnemann, “Effect of ions on water dynamics in dilute and concentrated aqueous salt solutions,” The Journal of Physical Chemistry B, vol. 123, no. 15, pp. 3312–3324, 2019.spa
dc.relation.referencesE. Manaure, C. Olivera-Fuentes, G. Wilczek-Vera, and J. Vera, “Pitzer equations and a model-free version of the ion interaction approach for the activity of individual ions,” Chemical Engineering Science, vol. 241, p. 116619, 2021.spa
dc.relation.referencesE. Kepten, A. Weron, G. Sikora, K. Burnecki, and Y. Garini, “Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments,” PLoS One, vol. 10, no. 2, p. e0117722, 2015.spa
dc.relation.referencesI. M. Model, “Transport in polymer-electrolyte membranes,” Journal of The Electrochemical Society, vol. 151, no. 2, pp. A311–A325, 2004.spa
dc.relation.referencesH. Azher, C. Scholes, S. Kanehashi, G. Stevens, and S. Kentish, “The effect of temperature on the permeation properties of sulphonated poly (ether ether) ketone in wet flue gas streams,” Journal of Membrane Science, vol. 519, pp. 55–63, 2016.spa
dc.relation.referencesG. Brunello, S. G. Lee, S. S. Jang, and Y. Qi, “A molecular dynamics simulation study of hydrated sulfonated poly (ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content,” Journal of Renewable and Sustainable Energy, vol. 1, no. 3, 2009.spa
dc.relation.referencesK. Kreuer, M. Ise, A. Fuchs, and J. Maier, “Proton and water transport in nano-separated polymer membranes,” Le Journal de Physique IV, vol. 10, no. PR7, pp. Pr7–279, 2000.spa
dc.relation.referencesK. D. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” Journal of Membrane Science, vol. 185, no. 1, pp. 29–39, 2001.spa
dc.relation.referencesG. Bahlakeh, M. Nikazar, M.-J. Hafezi, E. Dashtimoghadam, and M. M. Hasani-Sadrabadi, “Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether ether ketone),” International Journal of Hydrogen Energy, vol. 37, no. 13, pp. 10256–10264, 2012.spa
dc.relation.referencesG. F. Brunello, W. R. Mateker, S. G. Lee, J. I. Choi, and S. S. Jang, “Effect of temperature on structure and water transport of hydrated sulfonated poly (ether ether ketone): A molecular dynamics simulation approach,” Journal of Renewable and Sustainable Energy, vol. 3, no. 4, 2011.spa
dc.relation.referencesG. Bahlakeh, M. M. Hasani-Sadrabadi, and K. I. Jacob, “Exploring the hydrated microstructure and molecular mobility in blend polyelectrolyte membranes by quantum mechanics and molecular dynamics simulations,” RSC Advances, vol. 6, no. 42, pp. 35517–35526, 2016.spa
dc.relation.referencesÖ. Tekinalp, P. Zimmermann, S. Holdcroft, O. S. Burheim, and L. Deng, “Cation exchange membranes and process optimizations in electrodialysis for selective metal separation: a review,” Membranes, vol. 13, no. 6, p. 566, 2023.spa
dc.relation.referencesS. Subramonian and D. Clifford, “Monovalent/divalent selectivity and the charge separation concept,” Reactive Polymers, Ion Exchangers, Sorbents, vol. 9, no. 2, pp. 195–209, 1988.spa
dc.relation.referencesR. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, “Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking,” Physical Chemistry Chemical Physics, vol. 16, no. 44, pp. 24128–24164, 2014.spa
dc.relation.referencesT. R. Farhat and J. B. Schlenoff, “Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4627–4636, 2003.spa
dc.relation.referencesJ. Mackie and P. Meares, “The diffusion of electrolytes in a cation-exchange resin membrane i. theoretical,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 232, no. 1191, pp. 498–509, 1955.spa
dc.relation.referencesL. M. Thieu, L. Zhu, A. G. Korovich, M. A. Hickner, and L. A. Madsen, “Multiscale tortuous diffusion in anion and cation exchange membranes,” Macromolecules, vol. 52, no. 1, pp. 24–35, 2018.spa
dc.relation.referencesJ. M. Woudstra and K. J. Ooms, “Investigating the water in hydrated SPEEK membranes using multiple quantum filtered 2H NMR spectroscopy,” The Journal of Physical Chemistry B, vol. 116, no. 50, pp. 14724–14730, 2012.spa
dc.relation.referencesP. Kubisiak and A. Eilmes, “Estimates of electrical conductivity from molecular dynamics simulations: how to invest the computational effort,” The Journal of Physical Chemistry B, vol. 124, no. 43, pp. 9680–9689, 2020.spa
dc.relation.referencesN. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Y. Volfkovich, “Porous structure of ion exchange membranes investigated by various techniques,” Advances in Colloid and Interface Science, vol. 246, pp. 196–216, 2017.spa
dc.relation.referencesP. Knauth, L. Pasquini, B. Maranesi, K. Pelzer, R. Polini, and M. Di Vona, “Proton mobility in sulfonated polyetheretherketone (SPEEK): Influence of thermal crosslinking and annealing,” Fuel Cells, vol. 13, no. 1, pp. 79–85, 2013.spa
dc.relation.referencesR. Wang, S. Liu, L. Wang, M. Li, and C. Gao, “Understanding of nanophase separation and hydrophilic morphology in Nafion and SPEEK membranes: A combined experimental and theoretical studies,” Nanomaterials, vol. 9, no. 6, p. 869, 2019.spa
dc.relation.referencesL. Sarkisov, R. Bueno-Perez, M. Sutharson, and D. Fairen-Jimenez, “Materials informatics with Poreblazer v4.0 and the CSD MOF database,” Chemistry of Materials, vol. 32, no. 23, pp. 9849–9867, 2020.spa
dc.relation.referencesT. Luo, Y. Zhong, D. Xu, X. Wang, and M. Wessling, “Combining Manning’s theory and the ionic conductivity experimental approach to characterize selectivity of cation exchange membranes,” Journal of Membrane Science, vol. 629, p. 119263, 2021.spa
dc.relation.referencesG. Lanaro and G. Patey, “Molecular dynamics simulation of NaCl dissolution,” The Journal of Physical Chemistry B, vol. 119, no. 11, pp. 4275–4283, 2015.spa
dc.relation.referencesS. Mamatkulov, M. Fyta, and R. R. Netz, “Force fields for divalent cations based on single-ion and ion-pair properties,” The Journal of Chemical Physics, vol. 138, no. 2, 2013.spa
dc.relation.referencesR. Fuentes-Azcatl and M. C. Barbosa, “Sodium chloride, NaCl: New force field,” The Journal of Physical Chemistry B, vol. 120, no. 9, pp. 2460–2470, 2016.spa
dc.relation.referencesG. Balasubramanian, S. Murad, R. Kappiyoor, and I. K. Puri, “Structure of aqueous MgSO₄ solution: dilute to concentrated,” Chemical Physics Letters, vol. 508, no. 1-3, pp. 38–42, 2011.spa
dc.relation.referencesE. Berne and M. Weill, “A remeasurement of the self-diffusion coefficients of iodide ion in aqueous sodium iodide solutions,” The Journal of Physical Chemistry, vol. 64, no. 2, pp. 272–273, 1960.spa
dc.relation.referencesK. Tanaka, “Measurements of self-diffusion coefficients of water in pure water and in aqueous electrolyte solutions,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 71, pp. 1127–1131, 1975.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembIntercambio iónico
dc.subject.lembDinámica molecular
dc.subject.proposalMembrana de intercambio de iónicospa
dc.subject.proposalCoeficiente de autodifusiónspa
dc.subject.proposalInteracciones molecularesspa
dc.subject.proposalDinámica molecularspa
dc.subject.proposalDFTeng
dc.subject.proposalIon exchange membraneeng
dc.subject.proposalSelf-diffusion coefficienteng
dc.subject.proposalMolecular interactionseng
dc.subject.proposalMolecular dynamicseng
dc.subject.wikidataEcuación de Schrödinger
dc.subject.wikidataQuímica computacional
dc.titleSimulación molecular de una membrana de intercambio catiónico para un sistema de electrodiálisis inversaspa
dc.title.translatedMolecular simulation of a cation exchange membrane for a reverse electrodialysis systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017233187.2024.pdf
Tamaño:
9.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: