Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica

dc.contributor.advisorVinck-Posada, Herbert
dc.contributor.advisorGómez González, Edgar Arturo
dc.contributor.authorLinares Melo, Milton Smit
dc.contributor.researchgroupÓptica e Información Cuántica (UNAL)spa
dc.contributor.researchgroupSuperconductividad y Nanotecnología (UNAL)spa
dc.date.accessioned2024-07-17T15:32:11Z
dc.date.available2024-07-17T15:32:11Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractEn este trabajo se estudia el efecto de un campo magnético externo sobre los observables en estado estacionario de algunos sistemas de microcavidades y puntos cuánticos que revisten diferentes órdenes de complejidad a nivel estructural y teórico en tanto su arquitectura física cambia al considerar y disponer diferentes componentes en distintas configuraciones. Inicialmente, se considera un punto cuántico multiexcitónico embebido en una cavidad óptica bimodal como una primera aproximación a la idea molecular en cuanto a la posibilidad de más de una excitación material en un emisor cuántico. Se continúa considerando un par de puntos cuánticos que acorde a su distribución espacial lateral o vertical constituyen una molécula tanto mediante interacciones de transferencia de energía de resonancia como mediante interacciones de tunelamiento de portadores de carga correspondiente, los cuales también se encuentran dispuestos en una cavidad óptica. Finalmente, dichos sistemas moleculares de materia se consideran embebidos en una configuración de microcavidades que aportan el componente molecular fotónico. Se construyen los modelos teóricos que definen cada uno de los sistemas de interés para posteriormente realizar un análisis hamiltoniano detallado de las relaciones de dispersión y composiciones fraccionales de los estados. Se prosigue con un análisis disipativo que incorpora los principales mecanismos decoherentes mediante el formalismo de la ecuación maestra a partir del cual se obtienen y analizan observables como las ocupaciones de los estados y funciones de correlación de segundo orden sin retraso. Todo lo anterior en función de la intensidad y el ángulo de inclinación del campo magnético externo aplicado. Se encuentra que las relaciones de dispersión de energía revelan la presencia de anti cruces como una firma de acoplamiento entre los diferentes componentes de los sistemas considerados. Además, se muestra que mediante la variación del ángulo de inclinación y la intensidad del campo magnético, se pueden manipular las dinámicas de ocupaciones en estado estacionario de los diferentes sistemas contemplados, con lo que se identificó regímenes de parámetros que propician la generación de estados biexcitónicos, moleculares excitónicos y fotónicos simples hasta estados híbridos moleculares de materia y de radiación de forma controlada en los diferentes sistemas estudiados (Texto tomado de la fuente).spa
dc.description.abstractIn this study, we investigate the impact of an external magnetic field on the steady-state observables of systems with varying levels of complexity, as their physical architecture chanx ges due to the arrangement of different components. Initially, we examine a multi-excitonic quantum dot embedded in a bimodal optical cavity, representing a preliminary approximation to the concept of multiple material excitations in a quantum emitter. Subsequently, we explore a pair of quantum dots forming a molecular structure through resonance energy transfer interactions and charge carrier tunneling interactions. These dots are also situated within an optical cavity. Finally, we consider these molecular systems embedded within a configuration of micro-cavities that contribute to the photonic molecular component. The theoretical models defining each of these systems of interest are developed to conduct a comprehensive Hamiltonian analysis of dispersion relations and fractional composition states. Subsequently, a dissipative analysis is performed, incorporating key decoherence mechanisms using the master equation formalism. This analysis yields observables such as state occupancies and second-order correlation functions without delay. All these results are studied in relation to the strength and tilt angle of the applied external magnetic field. Our findings reveal that energy dispersion relations exhibit anti-crossing as a signature of coupling between the various components within the considered systems. Furthermore, we demonstrate that adjusting the tilt angle and magnetic field intensity allows manipulation of the steady-state occupancy dynamics of the systems under consideration. This identification of parameter regimes supports the generation of biexcitonic states, excitonic and photonic molecular states, and even hybrid molecular states of matter and radiation. Importantly, these manipulations can be controlled across the diverse systems studied.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaElectrodinámica cuántica de cavidadesspa
dc.format.extentxiv, 97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86523
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesAlfonso González Taboada. Control de la forma, tamaño y composición de nanoestructuras de semiconductores III-V: anillos y puntos cuánticos. PhD thesis, Universidad Autónoma de Madrid, 2010.spa
dc.relation.referencesSuwit Kiravittaya, Armando Rastelli, and Oliver G Schmidt. Advanced quantum dot configurations. IOP Science - Rep. Prog. Phys, 72:046502, 2009.spa
dc.relation.referencesP Michler. Single Semiconductor Quantum Dots. In NanoScience and Technology. 2009.spa
dc.relation.referencesKerry J Vahala. Optical microcavities. Nature, 424:839–846, 2003.spa
dc.relation.referencesLoannis Chremmos. Photonic Microresonator Research and Applications. 2010.spa
dc.relation.referencesMisael León Hilario. Efecto de muchos cuerpos en transiciones opticas en nanoestructuras semiconductoras. PhD thesis, Universidad Nacional de Cuyo, 2010.spa
dc.relation.referencesPeter Lodahl, Sahand Mahmoodian, and Søren Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews Of Modern Physics, 87:347– 400, 2015.spa
dc.relation.referencesH J Krenner, M Sabathil, E C Clark, A Kress, D Schuh, M Bichler, G Abstreiter, and J J Finley. Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule. Physical Review Letters, 94:057402, 2005.spa
dc.relation.referencesA S Bracker, M Scheibner, M F Doty, E A Stinaff, I V Ponomarev, J C Kim, L J Whitman, and T L Reinecke. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Applied Physics Letters, 89:233110, 2006.spa
dc.relation.referencesMichael Scheibner, Allan S Bracker, Danny Kim, and Daniel Gammon. Essential concepts in the optical properties of quantum dot molecules. Solid State Communications, 149:1427–1435, 2009.spa
dc.relation.referencesS Suraprapapich, S Thainoi, S Kanjanachuchai, and S Panyakeow. Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology B, 23:1217–1220, 2007.spa
dc.relation.referencesSvetlana V Boriskina. Chapter 16 : Photonic molecules and spectral engineering. In Photonic Microresonator Research and Applications. 2010.spa
dc.relation.referencesR P Stanley, R Houdré, U Oesterle, M Ilegems, C Weisbuch, U Oesterle, and M Ilegems. Coupled semiconductor microcavities. Applied Physics Letters, 65:2093–2095, 1994.spa
dc.relation.referencesBrendon W Lovett, John H Reina, Ahsan Nazir, and G Andrew D Briggs. Optical schemes for quantum computation in quantum dot molecules. Physical Review B, 68:205319, 2003.spa
dc.relation.referencesA V Tsukanov. Quantum Dots in Photonic Molecules and Quantum Informatics . Part I. Russian Microelectronics, 42:325–346, 2013.spa
dc.relation.referencesM F Doty, M Scheibner, A S Bracker, I V Ponomarev, T L Reinecke, and D Gammon. Optical spectra of doubly charged quantum dot molecules in electric and magnetic fields. Physical Review B, 78:115316, 2008.spa
dc.relation.referencesM Bayer, O Stern, A Kuther, and A Forchel. Spectroscopic study of dark excitons in In. Physical Review B, 61:7273–7276, 2000.spa
dc.relation.referencesH. Vinck-Posada and C. A. Jiménez-Orjuela. Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96:125303, 2017.spa
dc.relation.referencesAndreas Reiserer and Gerhard Rempe. Cavity-based quantum networks with single atoms and optical photons. Reviews Of Modern Physics, 87:1379–1418, 2015.spa
dc.relation.referencesJ M Elzerman, K M Weiss, and A Imamog. Optical Amplification Using Raman Transitions between Spin-Singlet and Spin-Triplet States of a Pair of Coupled In- GaAs Quantum Dots. Physical Review B - Condensed Matter and Materials Physics, 107:017401, 2011.spa
dc.relation.referencesHakan E Türeci, J M Taylor, and A Imamoglu. Coherent optical manipulation of triplet-singlet states in coupled quantum dots. Physical Review B, 75:235313, 2007.spa
dc.relation.referencesDanny Kim, Samuel G Carter, Alex Greilich, Allan S Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Physics, 7:223–229, 2010.spa
dc.relation.referencesAuthor M Bayer, P Hawrylak, K Hinzer, S Fafard, M Korkusinski, Z R Wasilewski, O Stern, A Forchel, and Dot Molecules. Coupling and Entangling of Quantum States in Quantum. Science, 291:451–453, 2016.spa
dc.relation.referencesYu He, Yu-ming He, Y Wei, X Jiang, M Chen, F Xiong, Y Zhao, Christian Schneider, Chao-yang Lu, Jian-wei Pan, Martin Kamp, and Sven Ho. Indistinguishable Tunable Single Photons Emitted by Spin Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 111:237403, 2013.spa
dc.relation.referencesM Bayer, T L Reinecke, F Weidner, A Larionov, A Mcdonald, and A Forchel. Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86:3168–3171, 2001.spa
dc.relation.referencesJ. P. Reithmaier, G. Sek, A.Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432:197–200, 2004.spa
dc.relation.referencesE L Hu, A Imamog, S Gulde, S Fa, K Hennessy, A Badolato, M Winger, D Gerace, and M Atatu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445:896–899, 2007.spa
dc.relation.referencesJ I Perea, D Porras, and C Tejedor. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70:115304, 2004.spa
dc.relation.referencesM S Linares andWJ Herrera. Emission of an interacting quantum dot system embedded in an optical microcavity. Optik - International Journal for Light and Electron Optics, 176:685–693, 2019.spa
dc.relation.referencesZ R Wasilewski, S Fafard, and J P Mcca. Size and shape engineering of vertically stacked self assembled quantum dots. Journal of Crystal Growth, 202:1131–1135, 1999.spa
dc.relation.referencesD. J. Eaglesham and M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 64:1943–1946, 1990.spa
dc.relation.referencesQianghua Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P Kobayashi. Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Physical Review Letters, 75:2542–2545, 1995.spa
dc.relation.referencesJ Tersoff, C Teichert, and M G Lagally. Self-Organization in Growth of Quantum Dot Superlattices. Physical Review Letters, 76:1675–1678, 1996.spa
dc.relation.referencesR A Rosas. Excitones confinados en puntos cuánticos esferoidales prolatos. Revista Mexicana De Física, 50:412–421, 2004.spa
dc.relation.referencesChang-yu Hsieh, Yun-pil Shim, and Marek Korkusinski. Physics of lateral triple quantum-dot molecules with controlled electron. IOP Science - Rep. Prog. Phys, 75:114501, 2012.spa
dc.relation.referencesAhsan Nazir, Brendon W. Lovett, Sean D. Barrett, John H. Reina, and G. Andrew D Briggs. Anticrossings in Förster coupled quantum dots. Physical Review B – Condensed Matter and Materials Physics, 71:045334, 2005.spa
dc.relation.referencesL Wang, A Rastelli, O G Schmidt, P Michler, G J Beirne, and C Hermannsta. Quantum Light Emission of Two Lateral Tunnel-Coupled (In, Ga)As = GaAs Quantum Dots Controlled by a Tunable Static Electric Field. Physical Review Letters, 96:137401, 2006.spa
dc.relation.referencesM C Xu, Y Temko, T Suzuki, K Jacobi, M C Xu, Y Temko, T Suzuki, and K Jacobi. Shape transition of InAs quantum dots on GaAs (001). Journal of Applied Physics, 98:083525, 2005.spa
dc.relation.referencesM. Scheibner, M. F. Doty, A. S. Bracker, E. A. Stinaff, and D. Gammon. Spin fine structure of optically excited quantum dot molecules. Physical Review B, 75:245318, 2007.spa
dc.relation.referencesE A Stinaff, M Scheibner, and A S Backer. Optical signatures of coupled quantum dots. Science, 311:636–639, 2006.spa
dc.relation.referencesRudeesun Songmuang, Suwit Kiravittaya, Oliver G Schmidt, Rudeesun Songmuang, Suwit Kiravittaya, and Oliver G Schmidt. Formation of lateral quantum dot molecules around self-assembled nanoholes. Applied Physics Letters, 82:2892–2894, 2003.spa
dc.relation.referencesJ H Lee, Zh M Wang, N W Strom, Yu I Mazur, G J Salamo, J H Lee, Zh M Wang, N W Strom, Yu I Mazur, and G J Salamo. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Applied Physics Letters, 89:202101, 2006.spa
dc.relation.referencesT Yoshie, A Scherer, J Hendrickson, G Khitrova, H M Gibbs, G Rupper, C Ell, O B Shchekin, and D G Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.spa
dc.relation.referencesDorothea Pinotsi, Parisa Fallahi, Javier Miguel-sanchez, and Atac Imamoglu. Dots in Photonic Crystal Structures. 47:1371–1374, 2011.spa
dc.relation.referencesMark Adams and Axel Scherer. Lithographically fabricated optical cavities for refractive index sensing. Microelectronics and Nanometer Structures, 23:3168–3173, 2005.spa
dc.relation.referencesFrancesca Intonti, Silvia Vignolini, Volker Türck, Marcello Colocci, Paolo Bettotti, Lorenzo Pavesi, L Stefan, Ralf Wehrspohn, and Diederik Wiersma. Rewritable photonic circuits. Applied Physics Letters, 89:211117, 2006.spa
dc.relation.referencesQian Bo Chen San Ding Hong-Lin Liu KuiWang Xiang Xu Jun LiWei Zhang Xian-Gao, Chen Kun-Ji and Huang Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity. Chinese Physics Letters, 25:1888, 2008.spa
dc.relation.referencesM Bayer, T Gutbrod, J P Reithmaier, and A Forchel. Optical Modes in Photonic Molecules. Physical Review Letters, 81:2582–2585, 1998.spa
dc.relation.referencesM Benyoucef and S Kiravittaya. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Physical Review B, 77:035108, 2008.spa
dc.relation.referencesHsuan Lin, Jhih-hao Chen, Shih-shing Chao, Ming-cheng Lo, Sheng-di Lin, and Wenhao Chang. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities. Optics Express, 18:1557–1559, 2010.spa
dc.relation.referencesSvetlana V Boriskina. Theoretical prediction of a dramatic Q -factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Optics Letters, 31:338–340, 2006.spa
dc.relation.referencesJung-wan Ryu, Soo-young Lee, and Sang Wook Kim. Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission. Physical Review A, 79:053858, 2009.spa
dc.relation.referencesAtsuo Nakagawa, Satoru Ishii, Toshihiko Baba, Atsuo Nakagawa, Satoru Ishii, and Toshihiko Baba. Photonic molecule laser composed of GaInAsP microdisks. Applied Physics Letters, 86:041112, 2005.spa
dc.relation.referencesSvetlana V Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Optics Letters, 32:1557–1559, 2007.spa
dc.relation.referencesYoshiko Hara, Takashi Mukaiyama, Kenji Takeda, and Makoto Kuwata-gonokami. Photonic molecule lasing. Optics Letters, 28:2437–2439, 2003.spa
dc.relation.referencesT Mukaiyama, K Takeda, H Miyazaki, and Y Jimba. Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82:4623–4626, 1999.spa
dc.relation.referencesDavid B Thompson, David A Keating, Emre Guler, Kazuya Ichimura, Mary E Williams, and Kirk A Fuller. Separation-sensitive measurements of morphology dependent resonances in coupled fluorescent microspheres. Optics Express, 18:8286–8295, 2010.spa
dc.relation.referencesB M Möller and UWoggon. Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 70:115323, 2004.spa
dc.relation.referencesSilvia Vignolini, Francesco Riboli, Diederik Sybolt Wiersma, Laurent Balet, Lianhe H Li, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 96:141114, 2010.spa
dc.relation.referencesSilvia Vignolini, Francesca Intonti, Margherita Zani, Francesco Riboli, Diederik S Wiersma, Lianhe H Li, Laurent Balet, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Near field imaging of coupled photonic-crystal microcavities. Applied Physics Letters, 94:151103, 2013.spa
dc.relation.referencesM Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, G Beaudoin, L Le Gratiet, J A Levenson, A M Yacomotti, M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, and G Beaudoin. Radiation patterns from coupled photonic crystal nanocavities. Applied Physics Letters, 99:111101, 2011.spa
dc.relation.referencesA R A Chalcraft, S Lam, B D Jones, D Szymanski, R Oulton, A C T Thijssen, M S Skolnick, D M Whittaker, T F Krauss, and A M Fox. Mode structure of coupled L3 photonic crystal cavities. Optics Express, 19:5670–5675, 2011.spa
dc.relation.referencesMehmet A Du, Joost A M Voorbraak, Richard No, and Rob W Van Der Heijden. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Applied Physics Letters, 100:081107, 2012.spa
dc.relation.referencesXiaodong Yang, Charlton J Chen, Chad A Husko, Chee Wei Wong, Xiaodong Yang, Charlton J Chen, Chad A Husko, and Chee Wei. Digital resonance tuning of high- Q V m silicon photonic crystal nanocavities by atomic layer deposition. Applied Physics Letters, 91:161114, 2013.spa
dc.relation.referencesT Gu, S Kocaman, X Yang, J F Mcmillan, and M B Yu. Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities. Applied Physics Letters, 98:121103, 2014.spa
dc.relation.referencesChristopher Gerry and Peter Knight. Introductory Quantum Optics. 2005.spa
dc.relation.referencesJonas Larson and Neil Young. Extended Jaynes-Cummings models in cavity QED than meets the eye. 2005.spa
dc.relation.referencesM. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65:195315, 2002.spa
dc.relation.referencesS. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel. Control of the Strong Light-Matter Interaction between an Elongated in 0.3Ga0.7 As Quantum Dot and a Micropillar Cavity Using External Magnetic Fields. Physical Review Letters, 103:127401, 2009.spa
dc.relation.referencesHyochul Kim, Glenn S. Solomon, and Edo Waks. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98:091102, 2011.spa
dc.relation.referencesS. Lüker, T. Kuhn, and D. E. Reiter. Direct optical state preparation of the dark exciton in a quantum dot. Physical Review B - Condensed Matter and Materials Physics, 92:201305, 2015.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembCampos magnéticosspa
dc.subject.lembMagnetic fieldseng
dc.subject.lembRelaciones de dispersiónspa
dc.subject.lembSistemas molecularesspa
dc.subject.lembFotónicaspa
dc.subject.lembPhotonicseng
dc.subject.proposalCampo magnético aplicadospa
dc.subject.proposalPunto cuántico multiexcitónicospa
dc.subject.proposalEstados moleculares excitónicos y fotónicosspa
dc.subject.proposalCavidad ópticaspa
dc.subject.proposalAcoplamiento luz-materiaspa
dc.subject.proposalRelaciones de dispersión de energíaspa
dc.subject.proposalOcupaciones en estado estacionario.spa
dc.subject.proposalApplied magnetic fieldeng
dc.subject.proposalMulti-excitonic quantum doteng
dc.subject.proposalExcitonic and photonic molecular stateseng
dc.subject.proposalOptical cavityeng
dc.subject.proposalLight-matter couplingeng
dc.subject.proposalEnergy dispersion relationseng
dc.subject.proposalSteady-state occupancieseng
dc.titleControl magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónicaspa
dc.title.translatedMagnetic control of a molecular quantum dot system immersed in a photonic molecule.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades”, código 201010028651, HERMES 42134.spa
oaire.fundername“Beca de Doctorados Nacionales de COLCIENCIAS” convocatoria 647spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80745283.2023.pdf
Tamaño:
7.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias – Física.

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: