Evaluación de una planta a escala piloto para la producción de sucroésteres en un proceso libre de solvente

dc.contributor.advisorOrjuela Londoño, Álvarospa
dc.contributor.advisorGutiérrez Sánchez, María Fernandaspa
dc.contributor.authorRodriguez Reyes, Angélica Johannaspa
dc.date.accessioned2025-07-02T12:46:37Z
dc.date.available2025-07-02T12:46:37Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractEste trabajo se enfocó en la evaluación y escalamiento al nivel de planta piloto de un proceso para la producción de palmitato de sacarosa a través de transesterificación de metíl palmitato (MP) y sacarosa (SAC). Durante la reacción SAC y MP reaccionan usando carbonato de potasio como catalizador y empelando un tensoactivo para compatibilizar los reactantes. Como resultado del proceso se obtiene una mezcla de mono, di, tri y tetra palmitato de sacarosa (SMP, SDP, STP, STeP) y metanol (MeOH) como subproducto. Partiendo de una validación experimental previa a nivel laboratorio se determinaron las mejores condiciones de producción de SE (T reacción = 130°C-150°C, P de vacío = 0.5 bar -0.7 bar y relación de reactivos MP/SAC = 1-1,5) para evaluar en la escala piloto. Los ensayos se realizaron en un equipo existente en el laboratorio de ingeniería química de la Universidad Nacional de Colombia, para el cual fue necesario actualizar la documentación técnica, garantizar la estanqueidad y establecer características operativas, tal como las velocidades de calentamiento y refrigeración, y las velocidades de agitación. Esto último obligó a adelantar trabajos de adecuación que incluyeron aislamiento térmicos de tuberías y unidades, cambio de empaques, arreglo de piezas defectuosas y adecuación de la caja de control. Posteriormente, se elaboraron los respectivos planos de tubería e instrumentación (P&ID) y los protocolos de operación segura (SOP). Los experimentos piloto se realizaron evaluando el efecto de la temperatura, la velocidad de adición de sacarosa y relación FAME/SAC sobre la productividad y la conversión. Se realizó un diseño de tres factores y tres niveles, y se determinó que el incremento de la temperatura de reacción tiene un efecto positivo sobre la productividad de la reacción en un tiempo de 4 horas, mientras que la adición de sacarosa y relación FAME/SAC no representaron un efecto significativamente estadístico sobre la conversión. Adicionalmente, durante la etapa experimental se determina que la viscosidad tiene una gran influencia sobre la reacción y se determinan varios factores para tener en cuenta respecto a la operatividad del equipo. Con base en estos resultados se realizó el escalado a un sistema de producción de 50 kg por lote, diseñando y construyendo una planta piloto que se instaló en la empresa Larkin S.A. para seguir evaluando el proceso en la escala semi-productiva (Texto tomado de la fuente).spa
dc.description.abstractThis work focused on the evaluation and scale-up to the pilot plant level of a process for the production of sucrose palmitate through transesterification of methyl palmitate (MP) and saccharose (SAC). During the reaction, SAC and MP react using potassium carbonate as a catalyst and a surfactant to enhance reactants compatibility. The process results in a mixture of mono-, di-, tri- and tetra-saccharose palmitate (SMP, SDP, STP, STeP) and methanol (MeOH) as a by-product. Based on a previous experimental validation at laboratory level, the best conditions for SE production were determined (T reaction = 130°C-150°C, P vacuum = 0.5 bar -0.7 bar and MP/SAC reagent ratio = 1-1.5) to be evaluated on the pilot scale. The tests were carried out on existing equipment in the chemical engineering laboratory, for which it was necessary to update the technical documentation, ensure tightness and establish operational characteristics, such as heating and cooling rates, and stirring speeds. The latter required corrective maintenance that included thermal insulation of pipes and units, replacement of packings, repair of defective parts and adaptation of the control box. Subsequently, the respective piping and instrumentation drawings (P&ID) and safe operation protocols (SOP) were prepared. Pilot experiments were conducted to evaluate the effect of temperature, saccharose addition rate and FAME/SAC ratio on productivity and conversion. A three-factor, three-level design was used, and it was determined that increasing the reaction temperature has a positive effect on the productivity of the reaction in a time of 4 hours, while saccharose addition and FAME/SAC ratio did not represent a statistically significant effect on conversion. Additionally, during the experimental stage it was determined that viscosity has a great influence on the reaction and several factors were determined to be considered regarding the operation of the equipment. Based on these results, the scale-up to a 50 kg per batch production system was carried out, designing and building a pilot plant that was installed at Larkin S.A. for further evaluation of the process at semi-productive scale.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería – Ingeniería Químicaspa
dc.description.researchareaBiorrefinerías-biocombustiblesspa
dc.format.extentxv, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88268
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbbasi,S. & Nejatian, M. (2022) Application of bio-based emulsifiers in the formulation of food-grade nanoemulsions. Nanobiotechnology for Plant Protection, 311-327 DOI: 10.1016/B978-0-323-89846-1.00021-8.spa
dc.relation.referencesAbel, M., Abayeh, J. O., Duru, R. U. & Ozioma, A. (2022) Catalytic methods for the synthesis of sugar esters. Catal Ind, 14 (1), 115–130, 2022, DOI: 10.1134/S2070050422010068.spa
dc.relation.referencesAdewuyi, A., Bello, O.R. & Oderinde, R. A. (2016) Sucrose fatty esters from underutilized seed oil of Terminalia catappa as potential steel corrosion inhibitor in acidic medium, Journal of Electrochemical Science and Engineering, 6 (4), 287–294, 2016, DOI: 10.5599/jese.316.spa
dc.relation.referencesAkbar, A. & Ali, I. (2017) Value-Added By-Products from Sugar Processing Industries. DOI: 10.1002/9781118432921.ch21.spa
dc.relation.referencesÁlvarez, M. (2004). La industria de los surfactantes: Tendencias mundiales y perspectivas para Colombia: The Surfactant Industry: Worldwide Trends and Prospects in Colombia.spa
dc.relation.referencesAmiri, A. Hosseini, N. Ulven, C. A & Webster,D.C (2015) Advanced biocomposites made from methacrylated epoxidized sucrose soyate resin reinforced with flax fibers, in ICCM International Conferences on Composite Materials. DOI:10.13140/RG.2.1.1062.8965spa
dc.relation.referencesAnh, T. V., Bui, D.H., Hang, T.M. & Luyen, H. (2024) Potential antithrombotic effect of two new phenylpropanoid sucrose esters and other secondary metabolites of Canna indica L. rhizome. Natural Product Research, 38 (6), 897-905. DOI: https://doi.org/10.1080/14786419.2023.2262712spa
dc.relation.referencesAsocaña. (2020). Informe anual Asocaña 2019-2020-Aspectos generales del Sector agroindustrial de la caña [Informe]. https://www.asocana.orgspa
dc.relation.referencesBaeten, V., Danthine, S. & Da Silva, T. (2023) Modifying sucrose esters oleogels properties using different structuration routes. Food Chemistry, 405. https://doi.org/10.1016/j.foodchem.2022.134927 Progress in Agricultural Engineering Sciences, 16, 101–108.spa
dc.relation.referencesBaiázs, B., Berkó, S., Budai-Szucs, M. Csizmazia, E., Csányi, E. & Szabó-Révész, P. (2015) New approach of sucrose myristate as a promising penetration enhancer in dermal preparations, Tenside, Surfactants, Detergents, 52 (5), 375–379. DOI: 10.3139/113.110388.spa
dc.relation.referencesBanwell, M., Lan, P., Teng, Y. & White,L. (2023) The useful biological properties of sucrose esters: Opportunities for the development of new functional foods. Critical Reviews in Food Science and Nutrition, 64(22), 8018-8035. DOI: https://doi.org/10.1080/10408398.2023.2194438.spa
dc.relation.referencesBotto, E. et al. (2022) Enzymatic Production of Lauroyl and Stearoyl Monoesters of D-Xylose, L-Arabinose, and D-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts, 12 (6). DOI: 10.3390/catal12060610.spa
dc.relation.referencesCai, Y. et al (2024) Effect of hydrophobic sucrose esters with different fat acid composition and esterification degree on whipped cream properties. Food Hidrocoloids, 146 https://doi.org/10.1016/j.foodhyd.2023.109183.spa
dc.relation.referencesCansian, A. B. M., De Sousa Júnior, R., Furlan, F.F. & Tardioli, P. W. (2022) Modeling and simulation of the biosurfactant production by enzymatic route using xylose and oleic acid as reagents | modelovanje i simulacija enzimske proizvodnje biosurfaktanta korišćenjem ksiloze i oleinske kiseline. Chemical Industry and Chemical Engineering Quarterly, 28 (4), 265–276, 2022, DOI: 10.2298/CICEQ210621001C.spa
dc.relation.referencesCenter for Collective Learning (2022), Observatory of Complexity Economic - Non ionic surface active agents https://oec.world/en/profile/hs/non-ionic-surface-active-agents.spa
dc.relation.referencesChaiwut, P., Jirarat, A., Pintathong, P., Sangthong, S. & Tiensri, N. (2022) Green synthesis optimization of glucose palm oleate and its potential use as natural surfactant in cosmetic emulsion. Cosmetics, 9 (4), 76. DOI: 10.3390/cosmetics9040076.spa
dc.relation.referencesChavarrio, J.E., Gutiérrez, M.F & Orjuela, Á. (2020) A Quantitative Multi-Criteria Solvent Selection Method for Extraction Processes: Case Study—Downstream Purification of Sucrose-Based Surfactants. J Surfactants Deterg, 23 (3), 513–526. DOI: 10.1002/jsde.12397.spa
dc.relation.referencesChen, G., Li, Y., Tebben, L. & Tilley, M. (2022) Improvement of whole wheat dough and bread properties by emulsifiers. Grain and Oil Science and Technology, 5 (2),59–69.DOI: 10.1016/j.gaost.2022.05.001.spa
dc.relation.referencesChen, J., Chen, X., Gao, M., Li, Y.; Mai, Y., Wang, X. & Zhang, J. (2019). Efficient Solvent‐Free Synthesis of Sucrose Esters via Sand‐Milling Pretreatment on Solid–Liquid Mixtures. Journal of Surfactants and Detergents, jsde.12314–. doi:10.1002/jsde.spa
dc.relation.referencesChen, J., Hayes, D. G., Pyo, S.-H. & Ye, R. (2019). Sugar Esters. Biobased Surfactants, 325–363 Elsevier. https://doi.org/10.1016/b978-0-12-812705-6.00010-1.spa
dc.relation.referencesChen, Y., Fang, K., Li, J-B., Ou, Z-F. & Wei, Q-S. (2018) Preparation of sucrose esters-nano silver oxide in ultrasonic field. Xiandai Huagong/Modern Chemical Industry, 38 (4) DOI: 10.16606/j.cnki.issn0253-4320.2018.04.023.spa
dc.relation.referencesChidara, V. K., Du, G., Stadem, S. & Webster, D.C (2018) Survey of several catalytic systems for the epoxidation of a biobased ester sucrose soyate. Catal Commun, 111, 31–35, DOI: 10.1016/j.catcom.2018.03.027.spa
dc.relation.referencesChoi, J. & Nidetzky, B. (2022) Ionic liquid as dual-function catalyst and solvent for efficient synthesis of sucrose fatty acid esters. Molecular Catalysis, 526. DOI: 10.1016/j.mcat.2022.112371.spa
dc.relation.referencesCholakova, D. & Tcholakova, S. (2024) Sucrosa ester surfactants: current understanding and emerging perspectives. Current Opinion in Colloid and Interface Science, 73. DOI: https://doi.org/10.1016/j.cocis.2024.101832.spa
dc.relation.referencesCooper, J. & Nelen, B. & (2007). Sucrose Esters. DOI: 10.1002/9780470995747.ch6.spa
dc.relation.referencesDenev, P., Koleva, M., Petkova, N & Vassilev, D. (2021) Optimization of ultrasound synthesis of sucrose esters by selection of a suitable catalyst and reaction conditions. Journal of Chemical Technology and Metallurgy, 56 (2), 268–274.spa
dc.relation.referencesDeshpande, P. S., Kulkarni, R.D., Mahulikar, P.P., Patil, V. J. & Patil, U. D (2015) Interfacial analysis and reaction engineering of sucrose ester mediated solution spray synthesis of lead chromate nanorods. Chemical Engineering and Processing: Process Intensification, 95, 390–402. DOI: 10.1016/j.cep.2015.07.026.spa
dc.relation.referencesDewettinck, K., De Witte, F., Penagos, I., Skirtach,A., Bockstaele, F. & Van de Walle, D. (2025) From nucleation to fat crystal network: effects of stearic–palmitic sucrose ester on static crystallization of palm oil. Foods, 13(9) 1372. DOI: https://doi.org/10.3390/foods13091372.spa
dc.relation.referencesDokichev, V. A., Faizullina, S. S., Kireeva, D. R., Mufteeva, N. T., Telin, A.G & Vlasova, L. (2022) Production of esters of sucharose and fatty acids in the presence of zeolites modified with cesium carbonate. ChemChemTech, 65 (1), 92–100. DOI: 10.6060/ivkkt.20226501.6406.spa
dc.relation.referencesDrelich, A., Dussaussoy, B. & Lamy, E. (2021) Transport of an eco-friendly L70-C bio-based sucrose ester surfactant: Implication for soil remediation purposes. Chem Eng Trans, 86,691–696. DOI: 10.3303/CET2186116.spa
dc.relation.referencesEngineering ToolBox (2001) [online] Available at: https://www.engineeringtoolbox.com [Accessed dec/2024].spa
dc.relation.referencesEssid,K, Frikha, M.H & Trabelsi, I. (2020) Synthesis of sucrose fatty acid esters by using mixed carboxylic-fatty anhydrides. J Oleo Sci, 69 (7), 693–701. DOI: 10.5650/jos.ess19239.spa
dc.relation.referencesFan, L., Li, J., Wang, M. & Zhou, Y. (2024) Effect of type of fatty acid attached to sucrose ester on the stability of water-in-oil Pickering emulsion. Journal of Food Engineering, 374 https://doi.org/10.1016/j.jfoodeng.2024.112036.spa
dc.relation.referencesFitremann, J., Jarosz, S., Queneau, Y. & Lewandowski, B. (2007). Sucrose chemistry and applications of sucrochemicals. Advances In Carbohydrate Chemistry And Biochemistry. 61, 1-447 DOI: https://doi.org/10.1016/S0065-2318(07)61005-1.spa
dc.relation.referencesFu, X.,Tian. K., Ma, Q., Wang, Z., Yanfei, W.., Zhang, S., Zhao, Y. & Zuo, Q. (2024) Sucrose ester embedded lipid carrier for DNA delivery.European Journal of Pharmaceutis and Biopharmaceutics, 198. https://doi.org/10.1016/j.ejpb.2024.114269.spa
dc.relation.referencesGao, Y, Jiang, J., Li, X. Sun, K. & Wang, K. (2011) Synthesis of sucrose esters over solid base catalyst loaded on activated carbon. Huaxue Fanying Gongcheng Yu Gongyi/Chemical Reaction Engineering and Technology, 27 (2),139–143. DOI:10.1007/s11632-006-0019-2.spa
dc.relation.referencesGlazko, I.L., Krasnykh, E. L., Levanova, S.V., Moiseeva, S. V. & Safronov, S. P. (2021) Scientific and Technological Features of Synthesis of New Ester Plasticizers Based on Renewable Raw Materials. ChemChemTech, 64 (6), 69–75. DOI: 10.6060/IVKKT.20216406.6369.spa
dc.relation.referencesGriffin, W.C. (1949) Classification of Surface-Active Agents by “HLB”. Journal of Cosmetic Science, 1, 311-326. http://journal.scconline.org/contents/cc1949/cc001n05.html.spa
dc.relation.referencesGutiérrez, M. F. (2018) Sucrose esters production in a solvent-free reaction system by transesterification of sucrose and fatty acid methyl esters. [Trabajo de doctorado, Universidad Nacional de Colombia].spa
dc.relation.referencesGutiérrez, M. F., Orjuela, Á. Rivera, J. L. & Suaza, A. (2018) Production of sucroesters using solvent-free reactive systems containing emulsifiers. Ingeniería e Investigación, 38 (1), 16–23. DOI: 10.15446/ing.investig.v38n1.61432.spa
dc.relation.referencesGutiérrez, M. F., Orjuela, A., Rivera, J. L & Suaza, A. (2019) Solid-Liquid Equilibria and Characterization of the Reaction Mixture to Produce Sucrose Palmitate in Solvent-Free Media. J Chem Eng Data, 64 (5), 2052–2061. DOI: 10.1021/acs.jced.8b01026.https://repositorio.unal.edu.co/handle/unal/76267.spa
dc.relation.referencesHong, S., Jang, H. S. & Lee, S.B (2021) Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM. Applied Chemistry for Engineering, 32 (5), 562–568. DOI: 10.14478/ace.2021.1067.spa
dc.relation.referencesJiménez, D., Medina, S. & Gracida,J. N. (2010). Propiedades, aplicaciones y producción de biotensoactivos: una revisión. Revista Internacional De Contaminación Ambiental l, 26(1), 65-84. http://www.scielo.org.mx/scielo.phpscript=sci_arttext&pid=S018849992010000100006&lng=es&tlng=es.spa
dc.relation.referencesKamikanda, Y., Sasayama, T. & Shibasaki-Kitakawa, N. (2018) Process design for green and selective production of bio-based surfactant with heterogeneous resin catalyst. Chemical Engineering Journal, 334, 2231–2237, DOI: 10.1016/j.cej.2017.11.132.spa
dc.relation.referencesKhan, I. Stubbs, S. & Yousaf, S. (2022) A review on the synthesis of bio-based surfactants using green chemistry principles. DARU Journal of Pharmaceutical Sciences, 30 (2),407–426, DOI: 10.1007/s40199-022-00450-y.spa
dc.relation.referencesKwaśniewska, D. &. Wieczorek, D (2020) Novel trends in technology of surfactants. DOI:10.1515/9783110656367-008.spa
dc.relation.referencesLiao, H., Shen, L., Xu, H., Zhou, J., Zou, M. & Zhao, Y. (2020) Preparation of Acrylic Pimaric-sucrose Ester by Solvent-free Process and Its Adsorption Properties at Air-water Interface. Chemistry and Industry of Forest Products, 40 (2), 69–75. DOI: 10.3969/j.issn.0253-2417.2020.02.009.spa
dc.relation.referencesLihua, H. et al. (2022) The effect of sucrose esters S1570 on partial coalescence and whipping properties. Food Hydrocoll, 25. DOI: 10.1016/j.foodhyd.2021.107429.spa
dc.relation.referencesLiu, Y., Mao, X., Wu, Q. & Zhang, J. (2023) Effect of synergism of sucrose ester and xanthan gum on the stability of walnut milk. Journal of the Science of Food and Agriculture, 104(4). 1909-1919. DOI: https://doi.org/10.1002/jsfa.13075.spa
dc.relation.referencesManley, D. (2011). Sugars and syrups as biscuit ingredients. In Manley’s Technology of Biscuits, Crackers and Cookies: Fourth Edition (pp. 143–159). Elsevier Ltd. https://doi.org/10.1533/9780857093646.2.143.spa
dc.relation.referencesMohd Yusof, Nurul Farhana & Soon, Edmund & Ismail, Iman Fitri & Mohammed, Akmal Nizam. (2021). Mixing Performance of Anchor and Helical Stirrer Blades for Viscous Fluid Applications. CFD Letters. 13. 58-71. 10.37934/cfdl.13.1.5871. Murzin, D. Yu. (2020) Engineering Catalysis. De Gruyter, DOI: 10.1515/9783110614435.spa
dc.relation.referencesNarváez, C., Sánchez, J., Torres, A. J., Ponce de León, F. & Sánchez, J. (2004). Fatty acid methyl esters production: chemical process variables. Ingeniería e Investigación, 24(2), 41-50. DOI: http://dx.doi.org/10.15446/ing.investig.v24n2.14601.spa
dc.relation.referencesObservatory of complexity economics (2021) (página web) https://oec.world/en/profile/hs92/refined-sugar-in-solid-form-nes-pure-sucrose#tariffs.spa
dc.relation.referencesPark, S.J, Yoo, I. S, & Yoon, H.H (2007) Enzymatic synthesis of sugar fatty acid esters. Journal of Industrial and Engineering Chemistry, 13 (1), 1–6. https://www.semanticscholar.org/paper/Enzymatic-Synthesis-of-Sugar-Fatty-Acid-Esters-Yoo-Park/27bbb0273bdade99dd0adc9e25763cd9f3860811.spa
dc.relation.referencesPeters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant design and economics for chemical engineers (5th ed.). McGraw-Hill Professional.spa
dc.relation.referencesRen, Z., Shi, L., Weng, W., Zhang, Y. & Zhao,Y. (2023) Effects of pre-emulsion prepared using sucrose esters with different hydrophile-lipophile balances on characteristics of soy protein isolate emulsion films. Food Research International, 165. https://doi.org/10.1016/j.foodres.2023.112542.spa
dc.relation.referencesRodríguez N.G. & Sánchez C., F. J. (1996). Esterificación. Ingeniería e Investigación, (33), 87–94. https://doi.org/10.15446/ing.investig.n33.20904.spa
dc.relation.referencesRosen, M. J. (2004). Surfactants and Interfacial Phenomena (Third). New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesSalager, J.-L. (2002). Laboratorio de formulación, interfases reología y procesos universidad de los andes facultad de ingeniería, escuela de ingeniería química surfactantes. Tipos y Usos CUADERNO FIRP S300-A CUADERNO FIRP S300-A en español.spa
dc.relation.referencesSoporte Minitab (2024). Superficies de respuesta. https://support.minitab.com/es-mx/minitab/help-and-how-to/statistical-modeling/doe/supporting-topics/response-surface-designs/response-surface-central-composite-and-box-behnken-designs/.spa
dc.relation.referencesSuaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Universidad Nacional de Colombia.spa
dc.relation.referencesVlaia, L et al (2021) Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: Formulation design based on pseudo-ternary phase diagrams and physicochemical characterization. Processes, 9 (1),1–21. DOI: 10.3390/pr9010144.spa
dc.relation.referencesWang, C-T., Zhang, J-C. Zhang, C. & Zhao, L. (2014) Lipase-catalyzed synthesis of sucrose fatty acid ester and the mechanism of ultrasonic promoting esterification reaction in non-aqueous media, 881–883. DOI: 10.4028/www.scientific.net/AMR.881-883.35.spa
dc.relation.referencesWhitehurst, R. J. (2004). Emulsifiers in Food Technology. Sucrose Esters., 10.1002/9780470995747(), 131–161. doi: 10.1002/9780470995747.ch6.spa
dc.relation.referencesYang, J., Zhang, P., Zhang, S. & Zhu, J. (2006) Study on production of high-monoester sucrose fatty acid esters by improved metallic salt method and alcoholic separation. Tenside, Surfactants, Detergents, 43 (2), 106–110. DOI: 10.3139/113.100292.spa
dc.relation.referencesYang, J.-Z & Zhang, Y. (2003) Solvent-free preparation of sucrose esters with higher proportion of monoesters. Xiandai Huagong/Modern Chemical Industry, 23 (10), 40–42. https://www.researchgate.net/publication/286828089_Solvent-free_preparation_of_sucrose_esters_with_higher_proportion_of_monoesters.spa
dc.relation.referencesZeng D. et al. (2021) Effect of sucrose ester S370 on interfacial layers and fat crystals network of whipped cream. Food Hydrocoll, 113. DOI: 10.1016/j.foodhyd.2020.106541.spa
dc.relation.referencesZheng, Y., Zheng, M., Ma, Z., Xin, B., Guo, R., & Xu, X. (2015). Sugar Fatty Acid Esters. Polar Lipids, 215–243. doi:10.1016/b978-1-63067-044-3.50012-1.spa
dc.relation.referencesOcensa (2024) La OPEP proyecta que el consumo de petróleo seguirá creciendo en los próximos años https://ocensa.com.co/.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembEXCIPIENTESspa
dc.subject.lembExcipientseng
dc.subject.lembAGENTES ESTABILIZANTESspa
dc.subject.lembStabilizing agentseng
dc.subject.lembINDUSTRIAS ALIMENTICIASspa
dc.subject.lembFood industry and tradeeng
dc.subject.lembINGENIERIA QUIMICAspa
dc.subject.lembChemical engineeringeng
dc.subject.lembCATALIZADORESspa
dc.subject.lembCatalystseng
dc.subject.lembINHIBIDORES QUIMICOSspa
dc.subject.lembChemical inhibitorseng
dc.subject.lembINGENIERIA DE LA PRODUCCIONspa
dc.subject.lembProduction engineeringeng
dc.subject.lembPLANTAS PILOTOspa
dc.subject.lembPilot plantseng
dc.subject.proposalSurfactantes biobasadosspa
dc.subject.proposalEscaladospa
dc.subject.proposalSucroésterspa
dc.subject.proposalBio-based surfactantseng
dc.subject.proposalScaling-upeng
dc.subject.proposalPilot plant-level designeng
dc.subject.proposalSucroestereng
dc.subject.proposalDiseño a nivel planta pilotospa
dc.titleEvaluación de una planta a escala piloto para la producción de sucroésteres en un proceso libre de solventespa
dc.title.translatedEvaluation of a pilot-scale plant for the production of sucrose esters in a solvent-free processeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014296467.2025.pdf
Tamaño:
3.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: