Modelo de Sistema de Recomendación para visitas guiadas, basado en computación ubicua y sensible al contexto

dc.contributor.advisorOvalle Carranza, Demetrio Arturo
dc.contributor.authorGil Vera, Juan Carlos
dc.contributor.orcidGil Vera, Juan Carlos [0000-0002-2707-8276]spa
dc.date.accessioned2024-08-26T14:18:29Z
dc.date.available2024-08-26T14:18:29Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractEl modelo propuesto pensado para funcionar en un contexto de visitas guiadas, se basa en el desarrollo de la ontología tourist en python usando la librería Owlready, y describe las entidades del modelo para visitas guiadas. La ontología permite aplicar los conceptos de ubicuidad y permite representar la sensibilidad al contexto en tres formas, con el contexto geográfico, temporal y ambiental. Para la visita guiada se considera el perfil del usuario, sus preferencias, el estado emocional y las evaluaciones de los lugares visitados, así mismo, el perfil, el itinerario y las características del sitio, las preferencias de transporte del usuario y las características de transporte del sitio. Se utilizó un lenguaje de ontologías que modela los conceptos y características del sistema de visitas guiadas que permite realizar inferencias con reglas usando el lenguaje SWRL con el razonador Pellet. Para el modelo de recomendación, se han desarrollado modelos de filtrado colaborativo, centrados en el usuario usando la media y la media ponderada de los puntajes de los sitios, y la información demográfica del usuario. Se han elaborado dos modelos de recomendación de filtrado colaborativo basado en clustering y usando filtrado con descomposición de valores singulares. Y un modelo de recomendación híbrido con una técnica de validación cruzada quíntuple. Todos los modelos fueron evaluados usando la métrica RMSE y para evaluar las predicciones se han usado las métricas de precisión, recall y F1 score. Finalmente, como aporte adicional a la tesis, se utilizó la técnica de análisis de sentimientos de Machine Learning para determinar el nivel de percepción del sitio de interés y así validar la utilidad del modelo para visitas guiadas. (Tomado de la fuente)spa
dc.description.abstractThe proposed model, designed to work in a guided tour context, is based on the development of the tourist ontology in python using the Owlready library, and describes the entities of the guided tour model. The ontology allows the application of the concepts of ubiquity and allows the representation of context sensitivity in three ways, with the geographic, temporal and environmental context. For the guided tour, the user profile, preferences, emotional state and evaluations of the places visited are considered, as well as the profile, itinerary and characteristics of the site, the user's transportation preferences and the transportation characteristics of the site. An ontology language was used that models the concepts and characteristics of the guided tour system that allows inferences to be made with rules using the SWRL language with the Pellet reasoner. For the recommendation model, collaborative filtering models have been developed, centered on the user using the mean and weighted mean of the scores of the sites, and the demographic information of the user. Two collaborative filtering recommendation models based on clustering and using filtering with singular value decomposition have been developed, as well as a hybrid recommendation model with a quintuple cross-validation technique. All models were evaluated using the RMSE metric and the precision, recall and F1 score metrics were used to evaluate the predictions. Finally, as an additional contribution to the thesis, the Machine Learning sentiment analysis technique was used to determine the level of perception of the site of interest and thus validate the usefulness of the model for guided tours.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Ingeniería de Sistemasspa
dc.description.methodsModelo que parte del diseño de una ontologíaspa
dc.description.researchareaInteligencia Artificialspa
dc.format.extent175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86753
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbbasi-Moud, Z., Vahdat-Nejad, H., & Sadri, J. (2021). Tourism recommendation system based on semantic clustering and sentiment analysis. Expert Systems with Applications, 167, 114324. https://doi.org/10.1016/j.eswa.2020.114324spa
dc.relation.referencesAbowd, G. D., Ebling, M., Hunt, G., Hui, L., & Gellersen, H. W. (2002). Context-aware computing (Vol. 1, Número 3, p. 23). https://doi.org/10.1109/MPRV.2002.1037718spa
dc.relation.referencesAlaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment Analysis in Tourism: Capitalizing on Big Data. Journal of Travel Research, 58(2), 175–191. https://doi.org/10.1177/0047287517747753spa
dc.relation.referencesAldayel, M., Al-Nafjan, A., Al-Nuwaiser, W. M., Alrehaili, G., & Alyahya, G. (2023). Collaborative Filtering-Based Recommendation Systems for Touristic Businesses, Attractions, and Destinations. Electronics, 12(19), 4047. https://doi.org/10.3390/electronics12194047spa
dc.relation.referencesAlkhafaji, A., Fallahkhair, S., & Haig, E. (2020). A theoretical framework for designing smart and ubiquitous learning environments for outdoor cultural heritage. Journal of Cultural Heritage, 46, 244–258. https://doi.org/10.1016/j.culher.2020.08.006spa
dc.relation.referencesAnsari, S. A. (s/f). Building a recomendation engine with Scala (p. 2).spa
dc.relation.referencesBickerton, E. (2017). Out of context. Apollo, 2017-July(July-August), 58–62. https://doi.org/10.5840/philtheol20186792spa
dc.relation.referencesBrusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2–3), 87–129. https://doi.org/10.1007/BF00143964spa
dc.relation.referencesBuhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tourism Management, 29(4), 609–623. https://doi.org/10.1016/j.tourman.2008.01.005spa
dc.relation.referencesCena, F., Likavec, S., & Rapp, A. (2019). Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing: State of the Art and Future Directions. Information Systems Frontiers, 21(5), 1085–1110. https://doi.org/10.1007/s10796-017-9818-3spa
dc.relation.referencesChalmers, M. (2004). A historical view of context. Computer Supported Cooperative Work: CSCW: An International Journal, 13(3–4), 223–247. https://doi.org/10.1007/s10606-004-2802-8spa
dc.relation.referencesChang, G., Healey, M. J., McHugh, J. A. M., & Wang, J. T. L. (2001). Web Mining. 43(8), 93–104. https://doi.org/10.1007/978-1-4615-1639-2_7spa
dc.relation.referencesChen, C.-C., & Tsai, J.-L. (2019). Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Generation Computer Systems, 96, 628–638. https://doi.org/10.1016/j.future.2017.02.028spa
dc.relation.referencesDey, Akd., A. (2001). Understanding and using context. Personal and Ubiquitous Computing. Retrieved from http://dl. acm. org/citation. cfm?id=593572. (2001). Understanding and using context. Personal and ubiquitous computing, 4–7. https://doi.org/10.1016/j.healthplace.2012.01.006spa
dc.relation.referencesDourish, P., & Damasceno, C. S. (2016). Ubiquitous computing. Dialogues on Mobile Communication, 804, 67–86. https://doi.org/10.4324/9781315534619spa
dc.relation.referencesEsmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301spa
dc.relation.referencesEtaiwi, W., & Naymat, G. (2017). The Impact of applying Different Preprocessing Steps on Review Spam Detection. Procedia Computer Science, 113, 273–279. https://doi.org/10.1016/j.procs.2017.08.368spa
dc.relation.referencesFeng, L., Apers, P. M. G., & Jonker, W. (2004). Towards context-aware data management for ambient intelligence. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3180, 422–431. https://doi.org/10.1007/978-3-540-30075-5_41spa
dc.relation.referencesGhafoori, H. R., Sadeghi-Niaraki, A., Alesheikh, A. A., & Choi, S.-M. (2022). Ubiquitous GIS based outdoor evacuation assistance: An effective response to earthquake disasters. International Journal of Disaster Risk Reduction, 81, 103232. https://doi.org/10.1016/j.ijdrr.2022.103232spa
dc.relation.referencesHodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022spa
dc.relation.referencesHöpken, W., Fuchs, M., Zanker, M., & Beer, T. (2010). Context-Based Adaptation of Mobile Applications in Tourism. Information Technology & Tourism, 12(2), 175–195. https://doi.org/10.3727/109830510X12887971002783spa
dc.relation.referencesHu, Y., Gao, S., Janowicz, K., Yu, B., Li, W., & Prasad, S. (2015). Extracting and understanding urban areas of interest using geotagged photos. Computers, Environment and Urban Systems, 54, 240–254. https://doi.org/10.1016/j.compenvurbsys.2015.09.001spa
dc.relation.referencesIslam, M. F., & Fonzone, A. (2021). Bus passenger path choices after consulting ubiquitous real-time information. Travel Behaviour and Society, 23(August 2020), 226– 239. https://doi.org/10.1016/j.tbs.2021.01.001spa
dc.relation.referencesJeon, N. J., Leem, C. S., Kim, M. H., & Shin, H. G. (2007). A taxonomy of ubiquitous computing applications. Wireless Personal Communications, 43(4), 1229–1239. https://doi.org/10.1007/s11277-007-9297-9spa
dc.relation.referencesJiao, X., Xiao, Y., Zheng, W., Wang, H., & Hsu, C. H. (2019). A novel next new point-of- interest recommendation system based on simulated user travel decision-making process. Future Generation Computer Systems, 100, 982–993. https://doi.org/10.1016/j.future.2019.05.065spa
dc.relation.referencesKano, Y., & Nakajima, T. (2018). International Journal of Pervasive Computing and Communications Article information : International Journal of Pervasive Computing and Communications, 14(1), 15–32.spa
dc.relation.referencesLi, J., Yang, Y., Gong, X., Jiang, J., Lu, Y., Lu, J., & Xie, S. (2023). Point-of-Interest Recommendations Based on Immediate User Preferences and Contextual Influences. Electronics, 12(20), 4199. https://doi.org/10.3390/electronics12204199spa
dc.relation.referencesLiang, Z. (2022). Context-Aware Sleep Health Recommender Systems (CASHRS): A Narrative Review. Electronics, 11(20), 3384. https://doi.org/10.3390/electronics1120338spa
dc.relation.referencesMadeira, R. N. (2012). Personalization in pervasive spaces towards smart interactions design. 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2012, March, 548–549. https://doi.org/10.1109/PerComW.2012.6197568spa
dc.relation.referencesMcdonald, D. W. (s/f). Systems. 111–112.spa
dc.relation.referencesMcKenzie, G., Janowicz, K., Gao, S., & Gong, L. (2015). How where is when? On the regional variability and resolution of geosocial temporal signatures for points of interest. Computers, Environment and Urban Systems, 54, 336–346. https://doi.org/10.1016/j.compenvurbsys.2015.10.002spa
dc.relation.referencesPalomino, P. T., Toda, A. M., Rodrigues, L., Oliveira, W., Nacke, L., & Isotani, S. (2022). An ontology for modelling user’ profiles and activities in gamified education. Research and Practice in Technology Enhanced Learning, 18, 018. https://doi.org/10.58459/rptel.2023.18018spa
dc.relation.referencesPark, H., Kwon, S., & Kwon, H.-C. (2009). Ontology-based Approach to Intelligent Ubiquitous Tourist Information System. Proceedings of the 4th International Conference on Ubiquitous Information Technologies & Applications, 1–6. https://doi.org/10.1109/ICUT.2009.5405697spa
dc.relation.referencesPotonniée, O. (2002). Ubiquitous Personalization: A Smart Card Based Approach. Proc. of 4th Gemplus Developer Conference.spa
dc.relation.referencesRaza, S., & Ding, C. (2019). Progress in context-aware recommender systems—An overview. Computer Science Review, 31, 84–97. https://doi.org/10.1016/j.cosrev.2019.01.001spa
dc.relation.referencesRestrepo Medina, S. E. (2012). Modelo de Inteligencia Ambiental basado en la integración de Redes de Sensores Inalámbricas y Agentes Inteligentes. Bdigital.Unal.Edu.Co, 126–126.spa
dc.relation.referencesSalur, M. U., Aydin, I., & Alghrsi, S. A. (2019). SmartSenti: A Twitter-Based Sentiment Analysis System for the Smart Tourism in Turkey. 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–5. https://doi.org/10.1109/IDAP.2019.8875922spa
dc.relation.referencesSantos, V. (2013). Use of Social Paradigms in Mobile Context-aware Computing. Procedia Technology, 9, 100–113. https://doi.org/10.1016/j.protcy.2013.12.011spa
dc.relation.referencesSchürholz, D., Kubler, S., & Zaslavsky, A. (2020). Artificial intelligence-enabled context- aware air quality prediction for smart cities. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.121941spa
dc.relation.referencesVillegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context- aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173–200. https://doi.org/10.1016/j.knosys.2017.11.003spa
dc.relation.referencesZhang, B., Yin, C., David, B., Xiong, Z., & Niu, W. (2016). Facilitating professionals’ work- based learning with context-aware mobile system. Science of Computer Programming, 129, 3–19. https://doi.org/10.1016/j.scico.2016.01.008spa
dc.relation.referencesZheng, W., Liao, Z., & Lin, Z. (2020). Navigating through the complex transport system: A heuristic approach for city tourism recommendation. Tourism Management, 81, 104162. https://doi.org/10.1016/j.tourman.2020.104162spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembComputación ubicua
dc.subject.lembProcesamiento electrónico de datos - Procesamiento distribuido
dc.subject.lembDesarrollo de programas para computador
dc.subject.lembMétodos orientados a objetos (Computadores)
dc.subject.proposalmodelo de recomendaciónspa
dc.subject.proposalanálisis de sentimientosspa
dc.subject.proposalvisita guiadaspa
dc.subject.proposalsensibilidad al contextospa
dc.subject.proposalubicuidadspa
dc.subject.proposalrecommendation modeleng
dc.subject.proposalsentiment analysiseng
dc.subject.proposalguided toureng
dc.subject.proposalcontext sensitivityeng
dc.subject.proposalubiquityeng
dc.titleModelo de Sistema de Recomendación para visitas guiadas, basado en computación ubicua y sensible al contextospa
dc.title.translatedRecommendation System Model for guided tours, based on ubiquitous and context-sensitive computingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71360447.2024.pdf
Tamaño:
3.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: