Ground state energies of H2 using variational quantum circuits

dc.contributor.advisorViviescas, Carlos
dc.contributor.authorCotrino Sandoval, Sergio Andrés
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2024-06-28T20:12:58Z
dc.date.available2024-06-28T20:12:58Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractConsidering the current limitations on size and reliability of Noisy Intermediate Quantum Scale devices, Variational Quantum Circuits offer a way to get useful results from quantum computation. On top of that, Machine Learning methods using quantum data offer a way to process the information, but also use it to learn and extract useful information. Meta- Variational Quantum Eigensolver (meta-VQE) was used to learn the ground energy profile of a molecule using a set of training points. By training an ansatz circuit using a non-linear Gaussian encoding of each circuit parameter and setting the interatomic distance as a free parameter, it was possible to find a good approximation of the ground energy of the system for any interatomic distance within a certain region. This method also has the advantage to produce good starting parameters to train using standard VQE, and obtain even better results (opt-meta-VQE). Meta-VQE was implemented in an analytic noise-free simulation and a 10000 shots-based simulation using the software framework for quantum computing PennyLane. In the analytic simulation, it was possible to accurately describe the potential energy surface of an H2 molecule within chemical accuracy, using a hardware inspired ansatz and the ADAM optimizer. With the 10000 shots-based simulation, the method is capable to approximate the energy profile, but in general its performance is not as good as the analytical approach due to the variability on the samples obtained. Meta-VQE provides a novel way to extract and produce information by learning using quantum data from variational circuits.eng
dc.description.abstractTeniendo en cuenta las limitaciones actuales de tamaño y confiabilidad de los dispositi- vos de escala cuántica intermedia ruidosa, los circuitos cuánticos variacionales ofrecen una forma de obtener resultados útiles de la computación cuántica. Además de eso, los méto- dos de aprendizaje automático que utilizan datos cuánticos ofrecen una forma de procesar la información, pero también de usarla para aprender y extraer información útil. Se usó el metodo de meta-autosolucionador cuántico variacional (meta-VQE, por sus siglas en inglés) para aprender el perfil de energı́a fundamental de una molécula usando un conjunto de pun- tos de entrenamiento. Al entrenar un circuito usando una codificación gaussiana no lineal de cada parámetro del circuito y estableciendo la distancia interatómica como un paráme- tro libre, fue posible encontrar una buena aproximación de la energı́a mı́nima del sistema para cualquier distancia interatómica dentro de una región determinada. Este método tam- bién tiene la ventaja de producir buenos parámetros de partida para entrenar usando VQE estándar y obtener resultados aún mejores (opt-meta-VQE). Meta-VQE se implementó en una simulación analı́tica sin ruido y una simulación basada en 10000 muestras utilizando el software para computación cuántica PennyLane. En la simulación analı́tica, fue posible describir con precisión la superficie de energı́a potencial de una molécula H2 con precisión quı́mica, utilizando un ansatz inspirado en hardware y el optimizador ADAM. Con la si- mulación basada en 10000 muestras, el método es capaz de aproximar el perfil de energı́a, pero en general no funciona tan bien como el enfoque analı́tico debido a la variabilidad de las muestras obtenidas. Meta-VQE proporciona una forma novedosa de extraer y producir información mediante el aprendizaje utilizando datos cuánticos de circuitos variacionales.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaQuantum Computingspa
dc.format.extentxv, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86333
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesThe quantum state of affairs. Nature Physics, 19(5):605–605, May 2023.spa
dc.relation.referencesA. Anand, P. Schleich, S. Alperin-Lea, P. W. Jensen, S. Sim, M. Dı́az-Tinoco, J. S. Kottmann, M. Degroote, A. F. Izmaylov, and A. Aspuru-Guzik. A quantum computing view on unitary coupled cluster theory. Chemical Society Reviews, 2022.spa
dc.relation.referencesG.-L. R. Anselmetti, D. Wierichs, C. Gogolin, and R. M. Parrish. Local, expressive, quantum-number-preserving vqe ansätze for fermionic systems. New Journal of Physics, 23(11):113010, 2021.spa
dc.relation.referencesA. Arrasmith, L. Cincio, R. D. Somma, and P. J. Coles. Operator sampling for shot- frugal optimization in variational algorithms. arXiv preprint arXiv:2004.06252, 2020.spa
dc.relation.referencesJ. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591(7848):54–60, 2021.spa
dc.relation.referencesJ. M. Arrazola, O. Di Matteo, N. Quesada, S. Jahangiri, A. Delgado, and N. Killoran. Universal quantum circuits for quantum chemistry. Quantum, 6:742, 2022.spa
dc.relation.referencesJ. M. Arrazola, S. Jahangiri, A. Delgado, J. Ceroni, J. Izaac, A. Száva, U. Azad, R. A. Lang, Z. Niu, O. Di Matteo, et al. Differentiable quantum computational chemistry with pennylane. arXiv preprint arXiv:2111.09967, 2021.spa
dc.relation.referencesF. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boi- xo, F. G. Brandao, D. A. Buell, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, 2019.spa
dc.relation.referencesR. J. Bartlett and M. Musial. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79(1):291, 2007.spa
dc.relation.referencesK. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. De- groote, H. Heimonen, J. S. Kottmann, T. Menke, et al. Noisy intermediate-scale quan- tum algorithms. Reviews of Modern Physics, 94(1):015004, 2022.spa
dc.relation.referencesX. Bonet-Monroig, H. Wang, D. Vermetten, B. Senjean, C. Moussa, T. Bäck, V. Dunjko, and T. E. O’Brien. Performance comparison of optimization methods on variational quantum algorithms. Physical Review A, 107(3):032407, 2023.spa
dc.relation.referencesS. Buchholz, D. Golden, and C. Brown. A business leader’s guide to quantum techno- logy — www2.deloitte.com. https://www2.deloitte.com/us/en/insights/topics/ innovation/quantum-computing-business-applications.html, 2021. [Accessed 21- Jul-2023].spa
dc.relation.referencesY. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya, et al. Quantum chemistry in the age of quantum computing. Chemical reviews, 119(19):10856–10915, 2019.spa
dc.relation.referencesM. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.spa
dc.relation.referencesM. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications, 12(1):1791, 2021.spa
dc.relation.referencesA. Cervera-Lierta, J. S. Kottmann, and A. Aspuru-Guzik. Meta-variational quantum eigensolver: Learning energy profiles of parameterized hamiltonians for quantum simu- lation. PRX Quantum, 2(2):020329, 2021.spa
dc.relation.referencesJ. Charry, M. T. d. N. Varella, and A. Reyes. Binding matter with antimatter: the covalent positron bond. Angewandte Chemie International Edition, 57(29):8859–8864, 2018.spa
dc.relation.referencesJ. Chen, C. Wolfe, Z. Li, and A. Kyrillidis. Demon: improved neural network trai- ning with momentum decay. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3958–3962. IEEE, 2022.spa
dc.relation.referencesB. Choy and D. J. Wales. Molecular energy landscapes of hardware-efficient ansätze in quantum computing. Journal of Chemical Theory and Computation, 19(4):1197–1206, 2023.spa
dc.relation.referencesD. Cremer. Møller–plesset perturbation theory: from small molecule methods to methods for thousands of atoms. Wiley Interdisciplinary Reviews: Computational Mo- lecular Science, 1(4):509–530, 2011.spa
dc.relation.referencesG. E. Crooks. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition. arXiv preprint arXiv:1905.13311, 2019.spa
dc.relation.referencesA. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta. Validating quantum computers using randomized model circuits. Physical Review A, 100(3):032328, 2019.spa
dc.relation.referencesA. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller. Practical quantum advantage in quantum simulation. Nature, 607(7920):667–676, 2022.spa
dc.relation.referencesD. P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik: Progress of Physics, 48(9-11):771–783, 2000.spa
dc.relation.referencesY. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao. Quantum circuit architecture search for variational quantum algorithms. npj Quantum Information, 8(1):62, 2022.spa
dc.relation.referencesJ. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.spa
dc.relation.referencesV. Dunjko and H. J. Briegel. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics, 81(7):074001, 2018.spa
dc.relation.referencesD. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev. Vqe method: a short survey and recent developments. Materials Theory, 6(1):1–21, 2022.spa
dc.relation.referencesR. P. Feynman et al. Simulating physics with computers. Int. j. Theor. phys, 21(6/7), 1982.spa
dc.relation.referencesP. Friederich, M. Krenn, I. Tamblyn, and A. Aspuru-Guzik. Scientific intuition inspired by machine learning-generated hypotheses. Machine Learning: Science and Technology, 2(2):025027, 2021.spa
dc.relation.referencesA. Graves. Generating sequences with recurrent neural networks. arXiv preprint ar- Xiv:1308.0850, 2013.spa
dc.relation.referencesH. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature communi- cations, 10(1):3007, 2019.spa
dc.relation.referencesG. Herzberg. The dissociation energy of the hydrogen molecule. Journal of molecular spectroscopy, 33(1):147–168, 1970.spa
dc.relation.referencesJ. R. Johansson, P. D. Nation, and F. Nori. Qutip: An open-source python frame- work for the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772, 2012.spa
dc.relation.referencesA. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature, 549(7671):242–246, 2017.spa
dc.relation.referencesY. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, et al. Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.spa
dc.relation.referencesD. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.spa
dc.relation.referencesM. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11:369–395, 2020.spa
dc.relation.referencesM. Krenn, J. Landgraf, T. Foesel, and F. Marquardt. Artificial intelligence and machine learning for quantum technologies. Physical Review A, 107(1):010101, 2023.spa
dc.relation.referencesJ. M. Kübler, A. Arrasmith, L. Cincio, and P. J. Coles. An adaptive optimizer for measurement-frugal variational algorithms. Quantum, 4:263, 2020.spa
dc.relation.referencesL. Leone, S. F. Oliviero, L. Cincio, and M. Cerezo. On the practical usefulness of the hardware efficient ansatz. arXiv preprint arXiv:2211.01477, 2022.spa
dc.relation.referencesJ. Li, B. A. Jones, and S. Kais. Toward perturbation theory methods on a quantum computer. Science Advances, 9(19):eadg4576, 2023.spa
dc.relation.referencesS. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran. Quantum embeddings for machine learning. arXiv preprint arXiv:2001.03622, 2020.spa
dc.relation.referencesI. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.spa
dc.relation.referencesR. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26:369–395, 2004.spa
dc.relation.referencesS. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan. Quantum compu- tational chemistry. Reviews of Modern Physics, 92(1):015003, 2020.spa
dc.relation.referencesA. McCaskey, E. Dumitrescu, D. Liakh, and T. Humble. Hybrid programming for near- term quantum computing systems. In 2018 IEEE international conference on rebooting computing (ICRC), pages 1–12. IEEE, 2018.spa
dc.relation.referencesM. Medvidović and G. Carleo. Classical variational simulation of the quantum appro- ximate optimization algorithm. npj Quantum Information, 7(1):101, 2021.spa
dc.relation.referencesA. A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel. Active learning machine learns to create new quantum experiments. Proceedings of the National Academy of Sciences, 115(6):1221–1226, 2018.spa
dc.relation.referencesA. Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2(1):1–8, 2016.spa
dc.relation.referencesA. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson, P. Klimov, Z. Chen, S. Hong, C. Erickson, I. Drozdov, et al. Phase transition in random circuit sampling. arXiv e- prints, pages arXiv–2304, 2023.spa
dc.relation.referencesM. Motta and J. E. Rice. Emerging quantum computing algorithms for quantum che- mistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(3):e1580, 2022.spa
dc.relation.referencesM. A. Nielsen and I. Chuang. Quantum computation and quantum information. Ame- rican Association of Physics Teachers, 2002.spa
dc.relation.referencesM. Ostaszewski, E. Grant, and M. Benedetti. Structure optimization for parameterized quantum circuits. Quantum, 5:391, 2021.spa
dc.relation.referencesM. Ostaszewski, L. M. Trenkwalder, W. Masarczyk, E. Scerri, and V. Dunjko. Reinfor- cement learning for optimization of variational quantum circuit architectures. Advances in Neural Information Processing Systems, 34:18182–18194, 2021.spa
dc.relation.referencesF. Pavošević and S. Hammes-Schiffer. Multicomponent equation-of-motion coupled cluster singles and doubles: Theory and calculation of excitation energies for positronium hydride. The Journal of Chemical Physics, 150(16), 2019.spa
dc.relation.referencesF. Pavosevic and S. Hammes-Schiffer. Multicomponent unitary coupled cluster and equation-of-motion for quantum computation. Journal of Chemical Theory and Compu- tation, 17(6):3252–3258, 2021.spa
dc.relation.referencesA. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru- Guzik, and J. L. O’brien. A variational eigenvalue solver on a photonic quantum pro- cessor. Nature communications, 5(1):4213, 2014.spa
dc.relation.referencesK. Phalak and S. Ghosh. Shot optimization in quantum machine learning architectures to accelerate training. IEEE Access, 2023.spa
dc.relation.referencesI. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Pod- lesnic, M. Meth, V. Negnevitsky, M. Stadler, et al. Compact ion-trap quantum compu- ting demonstrator. PRX Quantum, 2(2):020343, 2021.spa
dc.relation.referencesJ. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.spa
dc.relation.referencesB. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus. New basis set exchange: An open, up-to-date resource for the molecular sciences community. Journal of chemical information and modeling, 59(11):4814–4820, 2019.spa
dc.relation.referencesJ. Ruane, A. McAfee, and W. D. Oliver. Quantum Computing for Business Leaders — hbr.org. https://hbr.org/2022/01/quantum-computing-for-business-leaders, 2022. [Accessed 21-Jul-2023].spa
dc.relation.referencesD. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.spa
dc.relation.referencesM. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.spa
dc.relation.referencesM. Schuld and N. Killoran. Quantum machine learning in feature hilbert spaces. Physical review letters, 122(4):040504, 2019.spa
dc.relation.referencesM. Schuld and F. Petruccione. Machine learning with quantum computers. Springer, 2021.spa
dc.relation.referencesP. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.spa
dc.relation.referencesS. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.spa
dc.relation.referencesI. O. Sokolov, P. K. Barkoutsos, P. J. Ollitrault, D. Greenberg, J. Rice, M. Pistoia, and I. Tavernelli. Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equiva- lents? The Journal of chemical physics, 152(12):124107, 2020.spa
dc.relation.referencesJ. C. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on aerospace and electronic systems, 34(3):817–823, 1998.spa
dc.relation.referencesJ. C. Spall. An overview of the simultaneous perturbation method for efficient optimi- zation. Johns Hopkins apl technical digest, 19(4):482–492, 1998.spa
dc.relation.referencesJ. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al. The variational quantum eigensolver: a review of methods and best practices. Physics Reports, 986:1–128, 2022.spa
dc.relation.referencesA. Wack, H. Paik, A. Javadi-Abhari, P. Jurcevic, I. Faro, J. M. Gambetta, and B. R. Johnson. Quality, speed, and scale: three key attributes to measure the performance of near-term quantum computers. arXiv preprint arXiv:2110.14108, 2021.spa
dc.relation.referencesD. Wecker, M. B. Hastings, and M. Troyer. Progress towards practical quantum varia- tional algorithms. Physical Review A, 92(4):042303, 2015.spa
dc.relation.referencesM. Wiedmann, M. Hölle, M. Periyasamy, N. Meyer, C. Ufrecht, D. D. Scherer, A. Plinge, and C. Mutschler. An empirical comparison of optimizers for quantum machine learning with spsa-based gradients. arXiv preprint arXiv:2305.00224, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembQUIMICA CUANTICA
dc.subject.lembQuantum chemistry
dc.subject.proposalquantum circuitseng
dc.subject.proposalVariational Quantum Eigensolvereng
dc.subject.proposalquantum machine learningeng
dc.subject.proposalVQEeng
dc.subject.proposalcircuitos cuánticosspa
dc.subject.proposalautosolucionador cuántico variacionalspa
dc.subject.proposalaprendizaje automático cuánticospa
dc.subject.proposalPennyLane
dc.subject.wikidatacomputación cuántica
dc.subject.wikidataquantum computing
dc.titleGround state energies of H2 using variational quantum circuitseng
dc.title.translatedEnergías de estado fundamental de H2 usando circuitos cuánticos variacionalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
scotrino_master_thesis_june_2024.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias -Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: