Efecto de la aplicación foliar y edáfica de silicio sobre el estatus nutricional del tallo floral y la poscosecha en rosa (Rosa x hybrida L.) cv. ‘Brighton’

dc.contributor.advisorFlorez Roncancio, Victor Juliospa
dc.contributor.advisorMagnitskiy, Stanislavspa
dc.contributor.authorMachado Lopez, Eduardspa
dc.contributor.orcidMachado Eduard (0000-0002-9388-7370)spa
dc.date.accessioned2025-03-19T18:45:53Z
dc.date.available2025-03-19T18:45:53Z
dc.date.issued2024-09-19
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa rosa se considera el principal cultivo exportable en las flores de corte a nivel mundial, en donde Colombia se ubica como el segundo país productor y comercializador de esta flor. El silicio (Si) se considera un elemento para las plantas gracias a la tolerancia en condiciones de estrés, y por aumentar el rendimiento de algunos cultivos. Recientemente se ha reportado un posible efecto del Si en la nutrición mineral, sin embargo, se ha desarrollado poca investigación que expliquen estos eventos. Por lo tanto, se tuvo como objetivo evaluar el efecto de la aplicación exógena de tres fertilizantes de Si de manera foliar y edáfica sobre la vida poscosecha y el estado nutricional de rosa. Se emplearon plantas de la variedad ‘Brighton’ de siete años de edad, las cuales se sometieron a aplicaciones de K2O3Si de forma foliar (SF) y al suelo (SS) para cada uno de los tres fertilizantes que contenían concentración de Si diferentes (SF1-3, SS1-3), dejando un testigo sin aplicaciones de Si. Se encontró que el tratamiento SS, especialmente SS1, fue el que más disminuyó la concentración de etileno, pérdida de masa y severidad de botritis. Asimismo, la aplicación de SF y SS redujo la concentración de Fe y S, sin embargo, este efecto fue más marcado cuando se aplicó SS2. Por el contrario, tanto SF como SS incrementó la concentración de Mn, pero se vio más pronunciado cuando se aplicó SS1 y SS2. El Zn aumentó únicamente con la aplicación de SS1. Los macronutrientes no se vieron afectados por la aplicación de Si. Con estos resultados, se logró evidenciar el efecto de la aplicación de Si en la vida y calidad poscosecha, y sobre la concentración de microelementos en el tallo floral de rosa var. ‘Brighton’. (Texto tomado de la fuente).spa
dc.description.abstractThe rose is considered the main exportable crop in cut flowers worldwide, where Colombia is the second largest producer and marketer of this flower. Silicon (Si) is considered an element for plants due to its tolerance to stress conditions, and for increasing the yield of some crops. Recently, a possible effect of Si on plant mineral nutrition has been reported, however, little research has been developed to explain these events. Therefore, the objective was to evaluate the effect of the exogenous application of three Si fertilizers in foliar and soil applications on the postharvest life and nutritional status of roses. Seven-year-old plants of the variety ‘Brighton’ were subjected to foliar (SF) and soil (SS) applications of K2O3Si for each of the three fertilizers containing different Si concentrations (SF1-3, SS1-3), leaving a control without Si applications. It was found that the SS treatment, especially SS1, was the one that most decreased ethylene concentration, mass loss and botrytis severity. Likewise, the application of SF and SS reduced Fe and S concentration, however, this effect was more marked when SS2 was applied. In contrast, both SF and SS increased Mn concentration, but this was more pronounced when SS1 and SS2 were applied. Zn increased only with the application of SS1. Macronutrients were not affected by Si application. With these results, the effect of Si application on postharvest life, postharvest quality, and microelement concentration in the flower stem of rose var. ‘Brighton’ was demonstrated.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFisiología de cultivosspa
dc.format.extent70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87694
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAlbornoz, C., Silva, A., & Torres, F. (2016). Fertiriego con silicio en variedades de rosa sobre la severidad de mildeo polvoso (Sphaerotheca pannosa var. rosae). Rev. Cienc. Agr. 33(2): 84 - 94. http://dx.doi.org/10.22267/rcia.163302.55spa
dc.relation.referencesBoldt, J. K., & Altland, J. E. (2021). Petunia (Petunia× hybrida) cultivars vary in silicon accumulation and distribution. HortScience, 56(3), 305-312. https://doi.org/10.21273/HORTSCI15486-20spa
dc.relation.referencesCabrera, R.I., Solís-Pérez, A.R., & Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience 44(7), 2000–2008. https://doi.org/10.21273/HORTSCI.44.7.2000spa
dc.relation.referencesCollin, B., Doelsch, E., Keller, C., Panfili, F., & Meunier, J. (2012). Distribution and variability of silicon, copper and zinc in different bamboo species. Plant Soil, 351, 377–387. https://doi.org/10.1007/s11104-011-0974-9spa
dc.relation.referencesda Costa, L. C., De Araujo, F. F., Ribeiro, W. S., De Sousa Santos, M. N., & Finger, F. L. (2021). Postharvest physiology of cut flowers. Ornamental Horticulture, 27(3), 374–385. https://doi.org/10.1590/2447-536x.v27i3.2372spa
dc.relation.referencesDarras, A. I. (2020). Implementation of Sustainable Practices to Ornamental Plant Cultivation Worldwide: A Critical Review. Agronomy, 10(10), 1570. https://doi.org/10.3390/agronomy10101570spa
dc.relation.referencesEl-Serafy, R. S. (2019). Silica nanoparticles enhances physio-biochemical characters and postharvest quality of Rosa hybrida L. cut flowers. Journal of Horticultural Research, 27(1). http://dx.doi.org/10.2478/johr-2019-0006spa
dc.relation.referencesFaust, J. E., & Dole, J. M. (2021). The global cut flowers and foliage marketplace. En: Faust, J., & Dole, J. (Eds.), Cut flowers and foliages (pp. 1 – 47). CAB International: Londres.spa
dc.relation.referencesGeerdink, G. M., Orsi, B., Tezotto-Uliana, J. V., Pessoa, C. O., Sasaki, F. F., & Kluge, R. A. (2020). Pre-harvest silicon treatment improves quality of cut rose stems and maintains postharvest vase life. Journal of plant nutrition, 43(10), 1418-1426. https://doi.org/10.1080/01904167.2020.1730894spa
dc.relation.referencesGreger, M., Landberg, T., & Vaculík, M. (2018). Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7(2),41. https://doi.org/10.1007/s11104-011-0894-8spa
dc.relation.referencesGuio-Rodríguez, V. A., Álvarez Herrera, J. G. y Gutierrez Villamil, D. A. (2023). Estado nutricional en rosa hidropónica “Snowflake” bajo diferentes tratamientos de silicio. Acta Agronómica, 71(3). https://doi.org/10.15446/acag.v71n3.105681spa
dc.relation.referencesHa, S. T. T., Kim, Y.-T., Yeam, I., Choi, H. W., & In, B.-C. (2022). Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene. Postharvest Biology and Technology, 194. https://doi-org.ezproxy.unal.edu.co/10.1016/j.postharvbio.2022.112104spa
dc.relation.referencesHuché-Thélier, L., Boumaza, R., Demotes-Mainard, S., Canet, A., Symoneaux, R., Douillet, O., & Guérin, V. (2011). Nitrogen deficiency increases basal branching and modifies visual quality of the rose bushes. Scientia Horticulturae, 130(1), 325-334. https://doi.org/10.1016/j.scienta.2011.07.007spa
dc.relation.referencesITC, International Trade Centre. (consultado el 24 de agosto del 2023). Disponible en: https://www.trademap.org/Country_SelProduct_TS.aspx?nvpm=1%7c%7c%7c%7c%7c0603%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c1%7c1spa
dc.relation.referencesKaur, H., & Greger, M. (2019). A Review on Si Uptake and Transport System. Plants, 8(4), 81. https://doi.org/10.3390/plants8040081spa
dc.relation.referencesKhoshgoftarmanesh, A. H., Khademi, H., Hosseini, F., & Aghajani, R. (2008). Influence of additional micronutrient supply on growth, nutritional status and flower quality of three rose cultivars in a soilless culture. Journal of Plant Nutrition, 31(9), 1543-1554. https://doi.org/10.1080/01904160802244662spa
dc.relation.referencesMa, J. F., Zhao, F., Rengel, Z., & Cakmak, I. (2023). Beneficial elements. En: Rengel, Z., Cakmak, I., & White, P. (Eds.), Marschner's Mineral Nutrition of Plants (pp. 387 – 418). 4ta ed. Academic Press: Londres. https://doi.org/10.1016/B978-0-12-819773-8.00012-5spa
dc.relation.referencesMa, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci., 11(8), 392–397. https://doi.org/10.1016/j.tplants.2006.06.007spa
dc.relation.referencesMADR, Ministerio de Agricultura y Desarrollo Rural. (2022). Gobierno Nacional celebra con los floricultores las cifras históricas de San Valentín. https://www.minagricultura.gov.co/noticias/Paginas/Gobierno-Nacional-celebra-con-los-floricultores-las-cifras-históricas-de-San-Valent%C3%ADn.aspxspa
dc.relation.referencesPavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E. A. & Nikolic, M. (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, 697592. https://doi.org/10.3389/fpls.2021.697592spa
dc.relation.referencesPozo, J., Urrestarazu, M., Morales, I., Sánchez, J., Santos, M., Dianez, F., & Álvaro, J. E. (2015). Effects of Silicon in the Nutrient Solution for Three Horticultural Plant Families on the Vegetative Growth, Cuticle, and Protection Against Botrytis cinerea. HortScience, 50(10), 1447-1452. https://doi.org/10.21273/HORTSCI.50.10.1447spa
dc.relation.referencesRezai, S., Nikbakht, A., Zarei, H., & Sabzalian, M. R. (2023). Physiological, biochemical, and postharvest characteristics of two cut rose cultivars are regulated by various supplemental light sources. Scientia Horticulturae, 313, 111934. https://doi.org/10.1016/j.scienta.2023.111934spa
dc.relation.referencesRoosta, H., & Rezaei, I. (2014). Effect of Nutrient Solution pH on the Vegetative and Reproductive Growth and Physiological Characteristics of Rose Cv. ‘Grand Gala’ in Hydroponic System. Journal of Plant Nutrition, 37:13, 2179-2194. https://doi.org/10.1080/01904167.2014.920377spa
dc.relation.referencesTorre, S., Fjeld, T., & Gislerød, H. (2001). Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Horticulturae, 90(3-4), 291-304. https://doi.org/10.1016/S0304-4238(01)00230-8spa
dc.relation.referencesWiese, H., Nikolic M., & Römheld, V. (2007). Silicon in plant nutrition. En: Sattelmacher, B. & Horst, W. J. (eds), The apoplast of higher plants: Compartment of storage, transport and reactions (pp. 33-47). Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_3spa
dc.relation.referencesWu, Y., Zuo, L., Ma, Y., Jiang, Y., Gao, J., Tao, J., & Chen, C. (2022). Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (Rosa Hybrida). Genes, 13(11), 1989. https://doi.org/10.3390/genes13111989spa
dc.relation.referencesAble, A. J., Smyth, H., & Joyce, D. (2014). Postharvest physiology and volatile production by flowers of Ptilotus nobilis. Postharvest biology and technology, 88, 61-71. https://doi.org/10.1016/j.postharvbio.2013.10.002spa
dc.relation.referencesAnese, R. D. O., Monteiro, T. M., Pless, G. Z., Brackmann, A., Thewes, F. R., & Wendt, L. M. (2022). Pre-harvest silicon spraying: Impact on decay, metabolism, and overall quality of ‘Galaxy’ apples after harvest and cold storage. Scientia Horticulturae, 301, 111122. https://doi.org/10.1016/j.scienta.2022.111122spa
dc.relation.referencesAziz, M. M., Rashid, S., Kousar, H., Hussain, R., & Saeed, T. (2021). impact of various preservative solutions on vase life and post-harvest quality of cut roses: Ayub Agricultural Research Institute, Faisalabad, Pakistan. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 37(2), 71-78. https://doi.org/10.47432/2021.37.2.1spa
dc.relation.referencesBarón Gamboa, F. (2018). Evaluación del efecto de la aplicación en postcosecha del fungicida Pyraclostrobin sobre la vida en florero de la Rosa (Rosa sp.), variedad Vendela. Universidad Nacional de Colombia.spa
dc.relation.referencesBaron, F., Mendoza, R., Melo, S.E. et al. Evaluation and representation of ethylene effect on vase life and quality of rose (Rosa hybrida) cv. Vendela. Acta Physiol Plant 43, 161 (2021). https://doi-org.ezproxy.unal.edu.co/10.1007/s11738-021-03332-zspa
dc.relation.referencesBika, R., Palmer, C., Alexander, L., & Baysal-Gurel, F. (2020). Comparative Performance of Reduced-risk Fungicides and Biorational Products in Management of Postharvest Botrytis Blight on Bigleaf Hydrangea Cut Flowers. HortTechnology, 30(6), 659-669.spa
dc.relation.referencesCastellanos, D. A., Mendoza, R., Gavara, R., & Herrera, A. O. (2017). Respiration and ethylene generation modeling of “Hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2), 333-349.spa
dc.relation.referencesDe Mendiburu, Felipe (2009). Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU).spa
dc.relation.referencesDik, A. J., & Wubben, J. P. (2007). Epidemiology of Botrytis cinerea diseases in greenhouses. In Botrytis: biology, pathology and control (pp. 319-333). Springer, Dordrecht.spa
dc.relation.referencesFaziha, i. n., Ariff, m. m., fahim, n., Ezzry, p. m. n., & Suhaizan, L. (2019). Potential of silicon nutrient in reducing fungal disease in red-fleshed dragon fruit. Malaysian Applied Biology, 48(1), 43-49.spa
dc.relation.referencesFriedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265. DOI: 10.1016/j.jmva.2016.10.004spa
dc.relation.referencesGao, H., Wu, X., Yang, X., Sun, M., Liang, J., Xiao, Y., & Peng, F. (2022). Silicon inhibits gummosis by promoting polyamine synthesis and repressing ethylene biosynthesis in peach. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.986688spa
dc.relation.referencesGómez Rodríguez, T. (2013). Caracterización de aislamientos de Botrytis cinerea de rosa en la Sabana de Bogotá (Doctoral dissertation, Universidad Nacional de Colombia).spa
dc.relation.referencesHa, S. T. T., Kim, Y. T., Jeon, Y. H., Choi, H. W., & In, B. C. (2021b). Regulation of Botrytis cinerea Infection and Gene Expression in Cut Roses by Using Nano Silver and Salicylic Acid. Plants, 10(6), 1241.spa
dc.relation.referencesHa, S.T.T., Choi, B.S., In, B.C., 2021a. Nature and regulation of Botrytis cinerea in Rosa hybrida. Flower Res. J. 29, 129–137. https://doi.org/10.11623/frj.2021.29.3.02.spa
dc.relation.referencesHa, S.T.T., Lim, JH. & In, BC. Simultaneous Inhibition of Ethylene Biosynthesis and Binding Using AVG and 1-MCP in Two Rose Cultivars with Different Sensitivities to Ethylene. J Plant Growth Regul 39, 553–563 (2020). https://doi.org/10.1007/s00344-019-09999-6spa
dc.relation.referencesHashemabadi D, Liavali MH, Kaviani B, Mousavi M, Keyghobadi S, Zahiri S (2014) Effect of nano-silver and boric acid on extending the vase life of cut rose (Rosa hybrida L.). J Environ Biol 35:833–838spa
dc.relation.referencesHodson, M. J., & Sangster, A. G. (1988). Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). I. Scanning electron microscopy and light microscopy. Canadian Journal of Botany, 66(5), 829–838. https://doi.org/10.1139/b88-121spa
dc.relation.referencesHøjsgaard, S., Halekoh, U., & Yan, J. (2006). The R package geepack for generalized estimating equations. Journal of statistical software, 15, 1-11. doi:10.18637/jss.v015.i02spa
dc.relation.referencesHuang S, Gong B, Wei F, Ma H (2017) Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic Environ Biote 58:144–151. https://doi.org/10.1007/s1358 0-017-0081-9spa
dc.relation.referencesJamali, B., & Rahemi, M. (2011). Carnation flowers senescence as influenced by nickel, cobalt and silicon. Journal of Biological and Environmental Sciences, 5(15).spa
dc.relation.referencesKim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Frontiers in Plant Science, 8, 510. https://doi.org/10.3389/fpls.2017.00510spa
dc.relation.referencesLi, Y., Li, L., Wang, S., Liu, Y., Zou, J., Ding, W. & Shen, W. (2021). Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis. Postharvest Biology and Technology, 177, 111526. https://doi.org/10.1016/j.postharvbio.2021.111526spa
dc.relation.referencesMazrou, R. M., Hassan, S., Yang, M., & Hassan, F. A. (2022). Melatonin Preserves the Postharvest Quality of Cut Roses through Enhancing the Antioxidant System. Plants, 11(20), 2713. https://doi.org/10.3390/plants11202713spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural, Dirección de cadena agrícola y forestales. Cadena de flores, follajes y ornamentales. Diciembre (2020). https://sioc.minagricultura.gov.co/Flores/Documentos/2020-12-31%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural, Dirección de cadena agrícola y forestales. Gobierno Nacional celebra con los floricultores las cifras históricas de San Valentín. Febrero (2022). https://www.minagricultura.gov.co/noticias/Paginas/Gobierno-Nacional-celebra-con-los-floricultores-las-cifras-históricas-de-San-Valent%C3%ADn.aspxspa
dc.relation.referencesMitani, N., Ma, J. F., & Iwashita, T. (2005). Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and cell physiology, 46(2), 279-283.spa
dc.relation.referencesNikagolla, N. G. D. N., Udugala-Ganehenege, M. Y., & Daundasekera, W. A. M. (2019). Postharvest application of potassium silicate improves keeping quality of banana. The Journal of Horticultural Science and Biotechnology, 94(6), 735-743.spa
dc.relation.referencesOpfergelt, S., Delvaux, B., André, L., & Cardinal, D. (2008). Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry, 91, 163-175. https://doi.org/10.1007/s10533-008-9278-4spa
dc.relation.referencesReid, M.S. & Jiang, C.-Z. (2012). Postharvest Biology and Technology of Cut Flowers and Potted Plants. In Horticultural Reviews, J. Janick (Ed.). https://doi.org/10.1002/9781118351871.ch1spa
dc.relation.referencesSeyed Hajizadeh, H., Azizi, S., Rasouli, F., & Kaya, O. (2023). Evaluation of nano-silicon efficiency on compatible solutes and nutrient status of Damask rose affected by in vitro simulated drought stress. Chemical and Biological Technologies in Agriculture, 10(1), 22. https://doi.org/10.1186/s40538-023-00397-5spa
dc.relation.referencesShetty, R., Jensen, B., Shelton, D., Jørgensen, K., Pedas, P., & Jørgensen, H. J. L. (2021). Site‐ specific, silicon‐induced structural and molecular defence responses against powdery mildew infection in roses. Pest Management Science, 77(10), 4545–4554. https://doi.org/10.1002/ps.6493spa
dc.relation.referencesSimko I, Piepho HP. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology. 2012 Apr;102(4):381-9. doi: 10.1094/PHYTO-07-11-0216. PMID: 22122266.spa
dc.relation.referencesSun, J., Jameson, P. E., & Clemens, J. (1999, November). Water relations and stamen abscission in cut flowers of selected myrtaceae. In VII International Symposium on Postharvest Physiology of Ornamental Plants 543 (pp. 185-189).spa
dc.relation.referencesWang, L., Dong, M., Zhang, Q., Wu, Y., Hu, L., Parson, J. F., ... & Xiao, S. (2020). Silicon modulates multi-layered defense against powdery mildew in Arabidopsis. Phytopathology Research, 2(1), 1-14.spa
dc.relation.referencesWu, Y., Zuo, L., Ma, Y., Jiang, Y., Gao, J., Tao, J., & Chen, C. (2022). Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (Rosa Hybrida). Genes, 13(11), 1989. https://doi.org/10.3390/genes13111989spa
dc.relation.referencesBarreto, R. F., Maier, B. R., Prado, R. D. M., De Morais, T. C. B., & Felisberto, G. (2022). Silicon attenuates potassium and sulfur deficiency by increasing nutrient use efficiency in basil plants. Scientia Horticulturae, 291, 110616. https://doi.org/10.1016/j.scienta.2021.110616spa
dc.relation.referencesBecker, M., Ngo, N. S., & Schenk, M. K. A. (2020). Silicon reduces the iron uptake in rice and induces iron homeostasis related genes. Scientific Reports, 10(1), 5079. https://doi.org/10.1038/s41598-020-61718-4spa
dc.relation.referencesCarrasco-Gil, S., Rodríguez-Menéndez, S., Fernández, B., Pereiro, R., De la Fuente, V., & Hernandez-Apaolaza, L. (2018). Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions. Plant Physiology and Biochemistry, 125, 153-163. https://doi.org/10.1016/j.plaphy.2018.01.033spa
dc.relation.referencesCoskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., & Bélanger, R. R.. (2019). The controversies of silicon's role in plant biology. New Phytologist, 221(1), 67–85. https://doi.org/10.1111/nph.15343spa
dc.relation.referencesFaust, J. E., & Dole, J. M. (2021). The global cut flowers and foliage marketplace. En: Faust, J., & Dole, J. (Eds.), Cut flowers and foliages (pp. 1 – 47). CAB International: Londres.spa
dc.relation.referencesFranco-Hermida, J. J., Henao-Toro, M. C., Guzmán, M., & Cabrera, R. I. (2013). Determining Nutrient Diagnostic Norms for Greenhouse Roses. Hortscience, 48(11), 1403–1410. https://doi.org/10.21273/hortsci.48.11.1403spa
dc.relation.referencesGorrepati, E.A., Wongthahan, P., Raha, S., & Fogler, H.S. (2010). Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect. Langmuir, 26, 10467–10474. https://doi.org/10.1021/la904685xspa
dc.relation.referencesGuio-Rodríguez, V. A., Álvarez-Herrera, J. G. & Gutierrez-Villamil, D. A. (2022). Estado nutricional en rosa hidropónica “Snowflake” bajo diferentes tratamientos de silicio. Acta Agronómica, 71(3). https://doi.org/10.15446/acag.v71n3.105681spa
dc.relation.referencesHernández-Apaolaza, L., Escribano, L., Zamarreño, A. M., García-Mina, J. M., Cano, C. y Carrasco-Gil, S. (2020). Root silicon addition induces Fe deficiency in cucumber plants but facilitates their recovery after Fe resupply. A comparison with Si foliar sprays. Frontiers in Plant Science, 11, 580552. https://doi.org/10.3389/fpls.2020.580552spa
dc.relation.referencesICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (1997). NTC 370: Abonos o fertilizantes, determinación del nitrógeno total. Norma Técnica Colombiana (3ra edición), Bogotá, Colombia.spa
dc.relation.referencesICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2001). NTC 274: Abonos o fertilizantes, método de ensayo para la determinación cuantitativa del fósforo. Norma Técnica Colombiana (1ra edición), Bogotá, Colombia.spa
dc.relation.referencesICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2005). NTC 1154: Fertilizantes y acondicionadores de suelos, determinación de azufre. Norma Técnica Colombiana (4ta edición), Bogotá, Colombia.spa
dc.relation.referencesICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2014). NTC 1816: Abonos o fertilizantes, método de ensayo para determinar el contenido de boro, método de Azometina-H. Norma Técnica Colombiana (4ta edición), Bogotá, Colombia.spa
dc.relation.referencesJang, S. W., Kim, Y., Khan, A. L., Na, C. I., & Lee, I. J. (2018). Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biology, 18(1), 4. https://doi.org/10.1186/s12870-017-1216-yspa
dc.relation.referencesJavaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A., & Anwar-ul-Haq, M. (2019). Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiology and Biochemistry, 141, 291-299. https://doi.org/10.1016/j.plaphy.2019.06.010spa
dc.relation.referencesKeller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta, 241(4), 847–860. https://doi.org/10.1007/s00425-014-2220-1spa
dc.relation.referencesKhandekar, S., & Leisner, S. (2011). Soluble silicon modulates expression of arabidopsis thaliana genes involved in copper stress. J. Plant Physiol. 168, 699–705. https://doi.org/10.1016/j.jplph.2010.09.009spa
dc.relation.referencesKostic, L., Nikolic, N., Bosnic, D., Samardzic, J., & Nikolic, M. (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil. 419, 447–455. https://doi.org/10.1126/science.285.5433.1542spa
dc.relation.referencesLaîné, P., Coquerel, R., Arkoun, M., Trouverie, J., & Etienne, P. (2022). Assessing the Effect of Silicon Supply on Root Sulfur Uptake in S-Fed and S-Deprived Brassica napus L. Plants, 11(12), 1606. https://doi.org/10.3390/plants11121606spa
dc.relation.referencesLi, J., Leisner, S. M., & Frantz, J. (2008). Alleviation of copper toxicity in arabidopsis thaliana by silicon addition to hydroponic solutions. J. Am. Soc Hortic. Sci. 133, 670–677. https://doi.org/10.21273/JASHS.133.5.670spa
dc.relation.referencesLuyckx, M., Hausman, J. F., Guerriero, G., & Lutts, S. (2023). Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.). Environmental Science and Pollution Research International, 30(1), 943–955. https://doi.org/10.1007/s11356-022-21797-4spa
dc.relation.referencesNikolić, D., Bosnić, D., & Samardžić, J. (2023). Silicon in action: Between iron scarcity and excess copper. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1039053spa
dc.relation.referencesPilon, C., Soratto, R. P., & Moreno, L. A. (2013). Effects of Soil and Foliar Application of Soluble Silicon on Mineral Nutrition, Gas Exchange, and Growth of Potato Plants. Crop Science, 53(4), 1605-1614. https://doi.org/10.2135/cropsci2012.10.0580spa
dc.relation.referencesSarah, M.M.S., Prado, R.M., Teixeira, G.C.M., de Souza Júnior, J.P., de Medeiros, R.L.S., & Barreto R.F. (2022). Silicon supplied via roots or leaves relieves potassium deficiency in maize plants. Silicon, 14,773–782.spa
dc.relation.referencesSheng, H., Lei, Y., Wei, J., Yang, Z., Peng, L., Li, W., & Liu, Y.. (2024). Analogy of silicon and boron in plant nutrition. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1353706spa
dc.relation.referencesSoliman, N.G., Nomier, S.A.A., Ibrahim, N.M.M. & Gad, M.M. (2021). Effect of spraying nano-chitosan and nano-silicon on physicochemical fruit quality and leaf mineral content of florida prince peach trees. Zagazig Journal of Agricultural Research 48(5), 1215-1226. https://doi.org/10.21608/zjar.2021.224030spa
dc.relation.referencesTakahashi, E.; Ma, J. F. & Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2(2), 99-122. https://www.cabdirect.org/cabdirect/abstract/19921964619spa
dc.relation.referencesTorre, S., Fjeld, T., & Gislerød, H. (2001). Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Horticulturae, 90(3-4), 291-304. https://doi.org/10.1016/S0304-4238(01)00230-8spa
dc.relation.referencesTriana, Y.; Castiblanco, E., & Flórez, V. (2006). Comportamiento de nutrientes en un sistema de cultivo sin suelo en rosa. In: Flórez, V.; Fernández, A; Miranda, D.; Chaves, B.; and Guzmán, J. (eds). Avances sobre fertirriego en la floricultura colombiana, pp. 249 – 264. Universidad Nacional de Colombia. Bogotá, Colombia.spa
dc.relation.referencesWiese, H., Nikolic M., & Römheld, V. (2007). Silicon in plant nutrition. En: Sattelmacher, B. & Horst, W. J. (eds), The apoplast of higher plants: Compartment of storage, transport and reactions (pp. 33-47). Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_3spa
dc.relation.referencesWu, X.; Yu, Y.; Baerson, S. R.; Song, Y.; Liang, G.; Ding, C.; Niu, J.; Pan, Z. & Zeng, R. (2017). Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Frontiers in Plant Science, 8, 28. https://doi.org/10.3389/fpls.2017.00028spa
dc.relation.referencesCollin, B., Doelsch, E., Keller, C., Cazevieille, P., Tella, M., Chaurand, P., Panfili, F., Hazemann, J., & Meunier, J. (2014). Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution, 187, 22-30. https://doi.org/10.1016/j.envpol.2013.12.024spa
dc.relation.referencesda Silva, A.P.R., da Silva, L.J.R., Deus, A.C.F., Fernandes, D., & Büll, L. (2023). Silicon Application Methods Influence the Nutrient Uptake of Maize Plants in Tropical Soil. Silicon 15, 7327–7334. https://doi.org/10.1007/s12633-023-02592-3spa
dc.relation.referencesFarahani, H., Sajedi, N.A., Madani, H., & Reza, M. (2021). Effect of Foliar-Applied Silicon on Flower Yield and Essential Oil Composition of Damask Rose (Rosa damascena Miller) under Water Deficit Stress. Silicon 13, 4463–4472. https://doi.org/10.1007/s12633-020-00762-1spa
dc.relation.referencesReezi, S., Babalar, M. and Kalantari, S. (2009). Silicon Alleviates Salt Stress, Decreases Malondialdehyde Content and Affects Petal Color of Salt-Stressed Cut Rose (Rosa xhybrida L.) “Hot Lady”. African Journal of Biotechnology, 8, 1502-1508.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocProducción de flores cortadasspa
dc.subject.agrovoccut flower productioneng
dc.subject.agrovocNutrición de la plantaspa
dc.subject.agrovocplant nutritioneng
dc.subject.agrovocSiliciospa
dc.subject.agrovocsiliciumeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.proposalTallo floralspa
dc.subject.proposalEtilenospa
dc.subject.proposalLongevidad floralspa
dc.subject.proposalAbsorción de nutrientesspa
dc.subject.proposalMicronutrientesspa
dc.subject.proposalFlower stalkeng
dc.subject.proposalEthyleneeng
dc.subject.proposalFlower longevityeng
dc.subject.proposalNutrient uptakeeng
dc.subject.proposalMicronutrientseng
dc.titleEfecto de la aplicación foliar y edáfica de silicio sobre el estatus nutricional del tallo floral y la poscosecha en rosa (Rosa x hybrida L.) cv. ‘Brighton’spa
dc.title.translatedEffect of foliar and soil silicon application on the nutritional status of the floral stem and postharvest in rose (Rosa x hybrida L.) cv. ‘Brighton’eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3277351.2025.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: