Estudio del comportamiento de una celda combustible conformada por un nuevo sistema de conducción protónica de polivinil difluoruro (PVDF) + ácido fosfórico (H3PO4) trabajando hasta 60 °C

dc.contributor.advisorZapata Sánchez, Victor Hugo
dc.contributor.authorBuendía Tamayo, Melisa
dc.contributor.cvlacBuendía Tamayo Melisaspa
dc.contributor.orcidBuendía, Melisa [0000000213492046]spa
dc.contributor.researchgroupÓxidos Avanzadosspa
dc.date.accessioned2024-08-14T16:18:37Z
dc.date.available2024-08-14T16:18:37Z
dc.date.issued2024-05-28
dc.descriptionilustracionesspa
dc.description.abstractSe prepararon membranas de intercambio protónico compuestas por fluoruro de polivinilideno (PVDF) y ácido fosfórico (H3PO4) en diversas concentraciones (Ácido/Polímero): 0.08, 0.10, 0.15, 0.20 y 0.60. Los resultados en calorimetría diferencial de barrido (DSC) arrojan tres anomalías térmicas, una alrededor de los 160 °C atribuida a la temperatura de reblandamiento ó Tm de la membrana polimérica pura la cual está conformada con PVDF y disolvente tetrahidrofurano (THF), la segunda alrededor de los 300 °C asociada a la salida de Oxirano y la última asociada a la degradación del sistema polimérico. Se observan cambios no relevantes en las diferentes membranas con ácido para la Tm. No se observaron anomalías térmicas asociadas a la temperatura de transición vítrea (Tg), esto debido posiblemente al rango de medida en temperaturas realizado sobre las muestras que comprende entre los 25 °C y 500 °C. Por otro lado, se realizaron medidas de impedancia compleja en barridos de frecuencia desde 42 Hz a 5 MHz, en un rango de temperaturas entre los 25 °C y 70 °C sobre las diversas muestras arrojando resultados entre los 102 Ω y 104 Ω en la impedancia real y cuyo valor se atribuye posiblemente al contenido de agua en la membrana polimérica ya que, en presencia del ácido fosfórico, este sistema se torna higroscópico. Las muestras sin humedad presentan valores de impedancia real del orden de 106 Ω. Luego de realizar el ajuste y análisis de datos se logró determinar un valor medio en la energía de activación atribuido a los radicales H+, alrededor de 0.54 eV. Los resultados en la parte imaginaria del módulo eléctrico vs. frecuencia (M" vs. ) muestran un solo comportamiento en forma de pico indicando un solo tipo de dinámicas del ion hacia el bulto del material.spa
dc.description.abstractProton exchange membranes composed of polyvinylidene fluoride (PVDF) and phosphoric acid (H3PO4) were prepared in various concentrations (Acid/Polymer): 0.08, 0.10, 0.15, 0.20 and 0.60. The differential scanning calorimetry (DSC) results show three thermal anomalies, one around 160 C attributed to the softening temperature or Tm of the pure polymeric membrane, the second around 300 associated with the release of Oxirane and the last associated with the degradation of the polymer system. Non-relevant changes are observed in the different membranes with acid for Tm. No thermal anomalies associated with the glass transition temperature (Tg) were observed, possibly due to the range of temperature measurements carried out on the samples, which ranges between 30 C and 500 C. On the other hand, complex impedance measurements were carried out in frequency sweeps from 42 Hz to 5 MHz, in a temperature range between 25 C and 70 C on the various samples, yielding results between 102 Ω and 104 Ω and whose value is possibly attributed to the water content in the polymeric membrane and that, in the presence of phosphoric acid, this system becomes hygroscopic. The samples without humidity have impedance values of the order of 106 Ω. After performing the adjustment and data analysis, it was possible to determine an average value in the activation energy attributed to the H+ radicals, around 0.54 eV. The results in the imaginary part of the electrical module vs. frequency (M" vs.) show a single peak-shaped behavior indicating a single type of ion dynamics in the bulk of the material. Morphological characterization measurements were also carried out through the use of the scanning electron microscopy (SEM) technique, which allowed the identification of smaller pores (0.5μm and 1.0μm) with the increase in the concentration of acid on the membranes, favoring ionic mobility. All these studies are carried out with the aim of an application in fuel cells given the limitation in the current density that Commercial cells based on Nafion 1110 have working at more than 35 C, which is why after all the characterizations of the different membranes of the polymeric system, each of them was implemented in a fuel cell prototype, there the behavior could be verified. of the same with the temperature and which membrane gave the best results, in this case the maximum initial voltage obtained was 951mV, and a maximum current of 20 mA with a load resistance, functioning correctly up to 60C and providing the voltage and current necessary to operate a vibrating motor with a resistance of 39 Ω, the best polymeric system for the operation of the cell with the temperature was the one with concentration X=0.60eng
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería Físicaspa
dc.description.researchareaSíntesis de materiales híbridos nanoestructuradosspa
dc.format.extent113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86726
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.referencesX. Li, "Principles of Fuel Cells," CRC Press, 2005spa
dc.relation.referencesJ. Larminie and A. Dicks, "Fuel Cell Systems Explained," 2003spa
dc.relation.referencesD. Shekhawat, J. J. Spivey y D. A. Berry (Eds.), Fuel cells: technologies for fuel processing, Elsevier, 2011.spa
dc.relation.referencesKreuer, Klaus-Dieter. "Fuel Cells: Principles, Design, and Analysis" 2012spa
dc.relation.referencesR. O'Hayre, S.-W. Cha, W. Colella y F. B. Prinz, "Fuel Cell Fundamentals," Wiley, 2006spa
dc.relation.referencesA. A. Franco, "Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges," Pan Stanford Publishing, 2013spa
dc.relation.referencesM. Neidhöfer, F. Beaume, L. Ibos, A. Bernes, y C. Lacabanne, "Structural evolution of PVDF during storage or annealing, 2004.spa
dc.relation.referencesK. A. Mauritz y R. B. Moore, "State of understanding of Nafion," Chemical Reviews, vol. 104, 2004.spa
dc.relation.referencesJ. I. C. Penagos, "Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM)," Elementos, vol. 3, 2013spa
dc.relation.referencesR. F. Egerton, "Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM," Springer, 2005.spa
dc.relation.referencesM. A. Vargas, R. A. Vargas, y B. E. Mellander, "New proton conducting membranes based on PVAL/H3PO2/H2O," Electrochimica Acta, vol. 44, no. 24, 1999.spa
dc.relation.referencesB. Smitha, S. Sridhar, y A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Journal of Membrane Science, vol. 259, no. 1-2, 2005spa
dc.relation.referencesJ. S. Diaz-Ortiz, M. I. Delgado-Rosero, N. M. Jurado-Meneses, y G. M. Aparicio Rojas, "Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells," Dyna, vol. 85, 2018.spa
dc.relation.referencesJ. S. Díaz Ortiz, M. I. Delgado Rosero y N. M. Jurado Meneses, "Electrical Properties of Polyvinylidene fluoride-H3PO2 Protonic Conductor; a Novel Electrolyte for Use in Fuel Cells," physica status solid, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembCalorimetría
dc.subject.lembConductividad térmica
dc.subject.lembElectrolitos
dc.subject.proposalPVDFspa
dc.subject.proposalCelda Combustiblespa
dc.subject.proposalConductividad ionicaspa
dc.subject.proposalEspectroscopia de impedanciaspa
dc.subject.proposalIonic conductivityeng
dc.subject.proposalImpedance spectroscopyeng
dc.titleEstudio del comportamiento de una celda combustible conformada por un nuevo sistema de conducción protónica de polivinil difluoruro (PVDF) + ácido fosfórico (H3PO4) trabajando hasta 60 °C
dc.title.translatedStudy of the behavior of a fuel cell consisting of a new proton conduction system of polyvinyl difluoride (PVDF) + phosphoric acid (H3PO4) working up to 60 °Ceng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152460395.2024.pdf
Tamaño:
3.71 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: