Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional

dc.contributor.advisorCortés Guerrero, Camilo Andresspa
dc.contributor.advisorRomero Quete, David Fernandospa
dc.contributor.authorAcevedo Iles, Manuel Octaviospa
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2024-05-22T22:54:31Z
dc.date.available2024-05-22T22:54:31Z
dc.date.issued2024-05-20
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn las últimas décadas, el creciente interés en las formas de generación renovables ha impulsado el desarrollo de topologías de sistemas eléctricos locales que aprovechan los recursos energéticos disponibles, dando lugar al concepto de microrredes. Estas innovadoras topologías presentan amplios beneficios, especialmente al considerar los actuales requisitos energéticos y las deficiencias en el suministro de energ´ıa el´ectrica, como se evidencia en zonas no interconectadas en Colombia. No obstante, la integración de nuevas tecnologías en los sistemas eléctricos conlleva desafíos técnicos que pueden afectar su implementación. Uno de estos desafíos se asocia a las modificaciones en el comportamiento en falla de los sistemas con penetración de microrredes, debido a la inclusión de fuentes de generación basadas en inversores (IBRs en inglés). Estas fuentes presentan un comportamiento en falla significativamente diferente al de las fuentes tradicionales de generación. Las modificaciones en el comportamiento en falla exigen la implementación de nuevos esquemas de protección que respondan a los requisitos emergentes, caracterizados principalmente por su adaptabilidad. En esta tesis se presenta el proceso de investigación desarrollado para proponer una estrategia de protecciones innovadora. Esta estrategia capitaliza la controlabilidad de las fuentes de generación basadas en inversores para mejorar el rendimiento de las funciones de direccionalidad. Además, se fundamenta en dos esquemas de protección, uno asociado a la detección especializada de condiciones de falla y otro a la coordinación online. (Texto tomado de la fuente).spa
dc.description.abstractIn recent decades, the growing interest in renewable forms of generation has led to the development of local electrical system topologies that harness available energy resources, giving rise to the concept of microgrids. These innovative topologies offer extensive benefits, particularly in addressing current energy requirements and deficiencies in electrical power supply, as observed in non-interconnected areas in Colombia. However, the integration of new technologies into electrical systems poses technical challenges that may impact their implementation. One such challenge is associated with modifications in the fault behavior of systems with microgrid penetration due to the inclusion of inverter-based generation sources (IBRs). These sources exhibit significantly different fault behavior compared to traditional generation sources. Modifications in fault behavior necessitate the implementation of new protection schemes that respond to emerging requirements, characterized primarily by adaptability. This thesis presents a research process aimed at proposing an innovative protection strategy that leverages the controllability of inverter-based generation sources to enhance the performance of directionality functions. It is based on two protection schemes: one associated with specialized fault condition detection, and the other with online coordination. The characteristics of the protection strategy are demonstrated through simulations and experimental setups for real-time simulations, highlighting its benefits.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónicaspa
dc.description.researchareaElectrónica de potencia-Smart Grids y energías renovablesspa
dc.format.extentxv, 63 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86143
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.referencesM. J. Reno, S. Brahma, A. Bidram, and M. E. Ropp, “Influence of inverter-based resources on microgrid protection: Part 1: Microgrids in radial distribution systems,” IEEE Power and Energy Magazine, vol. 19, pp. 36–46, 5 2021.spa
dc.relation.referencesM. E. Ropp and M. J. Reno, “Influence of inverter-based resources on microgrid protec- tion: Part 2: Secondary networks and microgrid protection,” IEEE Power and Energy Magazine, vol. 19, pp. 47–57, 5 2021.spa
dc.relation.referencesS. Manson and E. McCullough, “Practical microgrid protection solutions: Promises and challenges,” IEEE Power and Energy Magazine, vol. 19, 2021.spa
dc.relation.referencesA. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” 2015.spa
dc.relation.referencesB. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” 2017.spa
dc.relation.referencesS. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, 2014.spa
dc.relation.referencesD. B. Rathnayake, M. Akrami, C. Phurailatpam, S. P. Me, S. Hadavi, G. Jayasinghe, S. Zabihi, and B. Bahrani, “Grid forming inverter modeling, control, and applications,” IEEE Access, vol. 9, 2021.spa
dc.relation.referencesR. Furlaneto, I. Kocar, A. Grilo-Pavani, U. Karaagac, A. Haddadi, and E. Farantatos, “Short circuit network equivalents of systems with inverter-based resources,” Electric Power Systems Research, vol. 199, p. 107314, 10 2021.spa
dc.relation.referencesI. S. Association, IEEE Std. 1547-2018. Standard for Interconnection and Interoperabi- lity of Distributed Energy Resources with Associated Electric Power Systems Interfaces, 2018.spa
dc.relation.referencesCREG, “Resolución creg 060 de 2019,” 2019.spa
dc.relation.referencesR. Kabiri, D. G. Holmes, and B. P. McGrath, “Control of active and reactive power ripple to mitigate unbalanced grid voltages,” IEEE Transactions on Industry Applications, vol. 52, pp. 1660–1668, 3 2016.spa
dc.relation.referencesA. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. D¨orfler, “Interactions of grid-forming power converters and synchronous machines,” 2 2019.spa
dc.relation.referencesB. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Transactions on Power Systems, vol. 37, 2022.spa
dc.relation.referencesB. Mahamedi, J. G. Zhu, M. Eskandari, L. Li, and A. Mehrizi-Sani, “Analysis of fault response of inverter-interfaced distributed generators in sequence networks,” 2018.spa
dc.relation.referencesA. Haddadi, I. Kocar, J. Mahseredjian, U. Karaagac, and E. Farantatos, “Performance of phase comparison line protection under inverter-based resources and impact of the german grid code,” IEEE Power and Energy Society General Meeting, vol. 2020-August, 2020.spa
dc.relation.referencesB. Mahamedi and J. E. Fletcher, “The equivalent models of grid-forming inverters in the sequence domain for the steady-state analysis of power systems,” IEEE Transactions on Power Systems, vol. 35, 2020.spa
dc.relation.referencesV. C. Cunha, T. Kim, N. Barry, P. Siratarnsophon, S. Santoso, W. Freitas, D. Rama-subramanian, and R. C. Dugan, “Generalized formulation of steady-state equivalent circuit models of grid-forming inverters,” IEEE Open Access Journal of Power and Energy, vol. 8, 2021.spa
dc.relation.referencesA. Haddadi, E. Farantatos, I. Kocar, and U. Karaagac, “Impact of inverter based resources on system protection,” Energies, vol. 14, 2021.spa
dc.relation.referencesI.-S. S. Board., “Ieee std 242-2001 (revision of ieee std 242-1986) [ieee buff book],” IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], 2001.spa
dc.relation.referencesW. A. Elmore, Protective Relaying Theory and Applicantions, 2003.spa
dc.relation.referencesA. Haddadi, M. Zhao, I. Kocar, E. Farantatos, and F. Martinez, “Impact of inverter-based resources on memory-polarized distance and directional protective relay elements,” 2020 52nd North American Power Symposium, NAPS 2020, 4 2021.spa
dc.relation.referencesH. C. Kili¸ckiran, ˙ Ibrahim S¸eng¨ or, H. Akdemir, B. Kekezo˘glu, O. Erdin¸ c, and N. G. Paterakis, “Power system protection with digital overcurrent relays: A review of non- standard characteristics,” Electric Power Systems Research, vol. 164, pp. 89–102, 11 2018.spa
dc.relation.referencesP. Barra, V. Lacerda, R. Fernandes, and D. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electric Power Systems Re- search, vol. 196, p. 107242, 7 2021.spa
dc.relation.referencesH. Cao, D. Zhang, and S. Yi, “Real-time machine learning-based fault detection, classification, and locating in large scale solar energy-based systems: Digital twin simulation,” Solar Energy, vol. 251, pp. 77–85, 2 2023.spa
dc.relation.referencesF. Aminifar, S. Teimourzadeh, A. Shahsavari, M. Savaghebi, and M. S. Golsorkhi, “Machine learning for protection of distribution networks and power electronics-interfaced systems,” Electricity Journal, vol. 34, 2021.spa
dc.relation.referencesJ. Marín-Quintero, C. Orozco-Henao, W. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector,” Applied Soft Computing, vol. 98, p. 106839, 1 2021.spa
dc.relation.referencesR. Eslami and S. A. Hosseini, “A comprehensive method for fault detection in AC/DC hybrid microgrid,” Electric Power Components and Systems, vol. 50, 2022.spa
dc.relation.referencesM. A. Zamani, A. Yazdani, and T. S. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids,” IEEE Transactions on Smart Grid, vol. 3, 2012.spa
dc.relation.referencesC. Chandraratne, T. Logenthiran, R. T. Naayagi, and W. L. Woo, “Overview of adaptive protection system for modern power systems,” International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 2018.spa
dc.relation.referencesF. B. dos Reis, J. O. C. Pinto, F. S. dos Reis, D. Issicaba, and J. G. Rolim, “Multi-agent dual strategy based adaptive protection for microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100501, 9 2021.spa
dc.relation.referencesH. Wan, K. K. Li, and K. P. Wong, “An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system,” IEEE Transactions on Industry Applications, vol. 46, pp. 2118–2124, 9 2010.spa
dc.relation.referencesD. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, 2021.spa
dc.relation.referencesV. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation,” IEEE Transactions on Power Deli- very, vol. 32, 2017.spa
dc.relation.referencesM. Sadoughi, M. Hojjat, and M. H. Abardeh, “Smart overcurrent relay for operating in islanded and grid-connected modes of a micro-grid without needing communication systems,” Energy Systems, vol. 13, 2022.spa
dc.relation.referencesJ. Mar´ın-Quintero, C. Orozco-Henao, J. C. Velez, and A. Bretas, “Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model,” International Journal of Electrical Power Energy Systems, vol. 130, p. 106960, 9 2021.spa
dc.relation.referencesM. A. U. Khan, Q. Hong, A. Egea- ` Alvarez, A. Dy´sko, and C. Booth, “A communication- free active unit protection scheme for inverter dominated islanded microgrids,” International Journal of Electrical Power and Energy Systems, vol. 142, 2022.spa
dc.relation.referencesB. K. Chaitanya, A. Yadav, and M. Pazoki, “An improved differential protection scheme for micro-grid using time-frequency transform,” International Journal of Electrical Power and Energy Systems, vol. 111, 2019.spa
dc.relation.referencesP. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” International Journal of Electrical Power and Energy Systems, vol. 118, 2020.spa
dc.relation.referencesY. Wang, M. Wen, and Y. Chen, “A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant,” International Journal of Electrical Power and Energy Systems, vol. 145, 2023.spa
dc.relation.referencesZ. Alhadrawi, M. N. Abdullah, and H. Mokhlis, “Differential protection scheme for a micro grid with inverter-type sources based on positive sequence fault currents,” International Journal of Integrated Engineering, vol. 14, 2022.spa
dc.relation.referencesS. P. Tiwari, E. Koley, and S. Ghosh, “Communication-less ensemble classifier-based protection scheme for dc microgrid with adaptiveness to network reconfiguration and weather intermittency,” Sustainable Energy, Grids and Networks, vol. 26, 2021.spa
dc.relation.referencesX. Xu, H. Wen, L. Jiang, and Y. Hu, “Hybrid control and protection scheme for inverter dominated microgrids,” Journal of Power Electronics, vol. 17, pp. 744–755, 2017.spa
dc.relation.referencesM. Acevedo-Iles, D. Romero-Quete, E. Mojica-Nava, and C. A. Cortes, “Distributed protection coordination algorithm applied to overcurrent-based schemes,” 2023 IEEE Belgrade PowerTech, pp. 1–6, 6 2023.spa
dc.relation.referencesM. Acevedo-Iles, D. Romero-Quete, and C. A. Cortes, “An Integrated Protection Scheme for Active Distribution Networks Based on a Distributed Coordination Algorithm,” 2023, Manuscript submitted for publication on “IEEE Transactions on power delivery”.spa
dc.relation.referencesY. Chen, T. Ji, M. Li, Q. Wu, and X. Wang, “Power system harmonic estimation based on park transform,” Journal of Electrical Engineering and Technology, vol. 11, 2016.spa
dc.relation.referencesQ. Salem, R. Aljarrah, M. Karimi, and A. Al-Quraan, “Grid-forming inverter control for power sharing in microgrids based on p/f and q/v droop characteristics,” Sustainability (Switzerland), vol. 15, 2023.spa
dc.relation.referencesH. Just, “Modeling and control of power converters in weak and unbalanced electric grids.” The Deutsche Nationalbibliothek, 2021.spa
dc.relation.referencesM. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal protection coordination scheme for radial distribution network considering on/off-grid,” IEEE Access, vol. 9, 2021.spa
dc.relation.referencesJ. Roberts and A. Guzm´an, “Directional element design and evaluation,” 21st Annual Western Protective Relay Conference, 1994.spa
dc.relation.referencesD. Jones and J. J. Kumm, “Future distribution feeder protection using directional overcurrent elements,” IEEE Transactions on Industry Applications, vol. 50, 2014.spa
dc.relation.referencesIEC Technical Committee 57, Communication networks and systems for power utility automation. Part 7-2, Basic information and communication structure–abstract communication service interface (ACSI).spa
dc.relation.references——, Communication networks and systems for power utility automation. Part 9-2, Specific communication service mapping (SCSM)–sampled values over ISO/IEC 8802- 3, 2011.spa
dc.relation.referencesE. Mojica-Nava, Optimización y control en grafos. Editorial UN, 2022.spa
dc.relation.referencesS. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” pp. 1–122, 2010.spa
dc.relation.referencesC. international des grands reseaux electriques. Comite d’etudes C6. and I. Conformes), Benchmark systems for network integration of renewable and distributed energy resources. CIGRE, 2014.spa
dc.relation.referencesManuel Acevedo-Iles and David Romero-Quete and Camilo A. Cortes, “Open-Source Code of an adaptive protection scheme using LIBIEC61850,” 2023, [Online]. Available: https://github.com/ManuAce9/Integral-Protection-Scheme.spa
dc.relation.referencesM. Zillgith, “Libiec61850/ lib60870 open source libraries for iec 61850 and iec 60870-5- 101/104,” [Online; accessed Nov. 25,2023].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalFuentes de generación basadas en inversoresspa
dc.subject.proposalMicrorredesspa
dc.subject.proposalOptimización distribuidaspa
dc.subject.proposalProtecciones adaptativasspa
dc.subject.proposalSimulaciones en tiempo realspa
dc.subject.proposalSubestaciones digitalesspa
dc.subject.proposalAdaptive protectioneng
dc.subject.proposalDigital substationeng
dc.subject.proposalDistributed optimizationeng
dc.subject.proposalInverter-based resourceseng
dc.subject.proposalMicrogrideng
dc.subject.proposalReal-time simulationeng
dc.subject.wikidataMicrogridspa
dc.subject.wikidatamicrogrideng
dc.subject.wikidataSistema de suministro eléctricospa
dc.subject.wikidatatransmission of electricityeng
dc.subject.wikidataalgoritmo de optimizaciónspa
dc.subject.wikidataoptimization algorithmeng
dc.titleDiseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicionalspa
dc.title.translatedDesign of an advanced protection algorithm for AC microgrids interconnected with a traditional distribution systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DocumentoFinal_ManuelAcevedo.pdf
Tamaño:
8.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: