Desarrollo de un prototipo de trampa electromagnética para la captura de Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae)

dc.contributor.advisorRey González, Rafael Ramon
dc.contributor.advisorBrochero, Helena Luisa Margarita
dc.contributor.authorGonzález López, Carlos Alberto
dc.contributor.orcidGonzález López, Carlos Alberto [0000-0002-7037-3131]spa
dc.contributor.researchgroupGrupo de Investigación: Grupo de Óptica e Información Cuántica (GOIC)spa
dc.date.accessioned2023-11-28T16:59:39Z
dc.date.available2023-11-28T16:59:39Z
dc.date.issued2023-11-24
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos thrips Frankiniella occidentalis son insectos pequeños, con un tamaño de 0,8 a 3 mm, originarios del oeste de los Estados Unidos. Con el tiempo, esta especie se ha propagado por todo el mundo y se considera una plaga debido a que actúa como vector de virus que pueden causar pérdidas significativas en los cultivos, generando un gran daño en la agricultura. Aunque existen diferentes métodos de control para esta especie, como el control químico, biológico y cultural. Este trabajo se centró en el uso de campos electromagnéticos como método para inmovilizar a este insecto. Específicamente, se desarrolló un prototipo con forma cilíndrica que consta de dos peines de cobre aislados e intercalados, cada uno conectado a un polo diferente de un elevador de voltaje (6 kVCC). Esto genera un campo eléctrico estático capaz de inmovilizar de manera eficaz a F. occidentalis. Además, se utilizaron diodos led genéricos como fuentes de luz activa, colocándolos estratégicamente en el centro del prototipo cilíndrico. Estos ledes fueron previamente caracterizados espectralmente y sometidos a pruebas comparativas con hembras de F. occidentalis en una estructura de doble vía. De esta forma, se determinó fototacticamente que los thrips mostraron preferencia por los ledes genéricos de luz violeta (397 nm), lo cual coincide con los tres picos de absorción espectral informados en la literatura, a saber, onda corta (363 nm), media (476 nm) y larga (535 nm). (Texto tomadod e la fuente)spa
dc.description.abstractFrankiniella occidentalis thrips are small insects, measuring 0.8 to 3 mm in size, native to the western United States. Over time, this species has spread worldwide and is considered a pest because it acts as a vector for viruses that can cause significant crop losses, inflicting considerable damage to agriculture. While various control methods exist for this species, such as chemical, biological, and cultural control. This study focused on using electromagnetic fields as a method to immobilize the insect. Specifically, a cylindrical prototype was developed, consisting of two isolated and interleaved copper combs, each connected to a different pole of a voltage lifter (6 kVDC). This generates a static electric field capable of effectively immobilizing F. occidentalis. Additionally, generic LED diodes were used as sources of active light, strategically placed in the center of the cylindrical prototype. These LEDs were previously spectrally characterized and subjected to comparative tests with female F. occidentalis in a dual-path structure. Phototactically, it was determined that the thrips showed a preference for generic LEDs emitting violet light (397 nm), which coincides with the three spectral absorption peaks reported in the literature, namely short-wave (363 nm), medium-wave (476 nm), and long-wave (535 nm).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ciencias, físicaspa
dc.description.researchareaFísica aplicada - Biofísicaspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85010
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAlicdn (2014). alibaba.com. Recuperado el 6 de febrero de 2023, de https://s.alicdn.com/@sc04/kf/H1164aa068d71457da42c5f3bc216cc4aZ.jpg_960x960.jpgspa
dc.relation.referencesAnchura a media altura. (2021). Wikipedia, La enciclopedia libre. Fecha de consulta: febrero 19, 2021 desde https://es.wikipedia.org/w/index.php?title=Anchura_a_media_altura&oldid=133368490spa
dc.relation.referencesBarrientos, J. (2004). Curso práctico de entomología. Universidad Autónoma De Barcelona. https://cibio.ua.es/archivos/CursoEntomologia.pdfspa
dc.relation.referencesBencardino, C. M. (2011). Estadística básica aplicada. Ecoe Ediciones. (p. 336). ISBN 978-958-648-766-5spa
dc.relation.referencesBen-Yakir D. (2020). Direct and indirect effects of UV radiation. En Optical manipulation of arthropod pests and beneficials (pp. 49–59). ISBN 9781786394712spa
dc.relation.referencesBergh, C. J., & Le Blanc, J.-P. R. (1997). Performance of Western Flower Thrips (Thysanoptera: Thripidae) on Cultivars of Miniature Rose. Journal of Economic Entomology (pp. 679–688). https://doi.org/10.1093/jee/90.2.679spa
dc.relation.referencesBicho, A. (2022). Orius laevigatus: El Depredador Natural de los Trips. La Huertina De Toni. Recuperado el 13 de diciembre de 2022, de https://www.lahuertinadetoni.es/orius-laevigatus-depredador-natural-de-trips/spa
dc.relation.referencesBielza P, Quinto V, Contreras J, Torné M, Martín A, Espinosa PJ, (2007). Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of southeastern Spain. Pest Management Science, (pp. 682-687). https://pubmed.ncbi.nlm.nih.gov/17487830/spa
dc.relation.referencesBrødsgaard, H. (1989a). “Frankliniella occidentalis a new pest in Danish glasshouses. A review”, 93: 83-91spa
dc.relation.referencesBrødsgaard, H. (1989b). Coloured sticky traps for Frankliniella occidentalis(Pergande) (Thysanoptera, Thripidae) in glasshouses. Zeitschrift Für Angewandte Entomologie. Journal of Applied Entomology, (pp. 136–140). https://doi.org/10.1111/j.1439-0418.1989.tb00240.xspa
dc.relation.referencesBroughton S, Harrison J. (2012). Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. ScienceDirect (pp. 156-163). https://doi.org/10.1016/j.cropro.2012.05.004spa
dc.relation.referencesBryan D.E. & Smith R.F., (1956). The Frankliniella occidentalis complex in California. University of California, Publications in Entomology, 10:359-410spa
dc.relation.referencesCarrizo, P. (2008). Efecto del tamaño de trampas adhesivas amarillas para el muestreo de Frankliniella occidentalis en pimiento (Capsicum annum) en invernadero. Ciencia e Investigacion Agraria, 35(2). https://doi.org/10.4067/s0718-16202008000200008spa
dc.relation.referencesChen, Tian-Ye., Chu, Chang-Chi., Henneberry, T. & Umeda. K (2004). “Monitoring and Trapping Insects on Poinsettia with Yellow Sticky Card Traps Equipped with Light-emitting Diodes”. En: HortTechnology 14.3, (pp. 337-341). https://doi.org/10.21273/HORTTECH.14.3.0337spa
dc.relation.referencesChen, Tian-Ye; Chu, Chang-Chi; Fitzgerald, Glenn; Natwick, Eric T.; Henneberry, Thomas J. (2004). Trap Evaluations for Thrips (Thysanoptera: Thripidae) and Hoverflies (Diptera: Syrphidae). Environmental Entomology, 33(5), (pp. 1416–1420). https://doi.org/10.1603/0046-225X-33.5.1416spa
dc.relation.referencesChu, C. C., Pinter, P. J., Jr, Henneberry, T. J., Umeda, K., Natwick, E. T., Wei, Y. A., Reddy, V. R., & Shrepatis, M. (2000). Use of CC traps with different trap base colors for silverleaf whiteflies (Homoptera: Aleyrodidae), thrips (Thysanoptera: Thripidae), and leafhoppers (Homoptera: Cicadellidae). Journal of Economic Entomology, 93(4), (pp. 1329–1337). https://doi.org/10.1603/0022-0493-93.4.1329spa
dc.relation.referencesChu, C.C., Chen, T.Y., Natwick, E.T., Fitzgerald, G., Tuck, S., Alexander, P., & Henneberry, T.J. (2005). “Light Response by Frankliniella occidentalis to White Fluorescent Light Filtered Through Color Films and Ultraviolet and Blue Light-Emmiting Diodes”. Southwestern Entomologist 30.3, (pp. 149-154). https://www.researchgate.net/publication/290318469_Light_response_by_Frankliniella_occidentalis_to_white_fluorescent_light_filtered_through_color_films_and_ultraviolet-_and_blue_light-emmiting_diodesspa
dc.relation.referencesCohnstaedt, L. W., Disberger, J. C., Paulsen, E., & Duehl, A. J. (2018). Key elements of photo attraction bioassay for insect studies or monitoring programs. Jove. (p. 137). https://doi.org/10.3791/57445spa
dc.relation.referencesCristalino. (2023). Wikipedia, La enciclopedia libre. Fecha de consulta: enero 1, 2023 desde https://es.wikipedia.org/w/index.php?title=Cristalino&oldid=148312996.spa
dc.relation.referencesDavidson, M. M., Butler, R. C., & Teulon, D. A. J. (2012). Response of female Frankliniella occidentalis (pergande) to visual cues and para-anisaldehyde in a flight chamber. Journal of Insect Behavior, 25(3), (pp. 297–307). https://doi.org/10.1007/s10905-011-9299-zspa
dc.relation.referencesDavson H. (2013). Physiology of the eye. Springer Link. https://doi.org/10.1007/978-1-349-09997-9spa
dc.relation.referencesDemirozer O, Tyler-Julian K, Funderburk J, Leppla N, Reitz S, (2012). Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Management Science, 68(12) (pp. 1537-1545). https://doi.org/10.1002/ps.3389spa
dc.relation.referencesEgri, Á., Farkas, P., Bernáth, B., Guerin, P. M., & Fail, J. (2020). Spectral sensitivity of L2 biotype in the Thrips tabaci cryptic species complex. Journal of Insect Physiology, 121(103999), 103999. https://doi.org/10.1016/j.jinsphys.2019.103999spa
dc.relation.referencesElvidge, Christopher D.; Keith, David M.; Tuttle, Benjamin T.; Baugh, Kimberly E. (2010). Spectral Identification of Lighting Type and Character. Sensors, 10(4), (pp. 3961–3988). doi:10.3390/s100403961spa
dc.relation.referencesFactor de calidad. (2022). Wikipedia, La enciclopedia libre. Fecha de consulta, octubre 9, 2022 desde https://es.wikipedia.org/w/index.php?title=Factor_de_calidad&oldid=14649489.spa
dc.relation.referencesFAN Fan, 范凡, REN Hongmin, 任红敏, LU Lihua, 吕利华, ZHANG Liping, 张莉萍, & WEI Guoshu, 魏国树. (2012). Effect of spectral sensitivity and intensity response on the phototaxis of Frankliniella occidentalis (Pergande). Sheng Tai Xue Bao [Acta Ecologica Sinica], 32(6), (pp. 1790–1795). https://doi.org/10.5846/stxb201102170179spa
dc.relation.referencesFunderburk J, Frantz G, Mellinger C, Tyler-Julian K, Srivastava M. (2016). Biotic resistance limits the invasiveness of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), in Florida. Insect Science. 23: (pp. 175–82). https://doi.org/10.1111/1744-7917.12250spa
dc.relation.referencesGalushko, D., Ermakov, N., Karpovski, M., Palevski, A., Ishay, J. S., & Bergman, D. J. (2005). Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semiconductor Science and Technology, 20(3), (pp. 286–289). https://doi.org/10.1088/0268-1242/20/3/005spa
dc.relation.referencesGao Y, Lei Z, Reitz S, R. (2012). Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Management Science 68(8), (pp. 1111-1121). https://doi.org/10.1002/ps.3305spa
dc.relation.referencesGaum W.G., Giliomee J.H. & Pringle K.L., (1994). Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on English cucumbers. Bulletin of Entomological Research, 84(2):219-224spa
dc.relation.referencesGoldbach, R., & Peters, D. (1994). Possible causes of the emergence of tospovirus diseases. Seminars in Virology, 5(2), (pp. 113–120). https://doi.org/10.1006/smvy.1994.1012spa
dc.relation.referencesGonzález, C., Rey-González R. R., Peraza, A., Fonseca, K., Brochero, H. & Velásquez, M. (2022). Caracterización óptica de ledes de bajo costo para manipulación de thrips en cultivos agrícolas. Por publicar.spa
dc.relation.referencesGrimaldi D., Englel M. 2005. Evolution of the Insects. Cambridge University Press. (p. 262).spa
dc.relation.referencesHecht, E. (2016). Optics, Global Edition (5a ed.). Pearson Education.spa
dc.relation.referencesHerron GA, James TM, (2005). Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera : Thripidae) detects fipronil and spinosad resistance. Australian Journal of Entomology, 44: (pp. 299-303).spa
dc.relation.referencesHoddle, M. S., Robinson, L., & Morgan, D. (2002). Attraction of thrips (Thysanoptera: Thripidae and Aeolothripidae) to colored sticky cards in a California avocado orchard. Crop Protection, 21(5), (pp. 383–388). https://doi.org/10.1016/s0261-2194(01)00119-3spa
dc.relation.referencesHydro Environment (2019). Guía: ¿Qué son las Trampas Pegajosas?. Hidroponía en México. Recuperado el 13 de diciembre de 2022, de https://www.hydroenv.com.mx/catalogo/index.php?main_page=page&id=418spa
dc.relation.referencesJia, Lei-Po; Liang, Ai-Ping (2017). An apposition compound eye adapted for nocturnal vision in the moth midge Clogmia albipunctata (Williston) (Diptera: Psychodidae). Journal of Insect Physiology, 98, (pp. 188–198). https://doi.org/10.1016/j.jinsphys.2017.01.006spa
dc.relation.referencesJohansen, N.S.; Torp, T.; Solhaug, K.A. (2018). Phototactic Response of Frankliniella occidentalis to Sticky Traps with Blue Light Emitting Diodes in Herb and Alstroemeria Greenhouses. Crop Prot. 114, (pp.120–128).spa
dc.relation.referencesKakutani, K., Matsuda, Y., Haneda, K., Nonomura, T., Kimbara, J., Kusakari, S., Osamura, K., & Toyoda, H. (2012a). Insects are electrified in an electric field by deprivation of their negative charge, Annals of Applied Biology, 160(3), (pp. 250–259). https://doi.org/10.1111/j.1744-7348.2012.00538.xspa
dc.relation.referencesKakutani, K., Matsuda, Y., Nonomura, T., Toyoda, H., Kimbara, J., Osamura, K., & Kusakari, S. (2012b). Practical application of an electric field screen to an exclusion of flying insect pests and airborne fungal conidia from greenhouses with a good air penetration. Journal of agricultural science, 4(5). https://doi.org/10.5539/jas.v4n5p51spa
dc.relation.referencesKaufman, P. L., & Alm, A. (2003). Adler. Fisiología del Ojo: Aplicación clínica (10a ed.). Elsevier España. ISBN 9788481747058spa
dc.relation.referencesKefalov, V. J. (2012). Rod and Cone Visual Pigments and Phototransduction through Pharmacological, Genetic, and Physiological Approaches. Journal of Biological Chemistry, 287(3), (pp. 1635–1641). https://doi.org/10.1074/jbc.R111.303008spa
dc.relation.referencesKeiser G. (2016). Biophotonics Concepts to Applications. 1ª ed. Springer Singapore. Ejemplo 4.4 página 104.spa
dc.relation.referencesKirk, WDJ & Terry, I. (2003). The spread of western flower thrips Frankliniella occidentalis Pergande. Agricultural and Forest Entomology 5: (pp. 301-310). https://doi.org/10.1046/j.1461-9563.2003.00192.xspa
dc.relation.referencesKirschfeld, K. (1976). The resolution of lens and compound eyes. En Proceedings in Life Sciences (pp. 354–370). doi:10.1007/978-3-642-66432-8_19spa
dc.relation.referencesKusakari, S.-I., Okada, K., Shibao, M., & Toyoda, H. (2020). High voltage electric fields have potential to create new physical pest control systems. Insects, 11(7), https://doi.org/10.3390/insects11070447spa
dc.relation.referencesLand, M. F., & Nilsson, D. E. (2012). Animal Eyes (2a ed.). Oxford University Press.spa
dc.relation.referencesLand, M.F. (1997). Visual acuity in insects. Annual Review of Entomology 42, 147–77.spa
dc.relation.referencesLed. (2022). Wikipedia, La enciclopedia libre. Fecha de consulta: enero 12, 2023 desde https://es.wikipedia.org/w/index.php?title=Led&oldid=152420879.spa
dc.relation.referencesLewis T., (1997). Thrips as Crop Pests. Wallingford, UK: CAB International, (pp.740).spa
dc.relation.referencesLiñan, V. (1998). Entomología agroforestal. Insectos y ácaros que dañan. Ed AGROTECNICAS EDICIONES. ISBN 8487480543spa
dc.relation.referencesLopez-Reyes, K., Armstrong, K. F., Teulon, D. A. J., Butler, R. C., van Dooremalen, C., Roher, M., & van Tol, R. W. H. M. (2022b). Colour response in western flower Thrips varies intraspecifically. Insects, 13(6), (p. 538). https://doi.org/10.3390/insects13060538spa
dc.relation.referencesLopez-Reyes, K., Armstrong, K. F., van Tol, R. W. H. M., Teulon, D. A. J., & Bok, M. J. (2022a). Colour vision in thrips (Thysanoptera). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 377 (p.1862). https://doi.org/10.1098/rstb.2021.0282spa
dc.relation.referencesLublinkhof, J. & Foster D.E., (1977). Development and reproductive capacity of Frankliniella occidentalis (Thysanoptera: Thripidae) reared at three temperatures. Journal of the Kansas Entomological Society, 50(3), (pp. 313-316). https://www.jstor.org/stable/25082942spa
dc.relation.referencesMainali, B. P., & Lim, U. T. (2008). Evaluation of chrysanthemum flower model trap to attract two Frankliniella thrips (Thysanoptera: Thripidae). Journal of Asia-Pacific Entomology, 11(3), (pp. 171–174). https://doi.org/10.1016/j.aspen.2008.07.003spa
dc.relation.referencesMainali, B. P., & Lim, U. T. (2010). Circular yellow sticky trap with black background enhances attraction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 45(1), (pp. 207–213). https://doi.org/10.1303/aez.2010.207spa
dc.relation.referencesMakabe, T., Futamura, T., Noudomi, T., Wakakuwa, M., & Arikawa, K. (2014). Phototaxis of western flower Thrips, Frankliniella occidentalis and onion Thrips, Thrips tabaci and the possibility of controlling Thrips using ultraviolet-emitting trap in the greenhouse of satsuma mandarin (citrus unshiu). Japanese Journal of Applied Entomology and Zoology, 58(3), (pp. 187–195). https://doi.org/10.1303/jjaez.2014.187spa
dc.relation.referencesMalais, M. & Ravensberg, W.J. (1995). Conocer y reconocer. La biología de las plagas de invernadero y sus enemigos naturales. Koppert BV. Rotterdam. (p. 109).spa
dc.relation.referencesMatsuda Y, Toyoda H. Novel electrostatic devices for managing biotic and abiotic nuisances in environments. (2018). Open Access J Sci. 2(5) (pp. 337-353). https://medcraveonline.com/OAJS/novel-electrostatic-devices-for-managing-biotic-and-abiotic-nuisances-in-environments.htmlspa
dc.relation.referencesMatsuda, Y., Ikeda, H., Moriura, N., Tanaka, N., Shimizu, K., Oichi, W., Nonomura, T., Kakutani, K., Kusakari, S.-I., Higashi, K., & Toyoda, H. (2006). A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology, 96(9), (pp. 967–974). https://doi.org/10.1094/PHYTO-96-0967spa
dc.relation.referencesMatsuda, Y., Nonomura, T., Kakutani, K., Kimbara, J., Osamura, K., Kusakari, S., & Toyoda, H. (2015). Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. Journal of physics. Conference series, 646, 012003. https://doi.org/10.1088/1742-6596/646/1/012003spa
dc.relation.referencesMatterson, N., & Terry, L. I. (1992). Response to color by male and female Frankliniella occidentalis during swarming and non-swarming behavior. Entomologia Experimentalis et Applicata, 63, (pp. 187-201). https://doi.org/10.1111/j.1570-7458.1992.tb01573.xspa
dc.relation.referencesMatteson N, Terry I, Ascoli-Christensen A, Gilbert C. (1992). Spectral efficiency of the western flower thrips, Frankliniella occidentalis, Journal of insect physiology. 38(6), (pp. 453–459). https://doi.org/10.1016/0022-1910(92)90122-Tspa
dc.relation.referencesMazokhin-Porshnyakov GA, Kazyakina VI. (1983). A morphological description of the compound eyes and ocelli of thrips (Thysanoptera). Biol. Nauki 1, 57–60.spa
dc.relation.referencesMcGonigle, D. F., & Jackson, C. W. (2002). Effect of surface material on electrostatic charging of houseflies (Musca domestica L). Pest Management Science, 58(4), (pp. 374–380). https://doi.org/10.1002/ps.463spa
dc.relation.referencesMedia-amazon (2017). USB-650 - Red Tide Spectrometer. Media-amazon.com. Recuperado el 14 de marzo de 2022, de https://m.media-amazon.com/images/I/41qK6J0BvoL.jpgspa
dc.relation.referencesMenzel R. (1979). Spectral sensitivity and color vision in invertebrates. In Comparative physiology and evolution of vision in invertebrates (ed. H Autrum), (pp. 503–580). doi 10.1007/978-3-642-66999-6_9spa
dc.relation.referencesMorse J G, Hoddle M S. (2006). Invasion biology of thrips. Annu Rev Entomol 51(1), (pp. 67–89). doi:10.1146/annurev.ento.51.110104.151044spa
dc.relation.referencesMound, L.A., & Kibby, G. (2005). Thysanoptera an Identification Guide. Second Edition. CAB International, (pp. 70).spa
dc.relation.referencesMoussian, B. (2010). Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 40(5), (pp. 363–375). https://doi.org/10.1016/j.ibmb.2010.03.003spa
dc.relation.referencesMuvea, A.M., Waiganjo, M.M., Kutima, H.L., Osiemo, Z., Nyasani J.O., & Subramanian. S. (2014). “Attraction of pest thrips (Thysanoptera: Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations”. International Journal of Tropical Insect Science 34.3, (pp. 197-206). doi: 10.1017/ S174275841400040X.spa
dc.relation.referencesNatwick, E. T., Byers, J. A., Chu, C.-C., Lopez, M., & Henneberry, T. J. (2007). Early detection and mass trapping of Frankliniella occidentalis1,and Thrips tabaci in vegetable crops. The Southwestern Entomologist, 32(4), (pp. 229–238). https://doi.org/10.3958/0147-1724-32.4.229spa
dc.relation.referencesNonomura, T., & Toyoda, H. (2020). Soil surface-trapping of tomato leaf-miner flies emerging from underground pupae with a simple electrostatic cover of seedbeds in a greenhouse. Insects, 11(12), (p. 878). https://doi.org/10.3390/insects11120878spa
dc.relation.referencesNonomura, T., Matsuda, Y., Kakutani, K., Kimbara, J., Osamura, K., Kusakari, S.-I., & Toyoda, H. (2012). An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. European Journal of Plant Pathology, 134(4), (pp. 661–670). https://doi.org/10.1007/s10658-012-0014-5spa
dc.relation.referencesOlguín-Hernández, G (2012). “Plagas Insectiles de Importancia En El Cultivo de Chayote (Sechium Edule) y Su Manejo.” Agro Productividad, vol. 5, no. 6, Jan. 2012.spa
dc.relation.referencesOlmo, M. Nave, R. (2008). El Color. Recuperado el 7 de junio del 2021 de http://hyperphysics.phy-astr.gsu.edu/hbasees/vision/specol.htmlspa
dc.relation.referencesOtani, Y., Wakakuwa, M., & Arikawa, K. (2014). Relationship between action spectrum and spectral sensitivity of compound eyes relating phototactic behavior of the western flower Thrips, Frankliniella occidentalis. Japanese Journal of Applied Entomology and Zoology, 58(3), (pp. 177–185). https://doi.org/10.1303/jjaez.2014.177spa
dc.relation.referencesOtieno, J. A., Stukenberg, N., Weller, J., & Poehling, H.-M. (2018). Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science, 91(4), (pp. 1301–1314). https://doi.org/10.1007/s10340-018-1005-xspa
dc.relation.referencesPark, J.-H., & Lee, H.-S. (2017). Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Applied Biological Chemistry, 60(2), (pp. 137–144). https://doi.org/10.1007/s13765-017-0263-2spa
dc.relation.referencesPeraza, A., González, C., Rey-González R. R., Fonseca, K., Brochero, H. & Velásquez, M. (2022). Respuesta fototáctica de Frankliniella occidentalis (Thysanoptera: Thripidae) a diodos emisores de luz (LED) de bajo costo. Por publicar.spa
dc.relation.referencesPolilov AA. (2016). At the size limit: effects of miniaturization in insects, Springer Cham, (pp. 45–75). https://doi.org/10.1007/978-3-319-39499-2spa
dc.relation.referencesPuell M. & Cinta, M (2006). Óptica fisiológica. Ed, Universidad Complutense de Madrid. ISBN 1-4135-6363-5.spa
dc.relation.referencesPujota, A. G. (2013). Sistematización del manejo integrado de frankliniella occidentalis, en el cultivo de rosas bajo invernadero en el sector de tabacundo, cantón pedro moncayo provincia de pichincha. Ed, Universidad Politécnica Salesiana Sede Quito. https://dspace.ups.edu.ec/bitstream/123456789/5076/6/UPS-YT00253.pdfspa
dc.relation.referencesQuora (2018). ¿Cómo afecta la tensión a la corriente en los LED de colores? Recuperado el 16 de marzo de 2023, de https://es.quora.com/C%C3%B3mo-afecta-la-tensi%C3%B3n-a-la-corriente-en-los-LED-de-coloresspa
dc.relation.referencesReay-Jones, F., Greene, J., Herbert, D., Jacobson, A., Kennedy, G., Reisig, D., Roberts, P. 2017. Within-plant distribution and dynamics of thrips species (Thysanoptera: Thripidae) in cotton. Journal of Economic Entomology, 110(4) (pp. 1563-1575). https://doi.org/10.1093/jee/tox131spa
dc.relation.referencesReitz, S. R. (2020). Cabi.org. Datasheet: Frankliniella occidentalis (western flower thrips). Recuperado 26 de octubre de 2022, https://www.cabi.org/isc/datasheet/24426spa
dc.relation.referencesReitz, S. R., Gao, Y., Kirk, W. D. J., Hoddle, M. S., Leiss, K. A., & Funderburk, J. E. (2020). Invasion biology, ecology, and management of western flower thrips. Annual Review of Entomology, 65, (pp. 17-37). https://doi.org/10.1146/annurev-ento-011019-024947spa
dc.relation.referencesRoth, F., Galli, Z., Tóth, M., Fail, J., & Jenser, G. (2016). “The hypothesized visual system of Thrips tabaci (Lindeman) and Frankliniella occidentalis (Pergande) based on different coloured traps’ catches”. North-Western Journal of Zoology 26 12.1, (pp. 40-49). http://real.mtak.hu/42607/1/2016_NWJZ.pdfspa
dc.relation.referencesSimpson, R. (2003). Lighting control: Technology and applications. Focal Press. ISBN 0240515668spa
dc.relation.referencesSmith, J. J., Machin, J., & Lampert, G. J. (1995). An electrical model for Periplaneta americana pronotal integument: an epidermal location for hydration-dependent resistance. The Journal of Experimental Biology, 198(1), (pp. 249–261). https://doi.org/10.1242/jeb.198.1.249spa
dc.relation.referencesStavisky J, Funderburk J, Brodbeck BV, Olson SM, Andersen PC, (2002). Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato. Journal of Economic Entomology, 95(6) (pp- 1216-1221). https://doi.org/10.1603/0022-0493-95.6.1216spa
dc.relation.referencesStukenberg, N., Pietruska, M., Waldherr, A., & Meyhöfer, R. (2020). Wavelength-Specific Behavior of the Western Flower Blue-Green Chromatic Mechanism. Insects, 11(7), (pp. 1-15). doi: 10.3390/insects11070423spa
dc.relation.referencesSze, S. M., & Lee, M.-K. (2012). Semiconductor devices: Physics and technology (3a ed.). ISBN: 978-0-470-53794-7spa
dc.relation.referencesTakikawa, Y., Kakutani, K., Matsuda, Y., Nonomura, T., Kusakari, S.-I., & Toyoda, H. (2019). A promising physical pest-control system demonstrated in a greenhouse equipped with simple electrostatic devices that excluded all insect pests. Preprints. https://doi.org/10.20944/preprints201905.0256.v1spa
dc.relation.referencesTakikawa, Y., Kakutani, K., Matsuda, Y., Nonomura, T., Kusakari, S.-I., & Toyoda, H. (2015b). Development of an electrostatic trap with an insect discharge recorder for multiple real-time monitoring of pests prowling in a warehouse. International Journal of Advance Agricultural Research. http://www.electric-field-screen.org/International%20Journal%20of%20advance%20Agricultural%20Research.pdfspa
dc.relation.referencesTakikawa, Y., Matsuda, Y., Kakutani, K., Nonomura, T., Kusakari, S.-I., Okada, K., Kimbara, J., Osamura, K., & Toyoda, H. (2015a). Electrostatic insect sweeper for eliminating whiteflies colonizing host plants: A complementary pest control device in an electric field screen-guarded greenhouse. Insects, 6(2), (pp. 442–454). https://doi.org/10.3390/insects6020442spa
dc.relation.referencesTanaka, N., Matsuda, Y., Kato, E., Kokabe, K., Furukawa, T., Nonomura, T., Honda, K.-I., Kusakari, S.-I., Imura, T., Kimbara, J., & Toyoda, H. (2008). An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Protection, 27(2), (pp. 215–221). https://doi.org/10.1016/j.cropro.2007.05.009spa
dc.relation.referencesTeerling, C. R., Pierce, H. D., Jr, Borden, J. H., & Gillespie, D. R. (1993). Identification and bioactivity of alarm pheromone in the western flower thrips, Frankliniella occidentalis. Journal of Chemical Ecology, 19(4), (pp. 681–697). https://doi.org/10.1007/BF00985001spa
dc.relation.referencesThysanoptera in Australia. (2018). Ozthrips.org. Frankliniella occidentalis. Recuperado el 20 de noviembre de 2022 url: http://www.ozthrips.org/terebrantia/thripidae/thripinae/frankliniella%20-occidentalis/spa
dc.relation.referencesTol, R. W. H. M., Tom, J., Roher, M., Schreurs, A., & van Dooremalen, C. (2021). Haze of glue determines preference of western flower thrips (Frankliniella occidentalis) for yellow or blue traps. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86105-5spa
dc.relation.referencesVassiliou, V. A. (2010). Ecology and behavior of Pezothrips kellyanus (Thysanoptera: Thripidae) on citrus. Journal of Economic Entomology, 103(1), (pp. 47–53). https://doi.org/10.1603/ec09114spa
dc.relation.referencesVela, M. J. (2020). Caracterización sociocultural del manejo de los thrips en tres fincas de flores de corte en la Sabana de Bogotá (Pregrado). Universidad de Cundinamarca. https://repositorio.ucundinamarca.edu.co/bitstream/handle/20.500.12558/3344/Caracterizaci%C3%B3n%20sociocultural%20del%20manejo%20de%20los%20thrips%20en%20tres%20fincas%20de%20flores%20de%20corte%20en%20la%20Sabana%20de%20Bogot%C3%A1.2020.%20%282%29.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesVergara, R. (2005). Trips y ácaros de invernaderos complejo biológico de impacto fitosanitario. Quito, Pichincha, Ecuador.spa
dc.relation.referencesVernon, R.S. & D.R. Gillespie. (1990). Spectral Responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) Determined by Trap Catches in Greenhouses. Environmental Entomology, 19(5), (pp.1229 –1241). doi:10.1093/ee/19.5.1229spa
dc.relation.referencesVernon, R.S. & D.R. Gillespie. (1995). Influence of trap shape, size, and background color on captures of Frankliniella occidentalis in a cucumber greenhouse. Journal of Economic Entomology 88(2) (pp. 288-293). https://doi.org/10.1093/jee/88.2.288spa
dc.relation.referencesWolfram. (2023). Wolframalpha.com. Recuperado el 28 de junio de 2023, de https://www.wolframalpha.com/widgets/view.jsp?id=9ad78a1ce61d0cfe43bcc13e48aec583spa
dc.relation.referencesYang, J.-Y., Sung, B.-K., & Lee, H.-S. (2015). Phototactic behavior 8: phototactic behavioral responses of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), to light-emitting diodes. Journal of the Korean Society for Applied Biological Chemistry, 58(3), (pp. 359–363). https://doi.org/10.1007/s13765-015-0055-5spa
dc.relation.referencesYehezkel A., (2000). Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Research, 71(1-2), (pp. 0–220). doi:10.1016/s0168-1702(00)00199-4spa
dc.relation.referencesYudin, L. S., Mitchell, W. C., & Cho, J. J. (1987). Color preference of Thrips (Thysanoptera: Thripidae) with reference to aphids (Homoptera: Aphididae) and leafminers in Hawaiian lettuce farms. Journal of Economic Entomology, 80(1), (pp. 51–55). https://doi.org/10.1093/jee/80.1.51spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.decsControl de Vectores de las Enfermedadesspa
dc.subject.decsVector Control of Diseaseseng
dc.subject.decsControl Biológico de Vectoresspa
dc.subject.decsPest Control, Biologicaleng
dc.subject.lembBiocontrol de Plagasspa
dc.subject.proposalLongitud de ondaspa
dc.subject.proposalFrankiniella occidentalisspa
dc.subject.proposalLedesspa
dc.subject.proposalCampo electro estáticospa
dc.subject.proposalTrampa electromagnéticaspa
dc.subject.proposalWavelengtheng
dc.subject.proposalLEDeng
dc.subject.proposalStatic electric fieldeng
dc.subject.proposalElectromagnetic trapeng
dc.titleDesarrollo de un prototipo de trampa electromagnética para la captura de Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae)spa
dc.title.translatedDevelopment of a prototype of an electromagnetic trap for the capture of Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031129562.2023.pdf
Tamaño:
6.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: