Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional

dc.contributor.advisorJiménez Pizarro, Rodrigospa
dc.contributor.advisorGonzález Duque, Carlos Mariospa
dc.contributor.authorArdila Ardila, Andrés Venanciospa
dc.contributor.orcidAndres V. Ardila [0000-0002-4865-675X]spa
dc.contributor.researchgateAndres Ardila [https://www.researchgate.net/profile/Andres-Ardila-8]spa
dc.contributor.researchgroupCalidad del Airespa
dc.coverage.temporalRío Cauca, Colombiaspa
dc.date.accessioned2024-01-16T15:11:27Z
dc.date.available2024-01-16T15:11:27Z
dc.date.issued2023
dc.descriptionilustraciones a color, diagramas, fotografías, mapasspa
dc.description.abstractLa calidad del aire regional se relaciona directamente con el flujo de emisiones de contaminantes atmosféricos y fenómenos como la dispersión atmosférica, sin embargo, la variabilidad anual, interanual y diaria de los fenómenos meteorológicos y su interacción con la topografía hacen que la dispersión atmosférica sea un fenómeno complejo, más aún en regiones consideradas con topografías complejas como el noroeste de Suramérica. El Valle Geográfico del Río Cauca (VGRC) se ubica al noroeste de Suramérica, entre las ramas Central y Occidental de la Cordillera de los Andes a una distancia aproximada de 80 km del Océano Pacífico, en el cual en los últimos años han presentado un deterioro en la calidad del aire relacionado principalmente con el material particulado. A través del análisis de información de las estaciones y simulaciones meteorológicas y de trazadores atmosféricos realizados con el modelo WRF en dos periodos del 2018 (febrero-abril y julio-septiembre), se han identificado los principales patrones de circulación atmosféricos al interior del VGRC. El fenómeno conocido localmente como la “marea” ventila al VGRC de Oeste a Este entre las 14 y 21 HL con intensidades entre los 6-8 m s-1, no obstante, esta intensidad está condicionada por los pasos de menor altitud de la Cordillera Occidental y el periodo analizado; el resto del día predominan los vientos de baja intensidad. La interacción entre la Cordillera Central y los vientos alisios del Este genera un efecto cizalla limitando el transporte vertical hasta los ~2 km al interior del VGRC. Esta diferencia entre los patrones de circulación durante el día genera regiones donde predominan condiciones de ventilación (centro del VGRC) y estancamiento (sur del VGRC) impactando directamente la dispersión y el transporte de contaminantes atmosféricos. (Texto tomado de la fuente)spa
dc.description.abstractRegional air quality is directly related to the flux of air pollutant emissions and phenomena such as atmospheric dispersion; however, the annual, interannual, and daily variability of meteorological phenomena and their interaction with topography make atmospheric dispersion a complex phenomenon, even more so in regions considered to have complex topographies such as northwestern South America. The geographic valley of the Cauca River (VGRC in Spanish) is in the northwest of South America, between the Central and Western branches of the Andes Mountains at an approximate distance of 80 km from the Pacific Ocean, in which in recent years there has been a deterioration in air quality related mainly to particulate matter. Through the analysis of information from the stations and meteorological and atmospheric tracer simulations carried out with the WRF model in two periods of 2018 (February-April and July-September), the main atmospheric circulation patterns within the VGRC have been identified. The phenomenon known locally as the "tide" ventilates the VGRC from West to East between 14 and 21 LT with intensities between 6-8 m s-1; however, this intensity is conditioned by the lower altitude passes of the Cordillera Western and the period analyzed, the rest of the day low-intensity winds predominate, in addition, the interaction between the Central Cordillera and the trade winds from the East generates a shear effect limiting vertical transport up to ~2 km inside the VGRC. This difference between circulation patterns during the day generates regions where ventilation conditions (VGRC center) and stagnation (VGRC south) predominate, directly impacting the dispersion and transport of atmospheric pollutantseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaCalidad del Airespa
dc.format.extentxvii, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85326
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAldana, C. R. B., Guevara, D. C. D., Vitery, F. C., de Paula Gutiérrez Bonilla, F., Camargo, G. V., Ochoa, J. R., Bedout, J. B., & Castañeda, R. G. (2019). Modelado y simulación de sistemas naturales. In Modelado y simulación de sistemas naturales. https://doi.org/10.2307/j.ctvc2rnxfspa
dc.relation.referencesAllwine, K. J., & Whiteman, C. D. (1994). Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmospheric Environment, 28(4), 713–721. https://doi.org/10.1016/1352-2310(94)90048-5spa
dc.relation.referencesAmador, J. (1998). A climatic feature of the Tropical Americas: The Trade Wind Easterly Jet. Topicos Meteorologicos y Oceanograficos, 5(2), 91–102. https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/76623/1998_2.pdf?sequence=1spa
dc.relation.referencesAmbrizzi, T., de Souza, E. B., & Pulwarty, R. S. (2004). The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. 203–235. https://doi.org/10.1007/978-1-4020-2944-8_8spa
dc.relation.referencesAMS (American Meteorological Society). (2023). Tracer - Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Tracerspa
dc.relation.referencesArregocés, H. A., Rojano, R., & Restrepo, G. (2021). Sensitivity analysis of planetary boundary layer schemes using the WRF model in Northern Colombia during 2016 dry season. Dynamics of Atmospheres and Oceans, 96(August). https://doi.org/10.1016/j.dynatmoce.2021.101261spa
dc.relation.referencesAsocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de La Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdfspa
dc.relation.referencesBallesteros-González, K., Espitia-Cano, S. O., Rincón-Caro, M. A., Rincón-Riveros, J. M., Perez-Peña, M. P., Sullivan, A., & Morales Betancourt, R. (2022). Understanding organic aerosols in Bogotá, Colombia: In-situ observations and regional-scale modeling. Atmospheric Environment, 284(June 2021). https://doi.org/10.1016/j.atmosenv.2022.119161spa
dc.relation.referencesBallesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755spa
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004). Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. Journal of Applied Meteorology, 43(10), 1348–1365spa
dc.relation.referencesBell, M. L., Davis, D. L., Gouveia, N., Borja-Aburto, V. H., & Cifuentes, L. A. (2006). The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environmental Research, 100(3), 431–440. https://doi.org/10.1016/j.envres.2005.08.002spa
dc.relation.referencesBrock, F. V., & Richardson, S. J. (2001). Meteorological Measurement Systems. In Oxford University Press. https://doi.org/10.1093/oso/9780195134513.001.0001spa
dc.relation.referencesCazorla, M., Gallardo, L., & Jimenez, R. (2022). The complex Andes region needs improved efforts to face climate extremes. Elementa, 10(1), 1–9. https://doi.org/10.1525/elementa.2022.00092spa
dc.relation.referencesCéspedes, J. (2019). Implementación de un sistema LiDAR elástico para la observación de la dinámica de aerosoles sobre el área urbana de Cali.spa
dc.relation.referencesCIAT-International Center for Tropical Agriculture., & CVC-Valle del Cauca province regional environmental authority. (2018). Valle del Cauca Province (In Spanish). https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/plan_integral_de_cambio_climetico_para_el_valle_del_cauca.pdfspa
dc.relation.referencesCifuentes, F., González, C. M., & Aristizábal, B. H. (2021). Insights to WRF-Chem sensitivity in a zone of complex terrain in the tropical Andes: Effect of boundary conditions, chemical mechanisms, nesting, and domain configuration. Atmospheric Pollution Research, December 2020, 101093. https://doi.org/10.1016/j.apr.2021.101093spa
dc.relation.referencesCortés, E., Chica, H., & Peña, A. (2019). Climatic zones of the Cauca River Valley (In Spanish). Carta Informativa Cenicaña, 7, 10–11. https://www.cenicana.org/zonas-climaticas-del-valle-del-rio-cauca/spa
dc.relation.referencesCPC-Climate Prediction Center. (2023). ONI-Cold & Warm Episodes by Season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpspa
dc.relation.referencesCVC-Corporación Autónoma Regional del Valle del Cauca. (2020, September 17). A PARTIR DE HOY SE REDUCEN LAS QUEMAS DE CAÑA EN EL VALLE DEL CAUCA | Portal CVC. https://www.cvc.gov.co/2020255spa
dc.relation.referencesCVC-Corporación Autónoma Regional del Valle del Cauca, & Universidad Nacional de Colombia sede Palmira. (2022). Modelación de material particulado indentificando la contribución de las fuentes - Vigenncia 2022 Convenio interadministrativo No . 036 DE 2021 CVC-UNAL. https://calidadaire.cvc.gov.co/spa
dc.relation.referencesDAGMA-Departamento Administrativo de Gestión del Medio Ambiente de Santiago de Cali, & Universidad Nacional de Colombia sede Palmira. (2022). Simulación meteorológica y simulación preliminar de calidad del aire en Santiago de Cali-Convenio interadministrativo 4133.010.27.1.041-2022 DAGMA-UNAL.spa
dc.relation.referencesDANE-National Administrative Department of Statistics. (2022). Population projections at the municipal level. Period 2018-2035 (In Spanish). https://cutt.ly/04q49Knspa
dc.relation.referencesDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/JAM2367.1spa
dc.relation.referencesDATA NOVIA. (2020). K-Means Clustering in R: Algorithm and Practical Examples - Datanovia. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/spa
dc.relation.referencesDepartamento Nacional de Planeación -DNP-. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradación-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspxspa
dc.relation.referencesDiaz, L. R., Rolim, S. B. A., Santos, D. C., Käfer, P. S., Da Rocha, N. S., & Alves, R. D. C. M. (2020). Using the wrf model to refine ncep cfsv2 reanalysis atmospheric profile: A Southern Brazil test case. Revista Brasileira de Geofisica, 38(2), 5–31. https://doi.org/10.22564/rbgf.v38i2.2043spa
dc.relation.referencesDiaz, L. R., Santos, D. C., Käfer, P. S., Iglesias, M. L., da Rocha, N. S., da Costa, S. T. L., Kaiser, E. A., & Rolim, S. B. A. (2021). Reanalysis profile downscaling with WRF model and sensitivity to PBL parameterization schemes over a subtropical station. Journal of Atmospheric and Solar-Terrestrial Physics, 222(July). https://doi.org/10.1016/j.jastp.2021.105724spa
dc.relation.referencesDubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2(February), 1–10. https://doi.org/10.3389/frsen.2021.619818spa
dc.relation.referencesEguis Cuentas, M. C., & Jiménez, J. F. (2023). Dispersión atmosférica de material particulado en ciudades de montaña y tropicales. https://repositorio.unal.edu.co/handle/unal/83891spa
dc.relation.referencesEmery, C., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two texas ozone episodesspa
dc.relation.referencesFernandez, R. P., Allende, D. G., Castro, F., Cremades, P., & Puliafito, E. (2010). Modelado regional de la calidad de aire utilizando el modelo WRF/Chem: Implementación de datos globales y locales para Mendoza. Avances En Energías Renovables y Medio Ambiente, 14, 43–50.spa
dc.relation.referencesFranco, J. ., & Montejo, A. (2023). Calidad de aire, cambio climático y salud pública (H. Consulting (ed.)).ISBN 9786289570205spa
dc.relation.referencesGalanti, E., Raiter, D., Kaspi, Y., Tziperman, E., & Jgr-atmosphere, S. (2021). Spatial patterns of the local Hadley circulation : drivers and consequences. 2.spa
dc.relation.referencesGao, S., Huang, D., Du, N., Ren, C., & Yu, H. (2022). WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 271(December 2021), 106116. https://doi.org/10.1016/j.atmosres.2022.106116spa
dc.relation.referencesGiovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Castelli, S. T., & Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 1–32. https://doi.org/10.3390/atmos11060646spa
dc.relation.referencesGómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009spa
dc.relation.referencesGonzález, C. M. (2017). Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte química on-line. Caso de estudio: Manizales, Colombia. 238spa
dc.relation.referencesGonzález, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM 10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003spa
dc.relation.referencesGouveia, N., Kephart, J. L., Dronova, I., McClure, L., Granados, J. T., Betancourt, R. M., O’Ryan, A. C., Texcalac-Sangrador, J. L., Martinez-Folgar, K., Rodriguez, D., & Diez-Roux, A. V. (2021). Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Science of the Total Environment, 772, 145035. https://doi.org/10.1016/j.scitotenv.2021.145035spa
dc.relation.referencesHenao, J. J., Mejía, J. F., Rendón, A. M., & Salazar, J. F. (2020). Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric Pollution Research, 11(5), 928–945. https://doi.org/10.1016/j.apr.2020.02.005spa
dc.relation.referencesHernandez-Deckers, D. (2022). Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 148(742), 338–350. https://doi.org/10.1002/qj.4208spa
dc.relation.referencesHernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051spa
dc.relation.referencesHernández, J. D. R., & Mesa, Ó. J. (2020). A simple conceptual model for the heat induced circulation over Northern South America and MESO-America. Atmosphere, 11(11), 1–14. https://doi.org/10.3390/atmos11111235spa
dc.relation.referencesHernández, Jauregui, Souto, Casares, Saavedra, Guzmán, & Torres. (2015). Estado actual de los modelos de dispersión atmosférica y sus aplicaciones. UCE Ciencia. Revista de Postgrado, 3(2), 1–17.spa
dc.relation.referencesHolzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2spa
dc.relation.referencesHu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., & Hasekamp, O. (2018). Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 45(8), 3682–3689. https://doi.org/10.1002/2018GL077259spa
dc.relation.referencesIDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. http://www.ideam.gov.co/documents/11769/72085840/Documento+metodologico+variables+meteorologicas.pdf/8a71a9b4-7dd7-4af4-b98e-9b1eda3b8744spa
dc.relation.referencesIDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales). (2022). Informe del estado de la calidad del aire en Colombia 2021.spa
dc.relation.referencesJiménez-Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934spa
dc.relation.referencesJimenez, R., Ardila, A. V, Vargas-burbano, A. C., Hernandez, A. J., & Leon-velasquez, E. (2022). Biomass burning-agriculture coupling in the Orinoco savannas — Particulate matter emission scenarios. November, 1–16. https://doi.org/10.3389/fenvs.2022.689844spa
dc.relation.referencesJury, M. R. (2019). Northward excursion of the ITCZ across the inter-Americas during boreal summer. Meteorology and Atmospheric Physics, 131(5), 1357–1366. https://doi.org/10.1007/s00703-018-0642-1spa
dc.relation.referencesJury, M. R. (2020). Meteorology of air pollution in Los Angeles. Atmospheric Pollution Research, 11(7), 1226–1237. https://doi.org/10.1016/j.apr.2020.04.016spa
dc.relation.referencesKumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem model to simulate PM10 concentration over Bogota. Aerosol and Air Quality Research, 16(5), 1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318spa
dc.relation.referencesLamare, M., Dumont, M., Picard, G., Larue, F., Tuzet, F., Delcourt, C., & Arnaud, L. (2020). Simulating optical top-of-Atmosphere radiance satellite images over snow-covered rugged terrain. Cryosphere, 14(11), 3995–4020. https://doi.org/10.5194/tc-14-3995-2020spa
dc.relation.referencesLawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233. https://doi.org/10.1175/BAMS-86-2-225spa
dc.relation.referencesLee, S. M., Princevac, M., Mitsutomi, S., & Cassmassi, J. (2009). MM5 simulations for air quality modeling: An application to a coastal area with complex terrain. Atmospheric Environment, 43(2), 447–457. https://doi.org/10.1016/j.atmosenv.2008.07.067spa
dc.relation.referencesLi Ramírez, J. A., Zambrano Nájera, J. del C., & Aristizábal Zuluaga, B. H. (2020). BVOC Emissions Along the Eastern and Western Slopes of the Andes Central Range with Strong Altitudinal Gradient over a Wide Range of Andean Ecosystems: Model Estimation/Disaggregation with BIGA. Environmental Modeling and Assessment, 25(6), 761–773. https://doi.org/10.1007/s10666-020-09698-7spa
dc.relation.referencesLi, Y., & Chao, J. (2018). Theoretical urban heat island circulation in the temperature inversion profile. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030098spa
dc.relation.referencesLim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612. https://doi.org/10.1175/2009MWR2968.1spa
dc.relation.referencesLin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C. K., Chien, Y. Y., & Chen, W. M. (2021). Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21(22), 16893–16910. https://doi.org/10.5194/acp-21-16893-2021spa
dc.relation.referencesLopez-noreña, A. I. (2016). Simulation of the dispersion of particulate matter PM2.5 in the Aburrá Valley, Colombia, using WRF-Chem (In Spanish). December 2016. https://doi.org/10.13140/RG.2.2.34078.69441/2spa
dc.relation.referencesLópez, M., & Howell, W. (1967). Katabatic Winds in the Equatorial Andes. Journal of the Atmospheric Sciences, 68–70. https://doi.org/10.1175/1520-0469(1967)024%3C0029:KWITEA%3E2.0.CO;2spa
dc.relation.referencesMadala, S., Satyanarayana, A. N. V., Srinivas, C. V., & Kumar, M. (2015). Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF. Atmospheric Environment, 107, 315–328. https://doi.org/10.1016/j.atmosenv.2015.02.059spa
dc.relation.referencesMapes, B. E., Warner, T. T., & Negri, A. (2003). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2spa
dc.relation.referencesMateus-Fontecha, Lady, Vargas-Burbano, A., Jimenez, R., Rojas, N. Y., Rueda-Saa, G., Van Pinxteren, D., Van Pinxteren, M., Fomba, K. W., & Herrmann, H. (2022). Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmospheric Chemistry and Physics, 22(13), 8473–8495. https://doi.org/10.5194/acp-22-8473-2022spa
dc.relation.referencesMcNally. (2009). 12kmMM5 performance goals prepared for: ad-hoc met. group.spa
dc.relation.referencesMesa-Sánchez, O. J., & Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899spa
dc.relation.referencesMesa, Ó. J., & Rojo, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/RACCEFYN.899spa
dc.relation.referencesMolina, L. T., Gallardo, L., Andrade, M., Baumgardner, D., Borbor-Cõrdova, M., Bõrquez, R., Casassa, G., Cereceda-Balic, F., Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J. L., Mc Phee, J., Mena-Carrasco, M., Raga, G. B., Schmitt, C., & Schwarz, J. P. (2015). Pollution and its Impacts on the South American Cryosphere. Earth’s Future, 3(12), 345–369. https://doi.org/10.1002/2015EF000311spa
dc.relation.referencesMuñoz, L. E., Campozano, L. V., Guevara, D. C., Parra, R., Tonato, D., Suntaxi, A., Maisincho, L., Páez, C., Villacís, M., Córdova, J., & Valencia, N. (2023). Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere, 14(2). https://doi.org/10.3390/atmos14020264spa
dc.relation.referencesNansai, K., Tohno, S., Chatani, S., Kanemoto, K., Kagawa, S., Kondo, Y., Takayanagi, W., & Lenzen, M. (2021). Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 12(1), 1–6. https://doi.org/10.1038/s41467-021-26348-yspa
dc.relation.referencesNedbor-Gross, R., Henderson, B. H., Davis, J. R., Pachón, J. E., Rincón, A., Guerrero, O. J., & Grajales, F. (2017). Comparing standard to feature-based meteorological model evaluation techniques in Bogotá, Colombia. Journal of Applied Meteorology and Climatology, 56(2), 391–413. https://doi.org/10.1175/JAMC-D-16-0058.1spa
dc.relation.referencesNOAA. (2014, August 1). The Walker Circulation: ENSO’s atmospheric buddy | NOAA Climate.gov. https://www.climate.gov/news-features/blogs/enso/walker-circulation-ensos-atmospheric-buddyspa
dc.relation.referencesNOAA - National Oceanic and Atmospheric Administration-. (2023). El Niño & La Niña (El Niño-Southern Oscillation) | NOAA Climate.gov. https://www.climate.gov/ensospa
dc.relation.referencesNOAA (National and Oceanic Atmospheric and Administration). (2023). Inter-Tropical Convergence Zone | National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/tropical/convergence-zonespa
dc.relation.referencesOrtiz, E. Y., Jimenez, R., Fochesatto, G. J., & Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697spa
dc.relation.referencesPeng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Response to comment on “Surface urban heat island across 419 global big cities.” Environmental Science and Technology, 46(12), 6889–6890. https://doi.org/10.1021/es301811bspa
dc.relation.referencesPérez, I. A., García, M. Á., Sánchez, M. L., Pardo, N., & Fernández-Duque, B. (2020). Key points in air pollution meteorology. International Journal of Environmental Research and Public Health, 17(22), 1–14. https://doi.org/10.3390/ijerph17228349spa
dc.relation.referencesPfister, G., Pétron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J., Attie, J., Granier, C., Novelli, P. C., & Emmons, K. (2004). Evaluation of CO simulations and the analysis of the CO budget for Europe. J. Geophys. Res, 109, 19304. https://doi.org/10.1029/2004JD004691spa
dc.relation.referencesPosada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5–6), 3609–3629. https://doi.org/10.1007/s00382-018-4403-0spa
dc.relation.referencesPoveda., Álvarez., & Rueda. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11–12), 2233–2249. https://doi.org/10.1007/s00382-010-0931-yspa
dc.relation.referencesPoveda., & Mesa. (1999). The westerly low-level Chocó jet and two other atmospheric jets over Colombia: Climatology and variability during ENSO phases (in Spanish). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(January), 517–528.spa
dc.relation.referencesPoveda., Waylen., & Pulwarty. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031spa
dc.relation.referencesPoveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675–1678. https://doi.org/10.1029/1999GL006091spa
dc.relation.referencesPreciado, M., Chica, H., Solarte, E., Carbonell, J., & Peña, A. (2020). Regional wind pattern, a basis for defining the appropriate lapse of time for sugarcane burning in the Cauca Valley (Colombia). Environment, Development and Sustainability, 23(6), 9477–9492. https://doi.org/10.1007/s10668-020-00992-8spa
dc.relation.referencesRanjha, R., Svensson, G., TjernströM, M., & Semedo, A. (2013). Global distribution and seasonal variability of coastal low-level jets derived from ERA-interim reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 65. https://doi.org/10.3402/tellusa.v65i0.20412spa
dc.relation.referencesRau, B., & Gómez, L. (2018). Colombia Sugar Annual Colombian Sugar Production Bounces Back after Three Years of Difficult Weather Conditions. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar Annual_Bogota_Colombia_4-13-2018.pdfspa
dc.relation.referencesRen, H. L., Lu, B., Wan, J., Tian, B., & Zhang, P. (2018). Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. Journal of Meteorological Research, 32(6), 923–936. https://doi.org/10.1007/s13351-018-8078-6spa
dc.relation.referencesRusso, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039spa
dc.relation.referencesSaha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1spa
dc.relation.referencesSakamoto, M. S., Ambrizzi, T., & Poveda, G. (2011). Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011, 1–11. https://doi.org/10.1155/2011/890759spa
dc.relation.referencesSeidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. (2001). Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research Atmospheres, 106(D8), 7857–7878. https://doi.org/10.1029/2000JD900837spa
dc.relation.referencesSierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. (2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56(7–8), 2667–2692. https://doi.org/10.1007/s00382-020-05611-wspa
dc.relation.referencesSouza, N., Nascimento, E., & Moreira, D. (2021). Performance evaluation of the WRF model in a tropical region: wind speed analysis at diferent sites. Atmósfera, August 2020, 0–27. https://doi.org/https://doi.org/10.20937/ATM.52968spa
dc.relation.referencesSteenburgh, W. J., Schultz, D. M., Snyder, B. J., & Meyers, M. P. (2013). Mountain Weather Research and Forecasting. 693–716. https://doi.org/10.1007/978-94-007-4098-3spa
dc.relation.referencesSun, D.-Z., & Oort, A. H. (1995). Humidity-Temperature relationship in the tropical troposphere. Journal of Climate, 8, 1974–1987. https://journals.ametsoc.org/view/journals/clim/8/8/1520-0442_1995_008_1974_hrittt_2_0_co_2.xmlspa
dc.relation.referencesTalgo, K., Bowden, J., Adelman, Z., & Morris, R. (2015). Western Air Quality Study ( WAQS ) Weather Research Forecast ( WRF ) Meteorological Model Final Modeling Protocol 2014 Modeling Year.spa
dc.relation.referencesTapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235(October 2019), 104785. https://doi.org/10.1016/j.atmosres.2019.104785spa
dc.relation.referencesUCAR (University Corporation for Atmospheric Research). (2023). Weather Research & Forecasting Model (WRF) | Mesoscale & Microscale Meteorology Laboratory. https://www.mmm.ucar.edu/models/wrfspa
dc.relation.referencesUribe, H. (2017). EL VALLE GEOGRÁFICO DEL RÍO CAUCA: UN ESPACIO TRANSFORMADO POR EL CAPITAL AGROINDUSTRIAL. Libros Universidad Nacional Abierta y a Distancia, 298–314. https://hemeroteca.unad.edu.co/index.php/book/article/view/2435spa
dc.relation.referencesWang, X. C., Klemeš, J. J., Dong, X., Fan, W., Xu, Z., Wang, Y., & Varbanov, P. S. (2019). Air pollution terrain nexus: A review considering energy generation and consumption. Renewable and Sustainable Energy Reviews, 105(January), 71–85. https://doi.org/10.1016/j.rser.2019.01.049spa
dc.relation.referencesWang, X., Chen, F., Wu, Z., Zhang, M., Tewari, M., Guenther, A., & Wiedinmyer, C. (2009). Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 26(5), 962–972. https://doi.org/10.1007/s00376-009-8001-2spa
dc.relation.referencesWarner, T. T., Mapes, B. E., & Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2spa
dc.relation.referencesWhiteman, D. (2001). Mountain Meteorology: Fundamentals and Applications. In Mountain Research and Development (Vol. 21, Issue 2). https://doi.org/10.1659/0276-4741(2001)021[0200:mmfaa]2.0.co;2spa
dc.relation.referencesWHO. (2021). WHO’s global air-quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In Lancet (Vol. 368, Issue 9544).spa
dc.relation.referencesWindrow, B., Kollár, I., & Liu, M.-C. (1996). Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurment, 45(2), 353–361. https://people.isy.liu.se/rt/fredrik/spcourse/quant.pdfspa
dc.relation.referencesYáñez, G., Gironás, J., Caneo, M., Delgado, R., & Garreaud, R. (2018). Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere, 9(8). https://doi.org/10.3390/atmos9080304spa
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1spa
dc.relation.referencesŽabkar, R., Koračin, D., & Rakovec, J. (2013). A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area. Atmospheric Environment, 77, 990–1004. https://doi.org/10.1016/j.atmosenv.2013.05.065spa
dc.relation.referencesZhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., & Li, S. (2023). Impacts of urbanization on air quality and the related health risks in a city with complex terrain. Atmospheric Chemistry and Physics, 23(1), 771–788. https://doi.org/10.5194/acp-23-771-2023spa
dc.relation.referencesZhang, S., Wang, M., Wang, L., Liang, X. Z., Sun, C., & Li, Q. (2023). Sensitivity of the simulation of extreme precipitation events in China to different cumulus parameterization schemes and the underlying mechanisms. Atmospheric Research, 285(September 2022), 106636. https://doi.org/10.1016/j.atmosres.2023.106636spa
dc.relation.referencesZhao, W., & Li, A. (2015). A Review on Land Surface Processes Modelling over Complex Terrain. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/607181spa
dc.relation.referencesZhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W., Qiu, Y., Lei, L., Fu, P., Wang, Z., Worsnop, D. R., Zhang, Q., & Sun, Y. (2019). Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution (Barking, Essex : 1987), 255(Pt 2). https://doi.org/10.1016/J.ENVPOL.2019.113345spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.lccIndicadores ambientalesspa
dc.subject.lccEnvironmental indicatorseng
dc.subject.lccCirculación atmosférica-Métodos de simulaciónspa
dc.subject.lccAtmospheric circulation-Simulation methodseng
dc.subject.lccAnálisis del impacto ambientalspa
dc.subject.lccEnvironmental impact analysiseng
dc.subject.lccMeteorología dinámicaspa
dc.subject.lccDynamic meteorologyeng
dc.subject.lembCalidad del airespa
dc.subject.lembAir qualityeng
dc.subject.proposalModelación meteorológicaspa
dc.subject.proposalValle Interandino Tropicalspa
dc.subject.proposalTransporte regional de contaminantesspa
dc.subject.proposalTopografía complejaspa
dc.subject.proposalVientos catabáticosspa
dc.subject.proposalMeteorological modelingeng
dc.subject.proposalTropical Inter-Andean Valleyeng
dc.subject.proposalRegional transport of pollutantseng
dc.subject.proposalComplex topographyeng
dc.subject.proposalkatabatic windseng
dc.titlePatrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regionalspa
dc.title.translatedAtmospheric circulation patterns in the geographic valley of the Cauca River and its impact on regional air qualityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024496500.2023.pdf
Tamaño:
6.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: