Modelo de Sistema de Recomendación para visitas guiadas, basado en computación ubicua y sensible al contexto
dc.contributor.advisor | Ovalle Carranza, Demetrio Arturo | |
dc.contributor.author | Gil Vera, Juan Carlos | |
dc.contributor.orcid | Gil Vera, Juan Carlos [0000-0002-2707-8276] | spa |
dc.date.accessioned | 2024-08-26T14:18:29Z | |
dc.date.available | 2024-08-26T14:18:29Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | El modelo propuesto pensado para funcionar en un contexto de visitas guiadas, se basa en el desarrollo de la ontología tourist en python usando la librería Owlready, y describe las entidades del modelo para visitas guiadas. La ontología permite aplicar los conceptos de ubicuidad y permite representar la sensibilidad al contexto en tres formas, con el contexto geográfico, temporal y ambiental. Para la visita guiada se considera el perfil del usuario, sus preferencias, el estado emocional y las evaluaciones de los lugares visitados, así mismo, el perfil, el itinerario y las características del sitio, las preferencias de transporte del usuario y las características de transporte del sitio. Se utilizó un lenguaje de ontologías que modela los conceptos y características del sistema de visitas guiadas que permite realizar inferencias con reglas usando el lenguaje SWRL con el razonador Pellet. Para el modelo de recomendación, se han desarrollado modelos de filtrado colaborativo, centrados en el usuario usando la media y la media ponderada de los puntajes de los sitios, y la información demográfica del usuario. Se han elaborado dos modelos de recomendación de filtrado colaborativo basado en clustering y usando filtrado con descomposición de valores singulares. Y un modelo de recomendación híbrido con una técnica de validación cruzada quíntuple. Todos los modelos fueron evaluados usando la métrica RMSE y para evaluar las predicciones se han usado las métricas de precisión, recall y F1 score. Finalmente, como aporte adicional a la tesis, se utilizó la técnica de análisis de sentimientos de Machine Learning para determinar el nivel de percepción del sitio de interés y así validar la utilidad del modelo para visitas guiadas. (Tomado de la fuente) | spa |
dc.description.abstract | The proposed model, designed to work in a guided tour context, is based on the development of the tourist ontology in python using the Owlready library, and describes the entities of the guided tour model. The ontology allows the application of the concepts of ubiquity and allows the representation of context sensitivity in three ways, with the geographic, temporal and environmental context. For the guided tour, the user profile, preferences, emotional state and evaluations of the places visited are considered, as well as the profile, itinerary and characteristics of the site, the user's transportation preferences and the transportation characteristics of the site. An ontology language was used that models the concepts and characteristics of the guided tour system that allows inferences to be made with rules using the SWRL language with the Pellet reasoner. For the recommendation model, collaborative filtering models have been developed, centered on the user using the mean and weighted mean of the scores of the sites, and the demographic information of the user. Two collaborative filtering recommendation models based on clustering and using filtering with singular value decomposition have been developed, as well as a hybrid recommendation model with a quintuple cross-validation technique. All models were evaluated using the RMSE metric and the precision, recall and F1 score metrics were used to evaluate the predictions. Finally, as an additional contribution to the thesis, the Machine Learning sentiment analysis technique was used to determine the level of perception of the site of interest and thus validate the usefulness of the model for guided tours. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ingeniería - Ingeniería de Sistemas | spa |
dc.description.methods | Modelo que parte del diseño de una ontología | spa |
dc.description.researcharea | Inteligencia Artificial | spa |
dc.format.extent | 175 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86753 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abbasi-Moud, Z., Vahdat-Nejad, H., & Sadri, J. (2021). Tourism recommendation system based on semantic clustering and sentiment analysis. Expert Systems with Applications, 167, 114324. https://doi.org/10.1016/j.eswa.2020.114324 | spa |
dc.relation.references | Abowd, G. D., Ebling, M., Hunt, G., Hui, L., & Gellersen, H. W. (2002). Context-aware computing (Vol. 1, Número 3, p. 23). https://doi.org/10.1109/MPRV.2002.1037718 | spa |
dc.relation.references | Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment Analysis in Tourism: Capitalizing on Big Data. Journal of Travel Research, 58(2), 175–191. https://doi.org/10.1177/0047287517747753 | spa |
dc.relation.references | Aldayel, M., Al-Nafjan, A., Al-Nuwaiser, W. M., Alrehaili, G., & Alyahya, G. (2023). Collaborative Filtering-Based Recommendation Systems for Touristic Businesses, Attractions, and Destinations. Electronics, 12(19), 4047. https://doi.org/10.3390/electronics12194047 | spa |
dc.relation.references | Alkhafaji, A., Fallahkhair, S., & Haig, E. (2020). A theoretical framework for designing smart and ubiquitous learning environments for outdoor cultural heritage. Journal of Cultural Heritage, 46, 244–258. https://doi.org/10.1016/j.culher.2020.08.006 | spa |
dc.relation.references | Ansari, S. A. (s/f). Building a recomendation engine with Scala (p. 2). | spa |
dc.relation.references | Bickerton, E. (2017). Out of context. Apollo, 2017-July(July-August), 58–62. https://doi.org/10.5840/philtheol20186792 | spa |
dc.relation.references | Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2–3), 87–129. https://doi.org/10.1007/BF00143964 | spa |
dc.relation.references | Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tourism Management, 29(4), 609–623. https://doi.org/10.1016/j.tourman.2008.01.005 | spa |
dc.relation.references | Cena, F., Likavec, S., & Rapp, A. (2019). Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing: State of the Art and Future Directions. Information Systems Frontiers, 21(5), 1085–1110. https://doi.org/10.1007/s10796-017-9818-3 | spa |
dc.relation.references | Chalmers, M. (2004). A historical view of context. Computer Supported Cooperative Work: CSCW: An International Journal, 13(3–4), 223–247. https://doi.org/10.1007/s10606-004-2802-8 | spa |
dc.relation.references | Chang, G., Healey, M. J., McHugh, J. A. M., & Wang, J. T. L. (2001). Web Mining. 43(8), 93–104. https://doi.org/10.1007/978-1-4615-1639-2_7 | spa |
dc.relation.references | Chen, C.-C., & Tsai, J.-L. (2019). Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Generation Computer Systems, 96, 628–638. https://doi.org/10.1016/j.future.2017.02.028 | spa |
dc.relation.references | Dey, Akd., A. (2001). Understanding and using context. Personal and Ubiquitous Computing. Retrieved from http://dl. acm. org/citation. cfm?id=593572. (2001). Understanding and using context. Personal and ubiquitous computing, 4–7. https://doi.org/10.1016/j.healthplace.2012.01.006 | spa |
dc.relation.references | Dourish, P., & Damasceno, C. S. (2016). Ubiquitous computing. Dialogues on Mobile Communication, 804, 67–86. https://doi.org/10.4324/9781315534619 | spa |
dc.relation.references | Esmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301 | spa |
dc.relation.references | Etaiwi, W., & Naymat, G. (2017). The Impact of applying Different Preprocessing Steps on Review Spam Detection. Procedia Computer Science, 113, 273–279. https://doi.org/10.1016/j.procs.2017.08.368 | spa |
dc.relation.references | Feng, L., Apers, P. M. G., & Jonker, W. (2004). Towards context-aware data management for ambient intelligence. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3180, 422–431. https://doi.org/10.1007/978-3-540-30075-5_41 | spa |
dc.relation.references | Ghafoori, H. R., Sadeghi-Niaraki, A., Alesheikh, A. A., & Choi, S.-M. (2022). Ubiquitous GIS based outdoor evacuation assistance: An effective response to earthquake disasters. International Journal of Disaster Risk Reduction, 81, 103232. https://doi.org/10.1016/j.ijdrr.2022.103232 | spa |
dc.relation.references | Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022 | spa |
dc.relation.references | Höpken, W., Fuchs, M., Zanker, M., & Beer, T. (2010). Context-Based Adaptation of Mobile Applications in Tourism. Information Technology & Tourism, 12(2), 175–195. https://doi.org/10.3727/109830510X12887971002783 | spa |
dc.relation.references | Hu, Y., Gao, S., Janowicz, K., Yu, B., Li, W., & Prasad, S. (2015). Extracting and understanding urban areas of interest using geotagged photos. Computers, Environment and Urban Systems, 54, 240–254. https://doi.org/10.1016/j.compenvurbsys.2015.09.001 | spa |
dc.relation.references | Islam, M. F., & Fonzone, A. (2021). Bus passenger path choices after consulting ubiquitous real-time information. Travel Behaviour and Society, 23(August 2020), 226– 239. https://doi.org/10.1016/j.tbs.2021.01.001 | spa |
dc.relation.references | Jeon, N. J., Leem, C. S., Kim, M. H., & Shin, H. G. (2007). A taxonomy of ubiquitous computing applications. Wireless Personal Communications, 43(4), 1229–1239. https://doi.org/10.1007/s11277-007-9297-9 | spa |
dc.relation.references | Jiao, X., Xiao, Y., Zheng, W., Wang, H., & Hsu, C. H. (2019). A novel next new point-of- interest recommendation system based on simulated user travel decision-making process. Future Generation Computer Systems, 100, 982–993. https://doi.org/10.1016/j.future.2019.05.065 | spa |
dc.relation.references | Kano, Y., & Nakajima, T. (2018). International Journal of Pervasive Computing and Communications Article information : International Journal of Pervasive Computing and Communications, 14(1), 15–32. | spa |
dc.relation.references | Li, J., Yang, Y., Gong, X., Jiang, J., Lu, Y., Lu, J., & Xie, S. (2023). Point-of-Interest Recommendations Based on Immediate User Preferences and Contextual Influences. Electronics, 12(20), 4199. https://doi.org/10.3390/electronics12204199 | spa |
dc.relation.references | Liang, Z. (2022). Context-Aware Sleep Health Recommender Systems (CASHRS): A Narrative Review. Electronics, 11(20), 3384. https://doi.org/10.3390/electronics1120338 | spa |
dc.relation.references | Madeira, R. N. (2012). Personalization in pervasive spaces towards smart interactions design. 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2012, March, 548–549. https://doi.org/10.1109/PerComW.2012.6197568 | spa |
dc.relation.references | Mcdonald, D. W. (s/f). Systems. 111–112. | spa |
dc.relation.references | McKenzie, G., Janowicz, K., Gao, S., & Gong, L. (2015). How where is when? On the regional variability and resolution of geosocial temporal signatures for points of interest. Computers, Environment and Urban Systems, 54, 336–346. https://doi.org/10.1016/j.compenvurbsys.2015.10.002 | spa |
dc.relation.references | Palomino, P. T., Toda, A. M., Rodrigues, L., Oliveira, W., Nacke, L., & Isotani, S. (2022). An ontology for modelling user’ profiles and activities in gamified education. Research and Practice in Technology Enhanced Learning, 18, 018. https://doi.org/10.58459/rptel.2023.18018 | spa |
dc.relation.references | Park, H., Kwon, S., & Kwon, H.-C. (2009). Ontology-based Approach to Intelligent Ubiquitous Tourist Information System. Proceedings of the 4th International Conference on Ubiquitous Information Technologies & Applications, 1–6. https://doi.org/10.1109/ICUT.2009.5405697 | spa |
dc.relation.references | Potonniée, O. (2002). Ubiquitous Personalization: A Smart Card Based Approach. Proc. of 4th Gemplus Developer Conference. | spa |
dc.relation.references | Raza, S., & Ding, C. (2019). Progress in context-aware recommender systems—An overview. Computer Science Review, 31, 84–97. https://doi.org/10.1016/j.cosrev.2019.01.001 | spa |
dc.relation.references | Restrepo Medina, S. E. (2012). Modelo de Inteligencia Ambiental basado en la integración de Redes de Sensores Inalámbricas y Agentes Inteligentes. Bdigital.Unal.Edu.Co, 126–126. | spa |
dc.relation.references | Salur, M. U., Aydin, I., & Alghrsi, S. A. (2019). SmartSenti: A Twitter-Based Sentiment Analysis System for the Smart Tourism in Turkey. 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–5. https://doi.org/10.1109/IDAP.2019.8875922 | spa |
dc.relation.references | Santos, V. (2013). Use of Social Paradigms in Mobile Context-aware Computing. Procedia Technology, 9, 100–113. https://doi.org/10.1016/j.protcy.2013.12.011 | spa |
dc.relation.references | Schürholz, D., Kubler, S., & Zaslavsky, A. (2020). Artificial intelligence-enabled context- aware air quality prediction for smart cities. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.121941 | spa |
dc.relation.references | Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context- aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173–200. https://doi.org/10.1016/j.knosys.2017.11.003 | spa |
dc.relation.references | Zhang, B., Yin, C., David, B., Xiong, Z., & Niu, W. (2016). Facilitating professionals’ work- based learning with context-aware mobile system. Science of Computer Programming, 129, 3–19. https://doi.org/10.1016/j.scico.2016.01.008 | spa |
dc.relation.references | Zheng, W., Liao, Z., & Lin, Z. (2020). Navigating through the complex transport system: A heuristic approach for city tourism recommendation. Tourism Management, 81, 104162. https://doi.org/10.1016/j.tourman.2020.104162 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.lemb | Computación ubicua | |
dc.subject.lemb | Procesamiento electrónico de datos - Procesamiento distribuido | |
dc.subject.lemb | Desarrollo de programas para computador | |
dc.subject.lemb | Métodos orientados a objetos (Computadores) | |
dc.subject.proposal | modelo de recomendación | spa |
dc.subject.proposal | análisis de sentimientos | spa |
dc.subject.proposal | visita guiada | spa |
dc.subject.proposal | sensibilidad al contexto | spa |
dc.subject.proposal | ubicuidad | spa |
dc.subject.proposal | recommendation model | eng |
dc.subject.proposal | sentiment analysis | eng |
dc.subject.proposal | guided tour | eng |
dc.subject.proposal | context sensitivity | eng |
dc.subject.proposal | ubiquity | eng |
dc.title | Modelo de Sistema de Recomendación para visitas guiadas, basado en computación ubicua y sensible al contexto | spa |
dc.title.translated | Recommendation System Model for guided tours, based on ubiquitous and context-sensitive computing | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71360447.2024.pdf
- Tamaño:
- 3.83 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: