Efecto de la aplicación foliar y edáfica de silicio sobre el estatus nutricional del tallo floral y la poscosecha en rosa (Rosa x hybrida L.) cv. ‘Brighton’
dc.contributor.advisor | Florez Roncancio, Victor Julio | spa |
dc.contributor.advisor | Magnitskiy, Stanislav | spa |
dc.contributor.author | Machado Lopez, Eduard | spa |
dc.contributor.orcid | Machado Eduard (0000-0002-9388-7370) | spa |
dc.date.accessioned | 2025-03-19T18:45:53Z | |
dc.date.available | 2025-03-19T18:45:53Z | |
dc.date.issued | 2024-09-19 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La rosa se considera el principal cultivo exportable en las flores de corte a nivel mundial, en donde Colombia se ubica como el segundo país productor y comercializador de esta flor. El silicio (Si) se considera un elemento para las plantas gracias a la tolerancia en condiciones de estrés, y por aumentar el rendimiento de algunos cultivos. Recientemente se ha reportado un posible efecto del Si en la nutrición mineral, sin embargo, se ha desarrollado poca investigación que expliquen estos eventos. Por lo tanto, se tuvo como objetivo evaluar el efecto de la aplicación exógena de tres fertilizantes de Si de manera foliar y edáfica sobre la vida poscosecha y el estado nutricional de rosa. Se emplearon plantas de la variedad ‘Brighton’ de siete años de edad, las cuales se sometieron a aplicaciones de K2O3Si de forma foliar (SF) y al suelo (SS) para cada uno de los tres fertilizantes que contenían concentración de Si diferentes (SF1-3, SS1-3), dejando un testigo sin aplicaciones de Si. Se encontró que el tratamiento SS, especialmente SS1, fue el que más disminuyó la concentración de etileno, pérdida de masa y severidad de botritis. Asimismo, la aplicación de SF y SS redujo la concentración de Fe y S, sin embargo, este efecto fue más marcado cuando se aplicó SS2. Por el contrario, tanto SF como SS incrementó la concentración de Mn, pero se vio más pronunciado cuando se aplicó SS1 y SS2. El Zn aumentó únicamente con la aplicación de SS1. Los macronutrientes no se vieron afectados por la aplicación de Si. Con estos resultados, se logró evidenciar el efecto de la aplicación de Si en la vida y calidad poscosecha, y sobre la concentración de microelementos en el tallo floral de rosa var. ‘Brighton’. (Texto tomado de la fuente). | spa |
dc.description.abstract | The rose is considered the main exportable crop in cut flowers worldwide, where Colombia is the second largest producer and marketer of this flower. Silicon (Si) is considered an element for plants due to its tolerance to stress conditions, and for increasing the yield of some crops. Recently, a possible effect of Si on plant mineral nutrition has been reported, however, little research has been developed to explain these events. Therefore, the objective was to evaluate the effect of the exogenous application of three Si fertilizers in foliar and soil applications on the postharvest life and nutritional status of roses. Seven-year-old plants of the variety ‘Brighton’ were subjected to foliar (SF) and soil (SS) applications of K2O3Si for each of the three fertilizers containing different Si concentrations (SF1-3, SS1-3), leaving a control without Si applications. It was found that the SS treatment, especially SS1, was the one that most decreased ethylene concentration, mass loss and botrytis severity. Likewise, the application of SF and SS reduced Fe and S concentration, however, this effect was more marked when SS2 was applied. In contrast, both SF and SS increased Mn concentration, but this was more pronounced when SS1 and SS2 were applied. Zn increased only with the application of SS1. Macronutrients were not affected by Si application. With these results, the effect of Si application on postharvest life, postharvest quality, and microelement concentration in the flower stem of rose var. ‘Brighton’ was demonstrated. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agrarias | spa |
dc.description.researcharea | Fisiología de cultivos | spa |
dc.format.extent | 70 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87694 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Albornoz, C., Silva, A., & Torres, F. (2016). Fertiriego con silicio en variedades de rosa sobre la severidad de mildeo polvoso (Sphaerotheca pannosa var. rosae). Rev. Cienc. Agr. 33(2): 84 - 94. http://dx.doi.org/10.22267/rcia.163302.55 | spa |
dc.relation.references | Boldt, J. K., & Altland, J. E. (2021). Petunia (Petunia× hybrida) cultivars vary in silicon accumulation and distribution. HortScience, 56(3), 305-312. https://doi.org/10.21273/HORTSCI15486-20 | spa |
dc.relation.references | Cabrera, R.I., Solís-Pérez, A.R., & Sloan, J.J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience 44(7), 2000–2008. https://doi.org/10.21273/HORTSCI.44.7.2000 | spa |
dc.relation.references | Collin, B., Doelsch, E., Keller, C., Panfili, F., & Meunier, J. (2012). Distribution and variability of silicon, copper and zinc in different bamboo species. Plant Soil, 351, 377–387. https://doi.org/10.1007/s11104-011-0974-9 | spa |
dc.relation.references | da Costa, L. C., De Araujo, F. F., Ribeiro, W. S., De Sousa Santos, M. N., & Finger, F. L. (2021). Postharvest physiology of cut flowers. Ornamental Horticulture, 27(3), 374–385. https://doi.org/10.1590/2447-536x.v27i3.2372 | spa |
dc.relation.references | Darras, A. I. (2020). Implementation of Sustainable Practices to Ornamental Plant Cultivation Worldwide: A Critical Review. Agronomy, 10(10), 1570. https://doi.org/10.3390/agronomy10101570 | spa |
dc.relation.references | El-Serafy, R. S. (2019). Silica nanoparticles enhances physio-biochemical characters and postharvest quality of Rosa hybrida L. cut flowers. Journal of Horticultural Research, 27(1). http://dx.doi.org/10.2478/johr-2019-0006 | spa |
dc.relation.references | Faust, J. E., & Dole, J. M. (2021). The global cut flowers and foliage marketplace. En: Faust, J., & Dole, J. (Eds.), Cut flowers and foliages (pp. 1 – 47). CAB International: Londres. | spa |
dc.relation.references | Geerdink, G. M., Orsi, B., Tezotto-Uliana, J. V., Pessoa, C. O., Sasaki, F. F., & Kluge, R. A. (2020). Pre-harvest silicon treatment improves quality of cut rose stems and maintains postharvest vase life. Journal of plant nutrition, 43(10), 1418-1426. https://doi.org/10.1080/01904167.2020.1730894 | spa |
dc.relation.references | Greger, M., Landberg, T., & Vaculík, M. (2018). Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7(2),41. https://doi.org/10.1007/s11104-011-0894-8 | spa |
dc.relation.references | Guio-Rodríguez, V. A., Álvarez Herrera, J. G. y Gutierrez Villamil, D. A. (2023). Estado nutricional en rosa hidropónica “Snowflake” bajo diferentes tratamientos de silicio. Acta Agronómica, 71(3). https://doi.org/10.15446/acag.v71n3.105681 | spa |
dc.relation.references | Ha, S. T. T., Kim, Y.-T., Yeam, I., Choi, H. W., & In, B.-C. (2022). Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene. Postharvest Biology and Technology, 194. https://doi-org.ezproxy.unal.edu.co/10.1016/j.postharvbio.2022.112104 | spa |
dc.relation.references | Huché-Thélier, L., Boumaza, R., Demotes-Mainard, S., Canet, A., Symoneaux, R., Douillet, O., & Guérin, V. (2011). Nitrogen deficiency increases basal branching and modifies visual quality of the rose bushes. Scientia Horticulturae, 130(1), 325-334. https://doi.org/10.1016/j.scienta.2011.07.007 | spa |
dc.relation.references | ITC, International Trade Centre. (consultado el 24 de agosto del 2023). Disponible en: https://www.trademap.org/Country_SelProduct_TS.aspx?nvpm=1%7c%7c%7c%7c%7c0603%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c1%7c1 | spa |
dc.relation.references | Kaur, H., & Greger, M. (2019). A Review on Si Uptake and Transport System. Plants, 8(4), 81. https://doi.org/10.3390/plants8040081 | spa |
dc.relation.references | Khoshgoftarmanesh, A. H., Khademi, H., Hosseini, F., & Aghajani, R. (2008). Influence of additional micronutrient supply on growth, nutritional status and flower quality of three rose cultivars in a soilless culture. Journal of Plant Nutrition, 31(9), 1543-1554. https://doi.org/10.1080/01904160802244662 | spa |
dc.relation.references | Ma, J. F., Zhao, F., Rengel, Z., & Cakmak, I. (2023). Beneficial elements. En: Rengel, Z., Cakmak, I., & White, P. (Eds.), Marschner's Mineral Nutrition of Plants (pp. 387 – 418). 4ta ed. Academic Press: Londres. https://doi.org/10.1016/B978-0-12-819773-8.00012-5 | spa |
dc.relation.references | Ma, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci., 11(8), 392–397. https://doi.org/10.1016/j.tplants.2006.06.007 | spa |
dc.relation.references | MADR, Ministerio de Agricultura y Desarrollo Rural. (2022). Gobierno Nacional celebra con los floricultores las cifras históricas de San Valentín. https://www.minagricultura.gov.co/noticias/Paginas/Gobierno-Nacional-celebra-con-los-floricultores-las-cifras-históricas-de-San-Valent%C3%ADn.aspx | spa |
dc.relation.references | Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E. A. & Nikolic, M. (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, 697592. https://doi.org/10.3389/fpls.2021.697592 | spa |
dc.relation.references | Pozo, J., Urrestarazu, M., Morales, I., Sánchez, J., Santos, M., Dianez, F., & Álvaro, J. E. (2015). Effects of Silicon in the Nutrient Solution for Three Horticultural Plant Families on the Vegetative Growth, Cuticle, and Protection Against Botrytis cinerea. HortScience, 50(10), 1447-1452. https://doi.org/10.21273/HORTSCI.50.10.1447 | spa |
dc.relation.references | Rezai, S., Nikbakht, A., Zarei, H., & Sabzalian, M. R. (2023). Physiological, biochemical, and postharvest characteristics of two cut rose cultivars are regulated by various supplemental light sources. Scientia Horticulturae, 313, 111934. https://doi.org/10.1016/j.scienta.2023.111934 | spa |
dc.relation.references | Roosta, H., & Rezaei, I. (2014). Effect of Nutrient Solution pH on the Vegetative and Reproductive Growth and Physiological Characteristics of Rose Cv. ‘Grand Gala’ in Hydroponic System. Journal of Plant Nutrition, 37:13, 2179-2194. https://doi.org/10.1080/01904167.2014.920377 | spa |
dc.relation.references | Torre, S., Fjeld, T., & Gislerød, H. (2001). Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Horticulturae, 90(3-4), 291-304. https://doi.org/10.1016/S0304-4238(01)00230-8 | spa |
dc.relation.references | Wiese, H., Nikolic M., & Römheld, V. (2007). Silicon in plant nutrition. En: Sattelmacher, B. & Horst, W. J. (eds), The apoplast of higher plants: Compartment of storage, transport and reactions (pp. 33-47). Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_3 | spa |
dc.relation.references | Wu, Y., Zuo, L., Ma, Y., Jiang, Y., Gao, J., Tao, J., & Chen, C. (2022). Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (Rosa Hybrida). Genes, 13(11), 1989. https://doi.org/10.3390/genes13111989 | spa |
dc.relation.references | Able, A. J., Smyth, H., & Joyce, D. (2014). Postharvest physiology and volatile production by flowers of Ptilotus nobilis. Postharvest biology and technology, 88, 61-71. https://doi.org/10.1016/j.postharvbio.2013.10.002 | spa |
dc.relation.references | Anese, R. D. O., Monteiro, T. M., Pless, G. Z., Brackmann, A., Thewes, F. R., & Wendt, L. M. (2022). Pre-harvest silicon spraying: Impact on decay, metabolism, and overall quality of ‘Galaxy’ apples after harvest and cold storage. Scientia Horticulturae, 301, 111122. https://doi.org/10.1016/j.scienta.2022.111122 | spa |
dc.relation.references | Aziz, M. M., Rashid, S., Kousar, H., Hussain, R., & Saeed, T. (2021). impact of various preservative solutions on vase life and post-harvest quality of cut roses: Ayub Agricultural Research Institute, Faisalabad, Pakistan. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 37(2), 71-78. https://doi.org/10.47432/2021.37.2.1 | spa |
dc.relation.references | Barón Gamboa, F. (2018). Evaluación del efecto de la aplicación en postcosecha del fungicida Pyraclostrobin sobre la vida en florero de la Rosa (Rosa sp.), variedad Vendela. Universidad Nacional de Colombia. | spa |
dc.relation.references | Baron, F., Mendoza, R., Melo, S.E. et al. Evaluation and representation of ethylene effect on vase life and quality of rose (Rosa hybrida) cv. Vendela. Acta Physiol Plant 43, 161 (2021). https://doi-org.ezproxy.unal.edu.co/10.1007/s11738-021-03332-z | spa |
dc.relation.references | Bika, R., Palmer, C., Alexander, L., & Baysal-Gurel, F. (2020). Comparative Performance of Reduced-risk Fungicides and Biorational Products in Management of Postharvest Botrytis Blight on Bigleaf Hydrangea Cut Flowers. HortTechnology, 30(6), 659-669. | spa |
dc.relation.references | Castellanos, D. A., Mendoza, R., Gavara, R., & Herrera, A. O. (2017). Respiration and ethylene generation modeling of “Hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2), 333-349. | spa |
dc.relation.references | De Mendiburu, Felipe (2009). Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU). | spa |
dc.relation.references | Dik, A. J., & Wubben, J. P. (2007). Epidemiology of Botrytis cinerea diseases in greenhouses. In Botrytis: biology, pathology and control (pp. 319-333). Springer, Dordrecht. | spa |
dc.relation.references | Faziha, i. n., Ariff, m. m., fahim, n., Ezzry, p. m. n., & Suhaizan, L. (2019). Potential of silicon nutrient in reducing fungal disease in red-fleshed dragon fruit. Malaysian Applied Biology, 48(1), 43-49. | spa |
dc.relation.references | Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265. DOI: 10.1016/j.jmva.2016.10.004 | spa |
dc.relation.references | Gao, H., Wu, X., Yang, X., Sun, M., Liang, J., Xiao, Y., & Peng, F. (2022). Silicon inhibits gummosis by promoting polyamine synthesis and repressing ethylene biosynthesis in peach. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.986688 | spa |
dc.relation.references | Gómez Rodríguez, T. (2013). Caracterización de aislamientos de Botrytis cinerea de rosa en la Sabana de Bogotá (Doctoral dissertation, Universidad Nacional de Colombia). | spa |
dc.relation.references | Ha, S. T. T., Kim, Y. T., Jeon, Y. H., Choi, H. W., & In, B. C. (2021b). Regulation of Botrytis cinerea Infection and Gene Expression in Cut Roses by Using Nano Silver and Salicylic Acid. Plants, 10(6), 1241. | spa |
dc.relation.references | Ha, S.T.T., Choi, B.S., In, B.C., 2021a. Nature and regulation of Botrytis cinerea in Rosa hybrida. Flower Res. J. 29, 129–137. https://doi.org/10.11623/frj.2021.29.3.02. | spa |
dc.relation.references | Ha, S.T.T., Lim, JH. & In, BC. Simultaneous Inhibition of Ethylene Biosynthesis and Binding Using AVG and 1-MCP in Two Rose Cultivars with Different Sensitivities to Ethylene. J Plant Growth Regul 39, 553–563 (2020). https://doi.org/10.1007/s00344-019-09999-6 | spa |
dc.relation.references | Hashemabadi D, Liavali MH, Kaviani B, Mousavi M, Keyghobadi S, Zahiri S (2014) Effect of nano-silver and boric acid on extending the vase life of cut rose (Rosa hybrida L.). J Environ Biol 35:833–838 | spa |
dc.relation.references | Hodson, M. J., & Sangster, A. G. (1988). Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). I. Scanning electron microscopy and light microscopy. Canadian Journal of Botany, 66(5), 829–838. https://doi.org/10.1139/b88-121 | spa |
dc.relation.references | Højsgaard, S., Halekoh, U., & Yan, J. (2006). The R package geepack for generalized estimating equations. Journal of statistical software, 15, 1-11. doi:10.18637/jss.v015.i02 | spa |
dc.relation.references | Huang S, Gong B, Wei F, Ma H (2017) Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic Environ Biote 58:144–151. https://doi.org/10.1007/s1358 0-017-0081-9 | spa |
dc.relation.references | Jamali, B., & Rahemi, M. (2011). Carnation flowers senescence as influenced by nickel, cobalt and silicon. Journal of Biological and Environmental Sciences, 5(15). | spa |
dc.relation.references | Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Frontiers in Plant Science, 8, 510. https://doi.org/10.3389/fpls.2017.00510 | spa |
dc.relation.references | Li, Y., Li, L., Wang, S., Liu, Y., Zou, J., Ding, W. & Shen, W. (2021). Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis. Postharvest Biology and Technology, 177, 111526. https://doi.org/10.1016/j.postharvbio.2021.111526 | spa |
dc.relation.references | Mazrou, R. M., Hassan, S., Yang, M., & Hassan, F. A. (2022). Melatonin Preserves the Postharvest Quality of Cut Roses through Enhancing the Antioxidant System. Plants, 11(20), 2713. https://doi.org/10.3390/plants11202713 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural, Dirección de cadena agrícola y forestales. Cadena de flores, follajes y ornamentales. Diciembre (2020). https://sioc.minagricultura.gov.co/Flores/Documentos/2020-12-31%20Cifras%20Sectoriales.pdf | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural, Dirección de cadena agrícola y forestales. Gobierno Nacional celebra con los floricultores las cifras históricas de San Valentín. Febrero (2022). https://www.minagricultura.gov.co/noticias/Paginas/Gobierno-Nacional-celebra-con-los-floricultores-las-cifras-históricas-de-San-Valent%C3%ADn.aspx | spa |
dc.relation.references | Mitani, N., Ma, J. F., & Iwashita, T. (2005). Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and cell physiology, 46(2), 279-283. | spa |
dc.relation.references | Nikagolla, N. G. D. N., Udugala-Ganehenege, M. Y., & Daundasekera, W. A. M. (2019). Postharvest application of potassium silicate improves keeping quality of banana. The Journal of Horticultural Science and Biotechnology, 94(6), 735-743. | spa |
dc.relation.references | Opfergelt, S., Delvaux, B., André, L., & Cardinal, D. (2008). Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry, 91, 163-175. https://doi.org/10.1007/s10533-008-9278-4 | spa |
dc.relation.references | Reid, M.S. & Jiang, C.-Z. (2012). Postharvest Biology and Technology of Cut Flowers and Potted Plants. In Horticultural Reviews, J. Janick (Ed.). https://doi.org/10.1002/9781118351871.ch1 | spa |
dc.relation.references | Seyed Hajizadeh, H., Azizi, S., Rasouli, F., & Kaya, O. (2023). Evaluation of nano-silicon efficiency on compatible solutes and nutrient status of Damask rose affected by in vitro simulated drought stress. Chemical and Biological Technologies in Agriculture, 10(1), 22. https://doi.org/10.1186/s40538-023-00397-5 | spa |
dc.relation.references | Shetty, R., Jensen, B., Shelton, D., Jørgensen, K., Pedas, P., & Jørgensen, H. J. L. (2021). Site‐ specific, silicon‐induced structural and molecular defence responses against powdery mildew infection in roses. Pest Management Science, 77(10), 4545–4554. https://doi.org/10.1002/ps.6493 | spa |
dc.relation.references | Simko I, Piepho HP. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology. 2012 Apr;102(4):381-9. doi: 10.1094/PHYTO-07-11-0216. PMID: 22122266. | spa |
dc.relation.references | Sun, J., Jameson, P. E., & Clemens, J. (1999, November). Water relations and stamen abscission in cut flowers of selected myrtaceae. In VII International Symposium on Postharvest Physiology of Ornamental Plants 543 (pp. 185-189). | spa |
dc.relation.references | Wang, L., Dong, M., Zhang, Q., Wu, Y., Hu, L., Parson, J. F., ... & Xiao, S. (2020). Silicon modulates multi-layered defense against powdery mildew in Arabidopsis. Phytopathology Research, 2(1), 1-14. | spa |
dc.relation.references | Wu, Y., Zuo, L., Ma, Y., Jiang, Y., Gao, J., Tao, J., & Chen, C. (2022). Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (Rosa Hybrida). Genes, 13(11), 1989. https://doi.org/10.3390/genes13111989 | spa |
dc.relation.references | Barreto, R. F., Maier, B. R., Prado, R. D. M., De Morais, T. C. B., & Felisberto, G. (2022). Silicon attenuates potassium and sulfur deficiency by increasing nutrient use efficiency in basil plants. Scientia Horticulturae, 291, 110616. https://doi.org/10.1016/j.scienta.2021.110616 | spa |
dc.relation.references | Becker, M., Ngo, N. S., & Schenk, M. K. A. (2020). Silicon reduces the iron uptake in rice and induces iron homeostasis related genes. Scientific Reports, 10(1), 5079. https://doi.org/10.1038/s41598-020-61718-4 | spa |
dc.relation.references | Carrasco-Gil, S., Rodríguez-Menéndez, S., Fernández, B., Pereiro, R., De la Fuente, V., & Hernandez-Apaolaza, L. (2018). Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions. Plant Physiology and Biochemistry, 125, 153-163. https://doi.org/10.1016/j.plaphy.2018.01.033 | spa |
dc.relation.references | Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., & Bélanger, R. R.. (2019). The controversies of silicon's role in plant biology. New Phytologist, 221(1), 67–85. https://doi.org/10.1111/nph.15343 | spa |
dc.relation.references | Faust, J. E., & Dole, J. M. (2021). The global cut flowers and foliage marketplace. En: Faust, J., & Dole, J. (Eds.), Cut flowers and foliages (pp. 1 – 47). CAB International: Londres. | spa |
dc.relation.references | Franco-Hermida, J. J., Henao-Toro, M. C., Guzmán, M., & Cabrera, R. I. (2013). Determining Nutrient Diagnostic Norms for Greenhouse Roses. Hortscience, 48(11), 1403–1410. https://doi.org/10.21273/hortsci.48.11.1403 | spa |
dc.relation.references | Gorrepati, E.A., Wongthahan, P., Raha, S., & Fogler, H.S. (2010). Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect. Langmuir, 26, 10467–10474. https://doi.org/10.1021/la904685x | spa |
dc.relation.references | Guio-Rodríguez, V. A., Álvarez-Herrera, J. G. & Gutierrez-Villamil, D. A. (2022). Estado nutricional en rosa hidropónica “Snowflake” bajo diferentes tratamientos de silicio. Acta Agronómica, 71(3). https://doi.org/10.15446/acag.v71n3.105681 | spa |
dc.relation.references | Hernández-Apaolaza, L., Escribano, L., Zamarreño, A. M., García-Mina, J. M., Cano, C. y Carrasco-Gil, S. (2020). Root silicon addition induces Fe deficiency in cucumber plants but facilitates their recovery after Fe resupply. A comparison with Si foliar sprays. Frontiers in Plant Science, 11, 580552. https://doi.org/10.3389/fpls.2020.580552 | spa |
dc.relation.references | ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (1997). NTC 370: Abonos o fertilizantes, determinación del nitrógeno total. Norma Técnica Colombiana (3ra edición), Bogotá, Colombia. | spa |
dc.relation.references | ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2001). NTC 274: Abonos o fertilizantes, método de ensayo para la determinación cuantitativa del fósforo. Norma Técnica Colombiana (1ra edición), Bogotá, Colombia. | spa |
dc.relation.references | ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2005). NTC 1154: Fertilizantes y acondicionadores de suelos, determinación de azufre. Norma Técnica Colombiana (4ta edición), Bogotá, Colombia. | spa |
dc.relation.references | ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. (2014). NTC 1816: Abonos o fertilizantes, método de ensayo para determinar el contenido de boro, método de Azometina-H. Norma Técnica Colombiana (4ta edición), Bogotá, Colombia. | spa |
dc.relation.references | Jang, S. W., Kim, Y., Khan, A. L., Na, C. I., & Lee, I. J. (2018). Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biology, 18(1), 4. https://doi.org/10.1186/s12870-017-1216-y | spa |
dc.relation.references | Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A., & Anwar-ul-Haq, M. (2019). Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiology and Biochemistry, 141, 291-299. https://doi.org/10.1016/j.plaphy.2019.06.010 | spa |
dc.relation.references | Keller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta, 241(4), 847–860. https://doi.org/10.1007/s00425-014-2220-1 | spa |
dc.relation.references | Khandekar, S., & Leisner, S. (2011). Soluble silicon modulates expression of arabidopsis thaliana genes involved in copper stress. J. Plant Physiol. 168, 699–705. https://doi.org/10.1016/j.jplph.2010.09.009 | spa |
dc.relation.references | Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J., & Nikolic, M. (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil. 419, 447–455. https://doi.org/10.1126/science.285.5433.1542 | spa |
dc.relation.references | Laîné, P., Coquerel, R., Arkoun, M., Trouverie, J., & Etienne, P. (2022). Assessing the Effect of Silicon Supply on Root Sulfur Uptake in S-Fed and S-Deprived Brassica napus L. Plants, 11(12), 1606. https://doi.org/10.3390/plants11121606 | spa |
dc.relation.references | Li, J., Leisner, S. M., & Frantz, J. (2008). Alleviation of copper toxicity in arabidopsis thaliana by silicon addition to hydroponic solutions. J. Am. Soc Hortic. Sci. 133, 670–677. https://doi.org/10.21273/JASHS.133.5.670 | spa |
dc.relation.references | Luyckx, M., Hausman, J. F., Guerriero, G., & Lutts, S. (2023). Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.). Environmental Science and Pollution Research International, 30(1), 943–955. https://doi.org/10.1007/s11356-022-21797-4 | spa |
dc.relation.references | Nikolić, D., Bosnić, D., & Samardžić, J. (2023). Silicon in action: Between iron scarcity and excess copper. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1039053 | spa |
dc.relation.references | Pilon, C., Soratto, R. P., & Moreno, L. A. (2013). Effects of Soil and Foliar Application of Soluble Silicon on Mineral Nutrition, Gas Exchange, and Growth of Potato Plants. Crop Science, 53(4), 1605-1614. https://doi.org/10.2135/cropsci2012.10.0580 | spa |
dc.relation.references | Sarah, M.M.S., Prado, R.M., Teixeira, G.C.M., de Souza Júnior, J.P., de Medeiros, R.L.S., & Barreto R.F. (2022). Silicon supplied via roots or leaves relieves potassium deficiency in maize plants. Silicon, 14,773–782. | spa |
dc.relation.references | Sheng, H., Lei, Y., Wei, J., Yang, Z., Peng, L., Li, W., & Liu, Y.. (2024). Analogy of silicon and boron in plant nutrition. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1353706 | spa |
dc.relation.references | Soliman, N.G., Nomier, S.A.A., Ibrahim, N.M.M. & Gad, M.M. (2021). Effect of spraying nano-chitosan and nano-silicon on physicochemical fruit quality and leaf mineral content of florida prince peach trees. Zagazig Journal of Agricultural Research 48(5), 1215-1226. https://doi.org/10.21608/zjar.2021.224030 | spa |
dc.relation.references | Takahashi, E.; Ma, J. F. & Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2(2), 99-122. https://www.cabdirect.org/cabdirect/abstract/19921964619 | spa |
dc.relation.references | Torre, S., Fjeld, T., & Gislerød, H. (2001). Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Horticulturae, 90(3-4), 291-304. https://doi.org/10.1016/S0304-4238(01)00230-8 | spa |
dc.relation.references | Triana, Y.; Castiblanco, E., & Flórez, V. (2006). Comportamiento de nutrientes en un sistema de cultivo sin suelo en rosa. In: Flórez, V.; Fernández, A; Miranda, D.; Chaves, B.; and Guzmán, J. (eds). Avances sobre fertirriego en la floricultura colombiana, pp. 249 – 264. Universidad Nacional de Colombia. Bogotá, Colombia. | spa |
dc.relation.references | Wiese, H., Nikolic M., & Römheld, V. (2007). Silicon in plant nutrition. En: Sattelmacher, B. & Horst, W. J. (eds), The apoplast of higher plants: Compartment of storage, transport and reactions (pp. 33-47). Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_3 | spa |
dc.relation.references | Wu, X.; Yu, Y.; Baerson, S. R.; Song, Y.; Liang, G.; Ding, C.; Niu, J.; Pan, Z. & Zeng, R. (2017). Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Frontiers in Plant Science, 8, 28. https://doi.org/10.3389/fpls.2017.00028 | spa |
dc.relation.references | Collin, B., Doelsch, E., Keller, C., Cazevieille, P., Tella, M., Chaurand, P., Panfili, F., Hazemann, J., & Meunier, J. (2014). Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution, 187, 22-30. https://doi.org/10.1016/j.envpol.2013.12.024 | spa |
dc.relation.references | da Silva, A.P.R., da Silva, L.J.R., Deus, A.C.F., Fernandes, D., & Büll, L. (2023). Silicon Application Methods Influence the Nutrient Uptake of Maize Plants in Tropical Soil. Silicon 15, 7327–7334. https://doi.org/10.1007/s12633-023-02592-3 | spa |
dc.relation.references | Farahani, H., Sajedi, N.A., Madani, H., & Reza, M. (2021). Effect of Foliar-Applied Silicon on Flower Yield and Essential Oil Composition of Damask Rose (Rosa damascena Miller) under Water Deficit Stress. Silicon 13, 4463–4472. https://doi.org/10.1007/s12633-020-00762-1 | spa |
dc.relation.references | Reezi, S., Babalar, M. and Kalantari, S. (2009). Silicon Alleviates Salt Stress, Decreases Malondialdehyde Content and Affects Petal Color of Salt-Stressed Cut Rose (Rosa xhybrida L.) “Hot Lady”. African Journal of Biotechnology, 8, 1502-1508. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Producción de flores cortadas | spa |
dc.subject.agrovoc | cut flower production | eng |
dc.subject.agrovoc | Nutrición de la planta | spa |
dc.subject.agrovoc | plant nutrition | eng |
dc.subject.agrovoc | Silicio | spa |
dc.subject.agrovoc | silicium | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) | spa |
dc.subject.proposal | Tallo floral | spa |
dc.subject.proposal | Etileno | spa |
dc.subject.proposal | Longevidad floral | spa |
dc.subject.proposal | Absorción de nutrientes | spa |
dc.subject.proposal | Micronutrientes | spa |
dc.subject.proposal | Flower stalk | eng |
dc.subject.proposal | Ethylene | eng |
dc.subject.proposal | Flower longevity | eng |
dc.subject.proposal | Nutrient uptake | eng |
dc.subject.proposal | Micronutrients | eng |
dc.title | Efecto de la aplicación foliar y edáfica de silicio sobre el estatus nutricional del tallo floral y la poscosecha en rosa (Rosa x hybrida L.) cv. ‘Brighton’ | spa |
dc.title.translated | Effect of foliar and soil silicon application on the nutritional status of the floral stem and postharvest in rose (Rosa x hybrida L.) cv. ‘Brighton’ | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 3277351.2025.pdf
- Tamaño:
- 1.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: