Evaluación de la resistencia a la corrosión de recubrimientos de TiB2 depositados sobre Ti y Ti-6Al-4V obtenidos mediante la técnica de láser cladding coaxial

dc.contributor.advisorAngarita Moncaleano, Irma Inirida
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorAgredo Diaz, Dayi Giberto
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=SkA2vycAAAAJ&hl=esspa
dc.contributor.orcidAgredo Diaz, Dayi Gilberto [0000-0003-2830-3022]spa
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2023-01-17T16:33:04Z
dc.date.available2023-01-17T16:33:04Z
dc.date.issued2022
dc.descriptionilstraciones, fotografías, graficasspa
dc.description.abstractEl titanio es un material altamente utilizado en la industria, condición ligada a sus buenas propiedades, sin duda alguna esto ofrece ventajas importantes con respecto a materiales como el acero; es así que las industrias de mayor demanda son la aeronáutica, medica, industria armamentista e incluso en el ámbito deportivo. En esta investigación se sintetizan recubrimientos metal-cerámica (60% wt de Ti+ 40% wt de TiB2) por la técnica de láser cladding coaxial sobre sustratos de Ti grado 2 y Ti-6Al-4V a diferentes niveles de energía (600, 900 y 1000 W) y se evalúa su comportamiento electroquímico en una solución de NaCl al 3.5% y a alta temperatura. Se caracteriza el material por microscopia electrónica de barrido, la evaluación electroquímica se hace por medio de espectroscopia de impedancia y polarización tafel, su estructura se evalúa por difracción de rayos X. La corrosión a alta temperatura es evaluada por medio de la técnica de oxidación cíclica. A nivel electroquímico los resultados muestran que los recubrimientos modifican la respuesta electroquímica del sistema, brindando protección sobre la superficie del material, lo cual está asociado a la formación de una capa protectora sobre la superficie del material (formación de compuestos de TiB, TiB2, TiO2; en la corrosión a alta temperatura se encuentra reducción de la degradación del material recubierto a diferencia del material sin recubrimiento, evidenciando la formación de compuestos principalmente constituidos por TiO2 (Texto tomado de la fuente).spa
dc.description.abstractTitanium is a highly used material in the industry, a condition linked to its good properties, without a doubt this offers important advantages with respect to materials such as steel; Thus, the industries with the greatest demand are aeronautics, medicine, the arms industry and even sports. In this research, metal-ceramic coatings (60% wt Ti+ 40% wt TiB2) are synthesized using the coaxial laser cladding technique on Ti grade 2 and Ti-6Al-4V substrates at different energy levels (600, 900 and 1000 W) and its electrochemical behavior is evaluated in a 3.5% NaCl solution and at high temperature. The material is characterized by scanning electron microscopy, the electrochemical evaluation is done by means of impedance spectroscopy and tafel polarization, its structure is evaluated by X-ray diffraction. Corrosion at high temperature is evaluated using of the cyclic oxidation technique. At an electrochemical level, the results show that the coatings modify the electrochemical response of the system, providing protection on the surface of the material, which is associated with the formation of a protective layer on the surface of the material (formation of compounds of TiB, TiB2, TiO2; in high-temperature corrosion, a reduction in the degradation of the coated material is found, unlike the uncoated material, evidencing the formation of compounds mainly constituted by TiO2.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngenieria de superficiesspa
dc.format.extentxvii, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82981
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesF. Gil and J. Planell, “Aplicaciones biomédicas del titanio v sus aleaciones,” Biomecánica, no. JANUARY 1993, pp. 34–42, 1993.spa
dc.relation.referencesY. Chong, G. Deng, J. Yi, A. Shibata, and N. Tsuji, “On the strain hardening abilities of α+β titanium alloys: The roles of strain partitioning and interface length density,” J. Alloys Compd., vol. 811, p. 152040, 2019, doi:10.1016/j.jallcom.2019.152040.spa
dc.relation.referencesR. R. Boyer, “Attributes, characteristics, and applications of titanium and its alloys,” Jom, vol. 62, no. 5. pp. 21–24, 2010.spa
dc.relation.referencesD. Prando et al., “Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation,” J. Appl. Biomater. Funct. Mater., vol. 15, no. 4, pp. e291–e302, 2017, doi:10.5301/jabfm.5000387.spa
dc.relation.referencesK. K. Xu, A. D. Lan, J. W. Qiao, H. J. Yang, P. D. Han, and P. K. Liaw, “Corrosion behaviors and mechanisms of in-situ Ti-based MGMCs in chloride-containing and chloride-free solutions,” Intermetallics, vol. 105, no. June 2018, pp. 179–186, 2019, doi:10.1016/j.intermet.2018.10.010.spa
dc.relation.referencesA. Neville and B. A. B. McDougall, “Erosion—and cavitation—corrosion of titanium and its alloys,” Wear, vol. 250, no. 1–12, pp. 726–735, 2001, doi:10.1016/S0043-1648(01)00709-8.spa
dc.relation.referencesN. D. Tomashov, R. M. Altovsky, and G. P. Chernova, “Passivity and Corrosion Resistance of Titanium and Its Alloys,” J. Electrochem. Soc., vol. 108, no. 2, p. 113, 1961, doi:10.1149/1.2428023.spa
dc.relation.referencesJ. Fojt, Z. Kacenka, E. Jablonska, V. Hybasek, and E. Pruchova, “Influence of the surface etching on the corrosion behaviour of a three-dimensional printed Ti–6Al–4V alloy,” Mater. Corros., no. May, pp. 1–6, 2020, doi:10.1002/maco.202011658.spa
dc.relation.referencesB. Pazhanivel, P. Sathiya, and G. Sozhan, “Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process,” Opt. Laser Technol., vol. 125, no. October 2019, p. 106017, 2020, doi:10.1016/j.optlastec.2019.106017.spa
dc.relation.referencesG. T. Burstein, C. Liu, and R. M. Souto, “The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution,” Biomaterials, vol. 26, no. 3, pp. 245–256, 2005, doi:10.1016/j.biomaterials.2004.02.023.spa
dc.relation.referencesC. L. Chu and S. K. Wu, “Ion nitriding of titanium aluminides with 25-53 at.% Al I: Nitriding parameters and microstructure characterization,” Surf. Coatings Technol., vol. 78, no. 1–3, pp. 211–218, 1996, doi:10.1016/0257-8972(94)02411-1.spa
dc.relation.referencesF. M. El-Hossary, N. Z. Negm, S. M. Khalil, and M. Raaif, “Surface modification of titanium by radio frequency plasma nitriding,” Thin Solid Films, vol. 497, no. 1–2, pp. 196–202, 2006, doi:10.1016/j.tsf.2005.09.193.spa
dc.relation.referencesY. C. Lin, H. M. Chen, and Y. C. Chen, “The effect of different methods to add nitrogen to titanium alloys on the properties of titanium nitride clad layers,” Mater. Des., vol. 54, pp. 222–229, 2014, doi:10.1016/j.matdes.2013.08.069.spa
dc.relation.referencesN. Tsuji, S. Tanaka, and T. Takasugi, “Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling,” Mater. Sci. Eng. A, vol. 488, no. 1–2, pp. 139–145, 2008, doi:10.1016/j.msea.2007.11.079spa
dc.relation.referencesY. HUANG, Y. WANG, C. NING, K. NAN, and Y. HAN, “Preparation and properties of a cerium-containing hydroxyapatite coating on commercially pure titanium by micro-arc oxidation,” Rare Met., vol. 27, no. 3, pp. 257–260, 2008, doi:10.1016/S1001-0521(08)60125-4.spa
dc.relation.referencesH. J. Song, S. H. Park, S. H. Jeong, and Y. J. Park, “Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes,” J. Mater. Process. Technol., vol. 209, no. 2, pp. 864–870, 2009, doi:10.1016/j.jmatprotec.2008.02.055.spa
dc.relation.referencesM. Y. P. Costa, M. L. R. Venditti, M. O. H. Cioffi, H. J. C. Voorwald, V. A. Guimarães, and R. Ruas, “Fatigue behavior of PVD coated Ti-6Al-4V alloy,” Int. J. Fatigue, vol. 33, no. 6, pp. 759–765, 2011, doi:10.1016/j.ijfatigue.2010.11.007.spa
dc.relation.referencesY. Zhu, W. Wang, X. Jia, T. Akasaka, S. Liao, and F. Watari, “Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD,” Appl. Surf. Sci., vol. 262, pp. 156–158, 2012, doi:10.1016/j.apsusc.2012.03.152.spa
dc.relation.referencesA. Khorram, A. Davoodi Jamaloei, A. Jafari, and M. Moradi, “Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation,” Opt. Laser Technol., vol. 119, no. April, p. 105617, 2019, doi:10.1016/j.optlastec.2019.105617.spa
dc.relation.referencesR. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, “Improving the hot corrosion resistance of plasma sprayed ceria-yttria stabilized zirconia thermal barrier coatings by laser surface treatment,” Mater. Des., vol. 57, pp. 336–341, 2014, doi:10.1016/j.matdes.2013.12.075.spa
dc.relation.referencesM. xi Li, Y. zhu He, and G. xiong Sun, “Laser cladding Co-based alloy/SiCp composite coatings on IF steel,” Mater. Des., vol. 25, no. 4, pp. 355–358, 2004, doi:10.1016/j.matdes.2003.08.006.spa
dc.relation.referencesP. W. Leech, “Laser surface melting of a complex high alloy steel,” Mater. Des., vol. 54, pp. 539–543, 2014, doi:10.1016/j.matdes.2013.08.060.spa
dc.relation.referencesK. Zhang et al., “Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition,” Mater. Des., vol. 184, p. 108191, 2019, doi:10.1016/j.matdes.2019.108191.spa
dc.relation.referencesY. S. Tian, C. Z. Chen, S. T. Li, and Q. H. Huo, “Research progress on laser surface modification of titanium alloys,” Appl. Surf. Sci., vol. 242, no. 1–2, pp. 177–184, 2005, doi:10.1016/j.apsusc.2004.08.011.spa
dc.relation.referencesJ. J. Candel, V. Amigó, J. A. Ramos, and D. Busquets, “Sliding wear resistance of TiCp reinforced titanium composite coating produced by laser cladding,” Surf. Coatings Technol., vol. 204, no. 20, pp. 3161–3166, 2010, doi:10.1016/j.surfcoat.2010.02.070.spa
dc.relation.referencesM. Zheng, D. Fan, X. K. Li, W. F. Li, Q. Bin Liu, and J. Bin Zhang, “Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding,” Appl. Surf. Sci., vol. 255, no. 2, pp. 426–428, 2008, doi:10.1016/j.apsusc.2008.06.078.spa
dc.relation.referencesL. Liu, T. Minasyan, R. Ivanov, S. Aydinyan, and I. Hussainova, “Selective laser melting of TiB2-Ti composite with high content of ceramic phase,” Ceram. Int., vol. 46, no. 13, pp. 21128–21135, 2020, doi:10.1016/j.ceramint.2020.05.189.spa
dc.relation.referencesI. Shishkovsky, N. Kakovkina, and V. Sherbakov, “Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting,” Compos. Struct., vol. 169, pp. 90–96, 2017, doi:10.1016/j.compstruct.2016.11.013.spa
dc.relation.referencesA. International, Metallography and Microstructures. 2018.spa
dc.relation.referencesASTM, “Standard Specifcation for Titanium and Titaniumm Alloy Strip, Sheet, and Plate,” Annu. B. ASTM Stand., vol. B265-03, pp. 1–9, 2004.spa
dc.relation.referencesS. Accep-, V. Examination, T. Alloys, and T. C. Method, “Standard Specification for Titanium and Titanium Alloy Castings 1,” vol. 93, no. Reapproved, pp. 1–5, 2004.spa
dc.relation.referencesASTM, “Standard Specification for Titanium and Titanium Alloy Forgings,” vol. 93, no. Reapproved, pp. 1–5, 2004.spa
dc.relation.referencesVander Voort and W. Baldwin, “Metallography and Microstructures Handbook,” ASM Int., vol. 9, p. 2733, 2004, doi:10.1361/asmhba0003771.spa
dc.relation.referencesP. Chui, R. Jing, F. Zhang, J. Li, and T. Feng, “Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application,” J. Alloys Compd., vol. 842, p. 155693, 2020, doi:10.1016/j.jallcom.2020.155693.spa
dc.relation.referencesC. Chang et al., “Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures,” Mater. Lett., vol. 277, p. 128366, 2020, doi:10.1016/j.matlet.2020.128366.spa
dc.relation.referencesD. Il Seo and J. B. Lee, “Effects of competitive anion adsorption (Br− or Cl−) and semiconducting properties of the passive films on the corrosion behavior of the additively manufactured Ti–6Al–4V alloys,” Corros. Sci., vol. 173, no. June, p. 108789, 2020, doi:10.1016/j.corsci.2020.108789.spa
dc.relation.referencesD. Rodriguez Ruis, “1 El Titanio Y Sus Aleaciones,” Tesis Dr., 2000.spa
dc.relation.referencesE. Hancock, W. Smith, R. Wilson, and A. Bors, “An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8048 LNCS, no. PART 2, 2013, doi:10.1007/978-3-642-40246-3.spa
dc.relation.referencesM. Textor, C. Sittig, V. Frauchiger, S. Tosatti, and D. M. Brunette, “Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys,” pp. 171–230, 2001, doi:10.1007/978-3-642-56486-4_7.spa
dc.relation.referencesF. Weng, C. Chen, and H. Yu, “Research status of laser cladding on titanium and its alloys: A review,” Mater. Des., vol. 58, pp. 412–425, 2014, doi:10.1016/j.matdes.2014.01.077.spa
dc.relation.referencesA. R. Rafieerad, M. R. Ashra, R. Mahmoodian, and A. R. Bushroa, “Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper,” Mater. Sci. Eng. C, vol. 57, pp. 397–413, 2015, doi:10.1016/j.msec.2015.07.058.spa
dc.relation.referencesQ. Li et al., “Mechanical and corrosion properties of Ti-Ni-Cu-Zr metallic glass matrix composites,” J. Alloys Compd., vol. 727, pp. 1344–1350, 2017, doi:10.1016/j.jallcom.2017.08.120.spa
dc.relation.referencesJ. Dias Corpa Tardelli, C. Bolfarini, and A. Cândido dos Reis, “Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review,” J. Trace Elem. Med. Biol., vol. 62, no. June, p. 126618, 2020, doi:10.1016/j.jtemb.2020.126618.spa
dc.relation.referencesW. Q. Chen, S. M. Zhang, and J. Qiu, “Surface analysis and corrosion behavior of pure titanium under fluoride exposure,” J. Prosthet. Dent., vol. 124, no. 2, pp. 239.e1-239.e8, 2020, doi:10.1016/j.prosdent.2020.02.022.spa
dc.relation.referencesM. Kaur and K. Singh, “Review on titanium and titanium based alloys as biomaterials for orthopaedic applications,” Mater. Sci. Eng. C, vol. 102, no. April, pp. 844–862, 2019, doi:10.1016/j.msec.2019.04.064.spa
dc.relation.referencesA. Hemmasian Ettefagh, C. Zeng, S. Guo, and J. Raush, “Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing,” Addit. Manuf., vol. 28, no. March, pp. 252–258, 2019, doi:10.1016/j.addma.2019.05.011.spa
dc.relation.referencesA. Sharma, M. C. Oh, J. T. Kim, A. K. Srivastava, and B. Ahn, “Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes,” J. Alloys Compd., vol. 830, p. 154620, 2020, doi:10.1016/j.jallcom.2020.154620.spa
dc.relation.referencesM. Kazemi, S. Ahangarani, M. Esmailian, and A. Shanaghi, “Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications,” Surf. Coatings Technol., vol. 397, no. June, p. 126044, 2020, doi:10.1016/j.surfcoat.2020.126044.spa
dc.relation.referencesJ. Dai, H. Zhang, C. Sun, S. Li, C. Chen, and Y. Yang, “The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy,” Corros. Sci., vol. 168, no. February, p. 108578, 2020, doi:10.1016/j.corsci.2020.108578.spa
dc.relation.referencesJ. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review,” J. Alloys Compd., vol. 685, pp. 784–798, 2016, doi:10.1016/j.jallcom.2016.06.212.spa
dc.relation.referencesC. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, and H. Zhou, “Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature,” Surf. Coatings Technol., vol. 205, no. 7, pp. 2142–2151, 2010, doi:10.1016/j.surfcoat.2010.08.125.spa
dc.relation.referencesM. Zhang, L. Xin, X. Ding, S. Zhu, and F. Wang, “Effects Ti/TiAlN composite multilayer coatings on corrosion resistance of titanium alloy in solid NaCl-H 2 O-O 2 at 600 °C,” J. Alloys Compd., vol. 734, pp. 307–317, 2018, doi:10.1016/j.jallcom.2017.11.035.spa
dc.relation.referencesA. Ebach-Stahl, C. Eilers, N. Laska, and R. Braun, “Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700°C in air,” Surf. Coatings Technol., vol. 223, pp. 24–31, 2013, doi:10.1016/j.surfcoat.2013.02.021.spa
dc.relation.referencesO. S. Adesina, B. A. Obadele, G. A. Farotade, D. A. Isadare, A. A. Adediran, and P. P. Ikubanni, “Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy,” J. Alloys Compd., vol. 827, p. 154245, 2020, doi:10.1016/j.jallcom.2020.154245.spa
dc.relation.referencesY. C. Lin, Y. C. Lin, and Y. C. Chen, “Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder,” Mater. Des., vol. 36, pp. 584–589, 2012, doi:10.1016/j.matdes.2011.12.007.spa
dc.relation.referencesC. R. F. Azevedo, “Failure analysis of a commercially pure titanium plate for osteosynthesis,” Eng. Fail. Anal., vol. 10, no. 2, pp. 153–164, 2003, doi:10.1016/S1350-6307(02)00067-5.spa
dc.relation.referencesM. B. Suárez-Fernández, A. B. Soldado, A. Sanz-Medel, J. A. Vega, A. Novelli, and M. T. Fernández-Sánchez, “Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death,” Brain Res., vol. 835, no. 2, pp. 125–136, 1999, doi:10.1016/S0006-8993(99)01536-X.spa
dc.relation.referencesR. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, “Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite,” Mater. Des., vol. 50, pp. 656–666, 2013, doi:10.1016/j.matdes.2013.03.049.spa
dc.relation.referencesE. Toyserkani, A. Khajepour, and S. Corbin, Laser Cladding, vol. 53, no. 9. 2019.spa
dc.relation.referencesL. Song and J. Mazumder, “Feedback control of melt pool temperature during laser cladding process,” IEEE Trans. Control Syst. Technol., vol. 19, no. 6, pp. 1349–1356, 2011, doi:10.1109/TCST.2010.2093901.spa
dc.relation.referencesJ. De Damborenea, “Surface modification of metals by high power lasers,” Surf. Coatings Technol., vol. 100–101, no. 1–3, pp. 377–382, 1998, doi:10.1016/S0257-8972(97)00652-X.spa
dc.relation.referencesB. Cárcel, A. Serrano, J. Zambrano, V. Amigó, and A. C. Cárcel, “Laser cladding of TiAl intermetallic alloy on Ti6Al4V. Process optimization and properties,” Phys. Procedia, vol. 56, no. C, pp. 284–293, 2014, doi:10.1016/j.phpro.2014.08.173.spa
dc.relation.referencesY. S. Tian, Q. Y. Zhang, and D. Y. Wang, “Study on the microstructures and properties of the boride layers laser fabricated on Ti-6Al-4V alloy,” J. Mater. Process. Technol., vol. 209, no. 6, pp. 2887–2891, 2009, doi:10.1016/j.jmatprotec.2008.06.043.spa
dc.relation.referencesP. Chandrasekar, V. Balusamy, K. S. R. Chandran, and H. Kumar, “Laser surface hardening of titanium-titanium boride (Ti-TiB) metal matrix composite,” Scr. Mater., vol. 56, no. 7, pp. 641–644, 2007, doi:10.1016/j.scriptamat.2006.11.035.spa
dc.relation.referencesI. I. Angarita-Mocaleano, “ANALISIS DE RECUBRIMIENTOS DE Ti REFORZADOS CON TiB2 MEDIANTE TECNICAS DE RECUBRIMIENTO LASER,” Univeritat Politecnica de Valencia, 2012.spa
dc.relation.referencesI. Sulima, R. Kowalik, and P. Hyjek, “The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride,” J. Alloys Compd., vol. 688, pp. 1195–1205, 2016, doi:10.1016/j.jallcom.2016.07.132.spa
dc.relation.referencesN. Hamdad, N. Benosman, and B. Bouhafs, “First principles calculation of electronic structure, bonding and chemical stability of TiB2, NbB2 and their ternary alloy Ti0.5Nb0.5B2,” Phys. B Condens. Matter, vol. 405, no. 2, pp. 540–546, 2010, doi:10.1016/j.physb.2009.09.061.spa
dc.relation.referencesB. Du, S. R. Paital, and N. B. Dahotre, “Phase constituents and microstructure of laser synthesized TiB2-TiC reinforced composite coating on steel,” Scr. Mater., vol. 59, no. 10, pp. 1147–1150, 2008, doi:10.1016/j.scriptamat.2008.07.035.spa
dc.relation.referencesJ. Nie et al., “Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling,” Results Phys., vol. 14, no. March, p. 102471, 2019, doi:10.1016/j.rinp.2019.102471.spa
dc.relation.referencesY. Wang, Z. Xu, and A. Zhang, “Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions,” Corros. Sci., vol. 157, no. March, pp. 357–369, 2019, doi:10.1016/j.corsci.2019.06.010.spa
dc.relation.referencesN. Perez, Electrochemistry and corrosion science, 2nd ed. Mayaguez, Puerto Rico, 2014.spa
dc.relation.referencesASTM, Electrochemical corrosion testing. San Francisco: American Society for Testing and Materials, 1979.spa
dc.relation.referencesF. Di Turo, R. Parra, J. Piquero-Cilla, G. Favero, and A. Doménech-Carbó, “Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins,” J. Solid State Electrochem., vol. 23, no. 3, pp. 771–781, 2019, doi:10.1007/s10008-018-04182-5.spa
dc.relation.referencesU. P. Morales, Á. M. Camargo, and J. J. O. Flórez, “Impedancia electroquímica-interpretación de diagramas típicos con circuitos equivalentes,” DYNA, vol. 77, no. 164, pp. 69–75, 2010.spa
dc.relation.referencesA. Huber et al., “La espectroscopía de impedancia electroquímica (EIS) aplicada al estudio del mecanismo de la corrosión en caliente por sales fundidas,” Dyna, vol. 71, no. 144, pp. 39–47, 2004.spa
dc.relation.referencesASTM International, “Standard Practice for Verification of Algorithm and Equipment for Electrochemical DocMaster : Uncontrolled copy when printed ( 103427 ) DocMaster : Uncontrolled copy when printed ( 103427 ),” vol. 89, no. Reapproved, pp. 1–11, 2015, doi:10.1520/G0106-89R15.2.spa
dc.relation.referencesA. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO 2 ) -Sílice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” 2017.spa
dc.relation.referencesA. Barba Pingarrón, A. Covelo Villar, M. A. Hernández Gallegos, R. Valdez Navarro, and R. González Parra, Texto iberoamericano de ingeniería de superficies, 1st ed. Ciudad de México: Universidad Nacional Autónoma de México, 2018.spa
dc.relation.referencesL. R. B. Elton and D. F. Jackson, “X-Ray Diffraction and the Bragg Law,” Am. J. Phys., vol. 34, no. 11, pp. 1036–1038, 1966, doi:10.1119/1.1972439.spa
dc.relation.referencesJ. L. E. Esteban, “Unidad de microscopia electrónica.” .spa
dc.relation.references“Scanning electron microscopy (SEM) :: Condensed Matter Physics :: Rudi Winter’s web space.” .spa
dc.relation.referencesC. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, 2012, doi:10.1038/nmeth.2089.spa
dc.relation.referencesASTM, “E3 Preparation of Metallographic Specimens,” Annu. B. ASTM Stand., vol. 11, no. Reapproved 2017, pp. 1–17, 2017, doi:10.1520/E0003-11R17.1.spa
dc.relation.referencesY. Diao and K. Zhang, “Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB 2 powders,” Appl. Surf. Sci., vol. 352, pp. 163–168, 2015, doi:10.1016/j.apsusc.2015.04.030.spa
dc.relation.referencesJ. Li et al., “Characterization and corrosion behavior of electroless Ni-Mo-P/Ni-P composite coating in CO2/H2S/Cl− brine: Effects of Mo addition and heat treatment,” Surf. Coatings Technol., vol. 403, no. August, p. 126416, 2020, doi:10.1016/j.surfcoat.2020.126416.spa
dc.relation.referencesB. Y. Chang and S. M. Park, “Electrochemical impedance spectroscopy,” Annu. Rev. Anal. Chem., vol. 3, no. 1, pp. 207–229, 2010, doi:10.1146/annurev.anchem.012809.102211.spa
dc.relation.referencesW. Aperador Chaparro, E. Vera López, and A. Vargas Uscategui, “Electrochemical corrosion resistance study of electroplated nickel/copper coatings obtained by pulsed current,” Ing. y Desarro., no. 27, pp. 48–61, 2010.spa
dc.relation.referencesR. M. S. P. N. R. Fuertes, “Diseño e implementación de un equipo portátil para ensayos electroquímicos de corrosión en campo,” Pontificia Universidad Católica del Perú, 2003.spa
dc.relation.referencesS. Singh, H. Singh, S. Chaudhary, and R. Kumar, “Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel,” Surf. Coat. Technol., vol. 389, no. July 2019, p. 125619, 2020, doi:10.1016/j.surfcoat.2020.125619.spa
dc.relation.referencesB. Carcel and J. M. Guilemany, “Microestructura y Disolución en el Proceso Laser Cladding de Stellite 6 Método experimental,” no. December, pp. 7–10, 2010.spa
dc.relation.referencesJ. J. C. Bou, “ANÁLISIS MICROESTRUCTURAL DE RECUBRIMIENTOS COMPUESTOS DE CARBURO DE TITANIO Y MATRIZ DE TITANIO DEPOSITADOS POR LÁSER,” UPV, 2012.spa
dc.relation.referencesF. Wang, J. Mei, and X. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol., vol. 195, no. 1–3, pp. 321–326, 2008, doi:10.1016/j.jmatprotec.2007.05.024.spa
dc.relation.referencesV. I. Aladesanmi, O. S. Fatoba, and E. T. Akinlabi, “Laser cladded Ti + TiB2 on steel rail microstructural effect,” Procedia Manuf., vol. 33, pp. 709–716, 2019, doi:10.1016/j.promfg.2019.04.089.spa
dc.relation.referencesA. S. Patil, V. D. Hiwarkar, P. K. Verma, and R. K. Khatirkar, “Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS),” J. Alloys Compd., vol. 777, pp. 165–173, 2019, doi:10.1016/j.jallcom.2018.10.308.spa
dc.relation.referencesY. Lin, J. Yao, Y. Lei, H. Fu, and L. Wang, “Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding,” Opt. Lasers Eng., vol. 86, pp. 216–227, 2016, doi:10.1016/j.optlaseng.2016.06.013.spa
dc.relation.referencesR. SHARMA, A. K. SINGH, A. ARORA, S. PATI, and P. S. DE, “Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution,” Trans. Nonferrous Met. Soc. China, vol. 29, no. 7, pp. 1383–1392, 2019, doi:10.1016/s1003-6326(19)65045-4.spa
dc.relation.referencesY.-W. Cui et al., “Metastable pitting corrosion behavior of laser powder bed fusion produced Ti-6Al-4V in Hank’s solution,” Corros. Sci., vol. 203, p. 110333, Jul. 2022, doi:10.1016/J.CORSCI.2022.110333.spa
dc.relation.referencesX. N. Liao, F. H. Cao, A. N. Chen, W. J. Liu, J. Q. Zhang, and C. N. Cao, “In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 5, pp. 1239–1249, 2012, doi:10.1016/S1003-6326(11)61311-3.spa
dc.relation.referencesS. L. De Assis, S. Wolynec, and I. Costa, “Corrosion characterization of titanium alloys by electrochemical techniques,” Electrochim. Acta, vol. 51, no. 8–9, pp. 1815–1819, Jan. 2006, doi:10.1016/J.ELECTACTA.2005.02.121.spa
dc.relation.references“What is a Charge Transfer Resistance (RCT)? - Definition from Corrosionpedia.” .spa
dc.relation.referencesS. Liu and M. Pang, “Effect of TiB2 Content on Properties of Nickel-Coated Graphite Self-Lubricating Coating Prepared by Laser Cladding,” Coatings 2021, Vol. 11, Page 1501, vol. 11, no. 12, p. 1501, Dec. 2021, doi:10.3390/COATINGS11121501.spa
dc.relation.referencesY. Diao and K. Zhang, “Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders,” Appl. Surf. Sci., vol. 352, pp. 163–168, Oct. 2015, doi:10.1016/J.APSUSC.2015.04.030.spa
dc.relation.referencesD. Kuczyńska-Zemła, A. Sotniczuk, M. Pisarek, A. Chlanda, and H. Garbacz, “Corrosion behavior of titanium modified by direct laser interference lithography,” Surf. Coatings Technol., vol. 418, p. 127219, Jul. 2021, doi:10.1016/J.SURFCOAT.2021.127219.spa
dc.relation.referencesA. M. Fekry and M. A. Ameer, “Electrochemistry and impedance studies on titanium and magnesium alloys in Ringer’s solution,” Int. J. Electrochem. Sci., vol. 6, no. 5, pp. 1342–1354, 2011.spa
dc.relation.referencesJ. Pan, D. Thierry, and C. Leygraf, “Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application,” Electrochim. Acta, vol. 41, no. 7–8, pp. 1143–1153, 1996, doi:10.1016/0013-4686(95)00465-3.spa
dc.relation.referencesR. Huang and Y. Han, “The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti–25Nb–3Mo–3Zr–2Sn alloy,” Mater. Sci. Eng. C, vol. 33, no. 4, pp. 2353–2359, May 2013, doi:10.1016/J.MSEC.2013.01.068.spa
dc.relation.referencesD. QU, D. LIU, X. WANG, Y. DUAN, and M. PENG, “Corrosion and wear properties of TB2 titanium alloy borided by pack boriding with La2O3,” Trans. Nonferrous Met. Soc. China, vol. 32, no. 3, pp. 868–881, 2022, doi:10.1016/s1003-6326(22)65839-4.spa
dc.relation.referencesA. C. Alves et al., “Corrosion mechanisms in titanium oxide-based films produced by anodic treatment,” Electrochim. Acta, vol. 234, pp. 16–27, 2017, doi:10.1016/j.electacta.2017.03.011.spa
dc.relation.referencesA. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, and O. Imantalab, “Electrochemical Properties of Commercially Pure Ti with TiB/TiB 2 Coatings in Hanks’ Balanced Salt Solution,” J. Mater. Eng. Perform., vol. 28, no. 3, pp. 1456–1468, 2019, doi:10.1007/s11665-019-03930-6.spa
dc.relation.referencesS. Bose, L. C. Pathak, and R. Singh, “Response of boride coating on the Ti-6Al-4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application,” Appl. Surf. Sci., vol. 433, pp. 1158–1174, 2018, doi:10.1016/j.apsusc.2017.09.223.spa
dc.relation.referencesJ. Francisco, L. Moreno, and J. J. N. Laboulais, “Curso Académico: 2018-19,” 2018.spa
dc.relation.referencesL. Weng, L. Du, and H. Wu, “Corrosion Behaviour of Weathering Steel with High-Content Titanium Exposed to Simulated Marine Environment,” vol. 13, pp. 5888–5903, 2018, doi:10.20964/2018.06.61.spa
dc.relation.referencesE. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method,” Corros. Sci., vol. 47, no. 12, pp. 3202–3215, 2005, doi:10.1016/j.corsci.2005.05.046.spa
dc.relation.referencesJ. M. Jáquez-Muñoz et al., “Electrochemical Behavior of Titanium Alloys Using Potentiodynamic Polarization,” ECS Trans., vol. 101, pp. 173–178, 2021, doi:10.1149/10101.0173ecst.spa
dc.relation.referencesC. Gaona-tiburcio et al., “Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H 2 SO 4 Solutions,” Metals (Basel)., vol. 11, pp. 1–23, 2021, doi:doi.org/10.3390/ met11010105.spa
dc.relation.referencesH. Hu et al., “Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2,” Opt. Laser Technol., vol. 119, no. January, p. 105588, 2019, doi:10.1016/j.optlastec.2019.105588.spa
dc.relation.referencesM. Nabhani, R. Shoja Razavi, and M. Barekat, “Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments,” Eng. Fail. Anal., vol. 97, no. October 2018, pp. 234–241, 2019, doi:10.1016/j.engfailanal.2019.01.023.spa
dc.relation.referencesJ. P. Parra Sua, “Evaluación de la resistencia a la corrosión a altas temperaturas y su comportamiento como barrera térmica de BixTiyOz,” p. 122, 2014, doi:10.1002/sia.2686.spa
dc.relation.referencesR. Thulasiram, S. Mani, M. Murugesan, C. Palanisamy, and G. S. Kaliaraj, “Effect of TiB Addition on Corrosion Behavior of Titanium Composites under Neutral Chloride Solution,” Trans. Indian Ceram. Soc., vol. 78, no. 3, pp. 155–160, 2019, doi:10.1080/0371750X.2019.1656548.spa
dc.relation.references“Estudio de la corrosión de una aleación Ti6Al4V utilizada como biomaterial.” .spa
dc.relation.referencesM. Kareem Dimah, “Estudio Del Comportamiento Frente A La Tribocorrosión De Aleaciones Biomedicas De Titanio En Electrolitos Que Simulan El Suero Humano Mediante Técnicas Electroquímicas,” p. 96, 2012.spa
dc.relation.referencesM. Pourbaix, H. Zhang, and A. Pourbaix, “Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase,” Mater. Sci. Forum, vol. 251–254, pp. 143–148, 1997, doi:10.4028/www.scientific.net/msf.251-254.143.spa
dc.relation.referencesE. J. Kelly, “Electrochemical Behavior of Titanium,” Mod. Asp. Electrochem., pp. 319–424, 1982, doi:10.1007/978-1-4615-7458-3_5.spa
dc.relation.referencesC. Kuphasuk, Y. Oshida, C. J. Andres, S. T. Hovijitra, M. T. Barco, and D. T. Brown, “Electrochemical corrosion of titanium and titanium-based alloys,” J. Prosthet. Dent., vol. 85, no. 2, pp. 195–202, 2001, doi:10.1067/mpr.2001.113029.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.lembTITANIOspa
dc.subject.lembTitaniumeng
dc.subject.lembMATERIALES RESISTENTES A LA CORROSIONspa
dc.subject.lembCorrosion resistant materialseng
dc.subject.proposalTi-6Al-4Vspa
dc.subject.proposalLáser cladding coaxialspa
dc.subject.proposalRecubrimientos cerámicos por láserspa
dc.subject.proposalCorrosión electroquímicaspa
dc.subject.proposalOxidación cíclicaspa
dc.subject.proposalTi-6Al-4Veng
dc.subject.proposalCoaxial Laser Claddingeng
dc.subject.proposalLaser Ceramic Coatingseng
dc.subject.proposalElectrochemical Corrosioneng
dc.subject.proposalCyclic Oxidationeng
dc.titleEvaluación de la resistencia a la corrosión de recubrimientos de TiB2 depositados sobre Ti y Ti-6Al-4V obtenidos mediante la técnica de láser cladding coaxialspa
dc.title.translatedEvaluation of the corrosion resistance of TiB2 coatings deposited on Ti and Ti-6Al-4V obtained using coaxial laser cladding techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049026626.2023.pdf
Tamaño:
9.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: