Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano

dc.contributor.advisorNéstor Hernando, Campos Campos (Thesis advisor)
dc.contributor.advisorRico Mora, Jeimmy Paola
dc.contributor.authorVélez-Mendoza, Anubis
dc.contributor.cvlacVélez Mendoza, Anubis Jorge Luis [0000094366]spa
dc.contributor.orcidVélez Mendoza, Anubis [0000000338788107]spa
dc.contributor.researchgroupFauna Marina Colombiana: Biodiversidad y Usosspa
dc.contributor.scopusVélez Mendoza, Anubis [57203971403]spa
dc.date.accessioned2024-07-12T20:45:14Z
dc.date.available2024-07-12T20:45:14Z
dc.date.issued2024-07-03
dc.description.abstractLa creciente industrialización y descarga de contaminantes han alterado significativamente el equilibrio de los ecosistemas marino-costeros, particularmente en términos de contaminación por metales. Cuando sus contenidos superan las concentraciones de efecto umbral, inducen efectos adversos en los ecosistemas y sus habitantes. En la costa Caribe colombiana, es necesario intensificar la vigilancia en la Ciénaga Grande de Santa Marta (CGSM) y la bahía de Cispatá (BhC), dos ecosistemas de gran importancia ecológica y socioeconómica de la región, en donde es crucial mejorar en la comprensión del impacto de la contaminación por estos elementos potencialmente tóxicos. En este contexto, la ostra Crassostrea rhizophorae resultó ser un bivalvo idóneo para el estudio, por su capacidad de bioacumular estos contaminantes sin sufrir efectos perjudiciales. Se determinó la contaminación por metales (Hg, Cd y Cu) en las ostras, como el factor de bioconcentración respecto el seston y sedimentos, considerando la talla del organismo, variables fisicoquímicas y épocas climáticas. En cada una de las seis estaciones de muestreo (tres en CGSM y tres en la BhC), se midieron variables fisicoquímicas, se recolectaron muestras compuestas de ostras en tallas juveniles (22 mm-32 mm) y tallas adultas (35 mm-56.5 mm), una muestra compuesta de seston (de tres réplicas) y tres de sedimento (se determinó la materia orgánica, el potencial redox y el contenido de metales). La determinación de los metales se realizó mediante la técnica de espectrofotometría de absorción atómica, utilizando el método EPA 7473 por hidruros para Hg, el método AOAC 999.11 (2002) por horno de grafito (GF-AAS) para Cd y Pb, y por flama (FA-AAS) para Cu. En Pb, tanto en sedimentos como en seston, se presentó el contenido más alto de este elemento potencialmente tóxico en época seca en comparación con la época lluviosa, no obstante, en época seca las estaciones CGS-3 en CGSM y CIS-2 en BhC presentaron una concentración baja ≤0.0003 µg/g Pb p.s., que, junto con la acumulación baja de este metal en bivalvos, se excluyó su análisis en la ostra. El análisis de PERMANOVA reveló diferencias significativas en las concentraciones de Hg, Cd y Cu en las ostras por épocas climáticas, ecosistemas y estaciones, con la mayor bioconcentración relacionada con el seston. En la BhC se determinó la mayor contaminación por Hg y Cu, con una presencia más elevada de Hg durante la época lluviosa correlacionada con la temperatura, y una mayor presencia de Cu durante la época seca con influencia significativa de la salinidad. En CGSM, para el Cd se determinó la mayor contaminación durante la época lluviosa, asociada con la temperatura. En cuanto a las tallas, la bioconcentración de Hg y Cd fue mayor en tallas juveniles, las cuales presentan una mayor tasa de absorción de metales. Sin embargo, este patrón también estuvo influenciado por las condiciones locales, evidenciando una mayor bioconcentración de Hg en tallas adultas en CGSM y de Cd en BhC, ambos durante la época lluviosa. Para Cu, la bioconcentración fue similar en ambas tallas, sugiriendo una mayor influencia de las condiciones locales en cada ecosistema. Aunque las concentraciones de Hg y Cd no representan un riesgo en el consumo de las ostras, se deben mantener medidas de control y gestión. Contrariamente, la situación con el Cu es crítica en la BhC, presentando uno de los mayores riesgos de contaminación por el metal en el mundo durante la última década. Este estudio proporciona una base valiosa para la toma de decisiones y acciones de gestión ambiental, enfocándose en reducir los riesgos asociados con la contaminación por estos metales en estas áreas críticas (Texto tomado de la fuente)spa
dc.description.abstractThe increasing industrialization and discharge of pollutants have significantly altered the balance of marine-coastal ecosystems, particularly in terms of metal pollution. When concentrations exceed threshold effect levels, they induce adverse effects on ecosystems and their inhabitants. On the the Colombian Caribbean coast, it is essential to intensify monitoring in the Ciénaga Grande de Santa Marta (CGSM) and Cispatá Bay (BhC), two ecologically and socioeconomically important ecosystems in the region, to better understand the impact of contamination by these potentially toxic elements. In this context, the oyster Crassostrea rhizophorae was identified as an ideal bivalve for study due to its ability to bioaccumulate these contaminants without suffering detrimental effects. Metal pollution (Hg, Cd, and Cu) in oysters was determined, considering the bioconcentration factor concerning seston and sediments, organism size, physicochemical variables, and climatic seasons. At each of the six sampling stations (three in CGSM and three in BhC), physicochemical variables were measured, composite samples of oysters were collected in juvenile (22 mm-32 mm) and adult sizes (35 mm-56.5 mm), a composite sample of seston (from three replicates), and three sediment samples (determining organic matter, redox potential, and metals content). Metal determination was carried out using atomic absorption spectrophotometry, employing the EPA 7473 method for Hg by hydrides, the AOACC 999.11 (2002) method for Cd and Pb by graphite furnace (GF-AAS), and flame (FA-AAS) for Cu. For Pb, both in sediments and seston, the highest content of this potentially toxic element was observed in the dry season compared to the rainy season. However, during the dry season, stations CGS-3 in CGSM and CIS-2 in BhC exhibited low concentrations ≤0.0003 µg/g Pb p.s., which, along with the low accumulation of this metal in bivalves, led to its exclusion from oyster analysis. PERMANOVA analysis revealed significant differences in Hg, Cd, and Cu concentrations in oysters by climatic seasons, ecosystems, and stations, with the highest bioconcentration related to seston. In BhC, the highest contamination by Hg and Cu was determined, with a higher presence of Hg during the rainy season correlated with temperature and a higher presence of Cu during the dry season with a significant influence of salinity. In CGSM, the highest Cd contamination was determined during the rainy season, associated with temperature. Regarding sizes, bioconcentration of Hg and Cd was higher in juvenile sizes, which exhibit a higher rate of metal absorption. However, this pattern was also influenced by local conditions, showing higher bioconcentration of Hg in adult sizes in CGSM and Cd in BhC, both during the rainy season. For Cu, bioconcentration was similar in both sizes, suggesting a greater influence of local conditions in each ecosystem. Although Hg and Cd concentrations do not pose a risk in oyster consumption, control and management measures must be maintained. Conversely, the situation with Cu is critical in BhC, presenting one of the highest levels of metal contamination in the world over the last decade. This study provides a valuable foundation for decision-making and environmental management actions, focusing on reducing risks associated with metals pollution in these critical areas.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.notes1. Minciencias a través del proyecto “Niveles de contaminación por metales pesados (Hg, Cd, Cr, Ni, Pb, Se, As y Cu), PCB (bifenilos policlorados) y HAP (hidrocarburos aromáticos policíclicos) en ambientes marinos y costeros del Caribe colombiano (Código 71641)” en el marco del programa “Redes tróficas marinas del Caribe colombiano en la era del plástico y los contaminantes tóxicos (Código Minciencias 71475)”, apoyo el sostenimiento, matrícula, salida de campo y análisis de laboratorio del estudiante. 2. La Fundación para la Promoción de la Investigación y la Tecnología del Banco de la República en el marco del Proyecto 5.131 con la Universidad Nacional de Colombia (Código Hermes 59755) y el Fondo de Becas Colombia Biodiversa y para la Fundación Alejandro Ángel Escobar, apoyaron financieramente la investigación en los análisis de laboratorio en la determinación de metales en la ostra Crassostrea rhizophorae. 3. La Universidad Nacional de Colombia, Sede Caribe con fondos del posgrado apoyó al estudiante en las salidas de campo en la Ciénaga Grande de Santa Marta (CGSM) y económicamente en las participaciones de los eventos científicos: II y III Seminario Nacional de la Asociación Colombiana de Investigaciones en Ciencias del Mar-ACIMAR (2022 y 2023), XIX Seminario Nacional de Ciencias y Tecnologías del Mar-SENALMAR (2022), y al International Conference on Marine Science: the future ocean we want-ICMS CEMarin (2023).spa
dc.description.researchareaBiología marinaspa
dc.description.sponsorshipFundación para la Promoción de la Investigación y la Tecnología del Banco de la Repúblicaspa
dc.description.sponsorshipFondo de Becas Colombia Biodiversa y Fundación Alejandro Ángel Escobarspa
dc.format.extentXIX, 132 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86443
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeSan Andrés Islasspa
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbdel-Wahab, M., Yassien, M. H., Thabet, A. A., Said, R. E. M., Mahdy, A., Amer, O. S. O., Saber, S. A. (2022). Seasonal variations of some heavy metal concentrations in seawater, sediment, and the surf clam, Mactra olorina (Philippi, 1846) in the Great Bitter Lake, Suez Canal, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(1), 83-98. https://doi.org/10.21608/ejabf.2022.215047spa
dc.relation.referencesAboal, J. R., Pacín, C., García-Seoane, R., Varela, Z., González, A. G., Fernández, J. A. (2023). Global decrease in heavy metal concentrations in brown algae in the last 90 years. Journal of Hazardous Materials, 445, 130511. https://doi.org/10.1016/j.jhazmat.2022.130511spa
dc.relation.referencesAguirre, S. E., Piraneque, N. V., Linero-Cueto, J. (2021). Concentración de metales pesados y calidad físico-química del agua de la Ciénaga Grande de Santa Marta. Revista U.D.C.A Actualidad y Divulgación Científica, 24(1), e1313. https://doi.org/10.31910/rudca.v24.n1.2021.1313spa
dc.relation.referencesAguirre-Rubí, J. R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M. J., Marigómez, I. (2017). Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environmental Science and Pollution Research, 25(14), 13396-13415. https://doi.org/10.1007/s11356-017-9159-2spa
dc.relation.referencesAldridge, K. T., Ganf, G. G. (2003). Modification of sediment redox potential by three contrasting macrophytes: Implications for phosphorus adsorption/desorption. Marine and Freshwater Research, 54(1), 87-94. https://doi.org/10.1071/MF02087spa
dc.relation.referencesAl-Fartusie, F. S., Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science, 5(3), 127-136. https://www.ijacskros.com/5%20Volume%203%20Issue/10.22607IJACS.2017.503003.pdfspa
dc.relation.referencesAlfonso, J. A., Handt, H., Mora, A., Vásquez, Y., Azocar, J., Marcano, E. (2013). Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuelan coast. Marine Pollution Bulletin, 73(1), 394-398. https://doi.org/10.1016/j.marpolbul.2013.05.010spa
dc.relation.referencesAli, H., Khan, E. (2018). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353-1376. https://doi.org/10.1080/10807039.2018.1469398spa
dc.relation.referencesAlonso, D., Pineda, P., Olivero, J., González, H., Campos, N. (2000). Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environmental Pollution, 109(1), 157-163. https://doi.org/10.1016/s0269-7491(99)00225-0spa
dc.relation.referencesAlvarez, S., Kolok, A. S., Jimenez, L. F., Granados, C., Palacio, J. A. (2012). Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia. Bulletin of Environmental Contamination and Toxicology, 89(4), 836-840. https://doi.org/10.1007/s00128-012-0782-9spa
dc.relation.referencesAmoatey, P., Baawain, M. S. (2019). Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 1272-1287. https://doi.org/10.1002/wer.1221spa
dc.relation.referencesAnderson, M. J., Gorley, R. N., Clarke, K. R. (2008). Guide to Software and Statistical Methods. PRIMER-E.spa
dc.relation.referencesAristizábal-Alzate, C. E., González-Manosalva, J. L., Vargas, A. F. (2021). Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: Una alternativa para la obtención de metales preciosos y metales para la industria. TecnoLógicas, 24(51), e1740. https://doi.org/10.22430/22565337.1740spa
dc.relation.referencesAvelar, W. E. P., Mantelatto, F. L. M., Tomazelli, A. C., Silva, D. M. L., Shuhama, T., Lopes, J. L. C. (2000). The marine mussel Perna perna (Mollusca, Bivalvia, Mytilidae) as an indicator of contamination by heavy metals in the Ubatuba Bay, São Paulo, Brazil. Water, Air, and Soil Pollution, 118, 65-72. https://doi.org/10.1023/A:1005109801683spa
dc.relation.referencesAyling, G. M. (1974). Uptake of cadmium, zinc, copper, lead and chromium in the pacific oyster. Crassostrea gigas. Grown in the tamar river. Tasmania. Water Research, 8(10), 729-738. https://doi.org/10.1016/0043-1354(74)90017-7spa
dc.relation.referencesAzizi, G., Layachi, M., Akodad, M., Yáñez-Ruiz, D. R., Martín-García, A. I., Baghour, M., Mesfioui, A., Skalli, A., Moumen, A. (2018a). Seasonal variations of heavy metals content in mussels (Mytilus galloprovincialis) from Cala Iris offshore (Northern Morocco). Marine Pollution Bulletin, 137, 688-694. https://doi.org/10.1016/j.marpolbul.2018.06.052spa
dc.relation.referencesAzizi, G., Akodad, M., Baghour, M., Layachi, M., Moumen, A. (2018b). The use of Mytilus spp. Mussels as bioindicators of heavy metal pollution in the coastal environment. A review. Journal of Materials and Environmental Sciences, 9(4), 1170-1181. http://jmaterenvironsci.com/Document/vol9/vol9_N4/129-JMES-3495-Azizi.pdfspa
dc.relation.referencesBalls, P. W. (1985). Copper, lead and cadmium in coastal waters of the western North Sea. Marine Chemistry, 15(4), 363-378. https://doi.org/10.1016/0304-4203(85)90047-7spa
dc.relation.referencesBaraj, B., Niencheski, L. F., Corradi, C. (2003). Trace metal contend trend of mussel Perna perna (Linnaeus, 1758) from the Atlantic coast of southern Brazil. Water, Air, and Soil Pollution, 145, 205-214. https://doi.org/10.1023/A:1023614822121spa
dc.relation.referencesBayne, B. L. (1976). Aspects of reproduction in bivalve molluscs. Estuarine Processes. Elsevier, 1, 432-448. https://doi.org/10.1016/B978-0-12-751801-5.50043-5spa
dc.relation.referencesBazzi, A. O. (2014). Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science, 5(3), 20-29. https://doi.org/10.5897/JOMS2014.0110spa
dc.relation.referencesBigas, M., Durfort, M., Poquet, M. (2001). Cytological effects of experimental exposure to Hg on the gill epithelium of the European flat oyster Ostrea edulis: Ultrastructural and quantitative changes related to bioaccumulation. Tissue and Cell, 33(2), 178-188. https://doi.org/10.1054/tice.2000.0169spa
dc.relation.referencesBodin, N., Burgeot, T., Stanisière, J. Y., Bocquené, G., Menard, D., Minier, C., Boutet, I., Amat, A., Cherel, Y., Budzinski, H. (2004). Seasonal variations of a battery of biomarkers and physiological indices for the mussel Mytilus galloprovincialis transplanted into the northwest Mediterranean Sea. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 138(4), 411-427. https://doi.org/10.1016/j.cca.2004.04.009spa
dc.relation.referencesBolaños-Alvarez, Y., Ruiz-Fernández, A. C., Sanchez-Cabeza, J.-A., Díaz Asencio, M., Espinosa, L. F., Parra, J. P., Garay, J., Delanoy, R., Solares, N., Montenegro, K., Pena, A., López, F., Castillo-Navarro, A. C., Gómez Bastidas, M., Quejido-Cabezas, A., Metian, M., Pérez-Bernal, L. H., Alonso-Hernández, C. M., 2024. Regional assessment of the historical trends of mercury in sediment cores from Wider Caribbean coastal environments. Science of The Total Environment, 170609. https://doi.org/10.1016/j.scitotenv.2024.170609spa
dc.relation.referencesBourg, A. C. M., Loch, J. P. G. (1995). Mobilization of Heavy Metals as Affected by pH and Redox Conditions. In: Salomons, W., Stigliani, W. M. (Eds), Biogeodynamics of Pollutants in Soils and Sediments. Springer-Verlag, Berlin, Heidelberg, 87-102. https://doi.org/10.1007/978-3-642-79418-6_4spa
dc.relation.referencesBoyden, C. R., Romeril, M. G. (1974). A trace metal problem in pond oyster culture. Marine Pollution Bulletin, 29(5), 74-78. https://doi.org/10.1016/0025-326X(74)90163-5spa
dc.relation.referencesBryan, G. W., Hummerstone, W. J., Burt, G. R. (1985). A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Marine Biological Association of the United Kingdom, 4. https://plymsea.ac.uk/id/eprint/271spa
dc.relation.referencesBuchman, M. F. (2008). NOAA Screening Quick Reference Tables NOAA ORR Report 08-1, Seatle WA, Office of Response and Restoriation Division. National Oceanic and Atmospheric Administration, 34p. https://repository.library.noaa.gov/view/noaa/9327spa
dc.relation.referencesBurgos-Nuñez, S., Marrugo N, J., Navarro F, A., Urango C, I. (2014). Mercury in Pelecanus occidentalis of the Cispata bay, Colombia. Revista MVZ Córdoba, 19(2), 4168-4174. https://doi.org/10.21897/rmvz.110spa
dc.relation.referencesBurgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispatá Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1-2), 379-386. https://doi.org/10.1016/j.marpolbul.2017.05.016spa
dc.relation.referencesButler, P. A., Andren, L., Bonde, G. J., Jernelov, A., Reisch, D. J., Ruivo, M. (1971). Monitoring organisms. En: Food and Agricultural Organization Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Rome, 1970. Supplement 1. Methods of detection, measurement and monitoring of pollutants in the marine environment. Fishing News, London, 101-112.spa
dc.relation.referencesCadavid-Velásquez, E. D. J., Pérez-Vásquez, N. D. S., Marrugo-Negrete, J. (2019). Contaminación por metales pesados en la bahía Cispatá en Córdoba-Colombia y su bioconcentración en macromicetos. Gestión y Ambiente, 22(1), 43-53. https://doi.org/10.15446/ga.v22n1.76380spa
dc.relation.referencesCajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach. Science of The Total Environment, 247(2-3), 295-311. https://doi.org/10.1016/S0048-9697(99)00499-4spa
dc.relation.referencesCampos, N. H. (1987). Determinación de metales pesados en Isognomon bicolor en la Bahía de Santa Marta, Colombia. Instituto de Investigaciones Marinas Punta de Betin, 17, 155-162. https://doi.org/10.25268/bimc.invemar.1987.17.0.461spa
dc.relation.referencesCampos, N. H. (1988). Selected Bivalves for Monitoring of Heavy Metal Contamination in the Colombian Caribbean. En: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. Metals in Coastal Environments of Latin America. Springer Berlin Heidelberg, 270-275. https://doi.org/10.1007/978-3-642-71483-2_23spa
dc.relation.referencesCampos, N. H. (1990). La contaminación por metales en Ciénaga Grande de Santa Marta, Caribe colombiano. Caldasia, 16(77), 231-244. https://revistas.unal.edu.co/index.php/cal/article/view/35544spa
dc.relation.referencesCampos, N. H., Dueñas-Ramírez, P. R., Genes, N. (2015). Malformación en cangrejos de la superfamilia Xanthoidea (Crustacea: Brachyura) en la bahía de Cispatá (Córdoba, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(150), 91-99. https://doi.org/10.18257/raccefyn.172spa
dc.relation.referencesCampos, N. H., Gallo, M. C. (1997). Contenido de Cd, Cu y Zn en Rhizophora mangle y Avicennia germinans de la Cienaga Grande de Santa Marta y Bahía de Chengue, costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(79), 73-90. https://raccefyn.co/index.php/raccefyn/issue/view/123spa
dc.relation.referencesCantle, J. E. (1982). Atomic Absorption Spectrometry. Elsevier Scientific Publishing Company. https://shop.elsevier.com/books/atomic-absorption-spectrometry/cantle/978-0-444-42015-2spa
dc.relation.referencesCarvalho, C. E. V., Cavalacante, M. P. O., Gomes, P. O., Faria, V. V., Rezende, C. E. (2001). Distribuição de Metais Pesados em Mexilhões (Perna perna, L.) da Ilha de Santana, Macaé, SE, Brasil. Ecotoxicology and Environmental Restoration, 4(1), 1-4.spa
dc.relation.referencesCatharino, M. G. M., Vasconcellos, M. B. A., De Sousa, E. C. P. M., Moreira, E. G., Pereira, C. D. S. (2008). Biomonitoring of Hg, Cd, Pb and other elements in coastal regions of São Paulo State, Brazil, using the transplanted mussel Perna perna (Linnaeus, 1758). Journal of Radioanalytical and Nuclear Chemistry, 278(3), 547-551. https://doi.org/10.1007/s10967-008-1003-1spa
dc.relation.referencesChafik, A., Cheggour, M., Cossa, D., Sifeddine, S. B. M. (2001). Quality of Moroccan Atlantic coastal waters: Water monitoring and mussel watching. Aquatic Living Resources, 14, 239-249. https://doi.org/10.1016/S0990-7440(01)01123-8spa
dc.relation.referencesCheung, K.-S., Seto, W.-K., Fung, J., Mak, L.-Y., Lai, C.-L., Yuen, M.-F. (2017). Epidemiology and natural history of Wilson’s disease in the Chinese: A territory-based study in Hong Kong between 2000 and 2016. World Journal of Gastroenterology, 23(43), 7716-7726. https://doi.org/10.3748/wjg.v23.i43.7716spa
dc.relation.referencesCogua, P., Campos-Campos, N. H., Duque, G. (2012). Concentración de mercurio total y metilmercurio en sedimento y seston de la bahía de Cartagena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 41(2), 267-285. http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/88/85spa
dc.relation.referencesCompeau, G., Bartha, R. (1984). Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Applied and Environmental Microbiology, 48(6), 1203-1207. https://doi.org/10.1128/aem.48.6.1203-1207.1984spa
dc.relation.referencesCoimbra, A. G. (2003). Distribuição de metais pesados em moluscos e sedimentos nos manguezais de coroa grande e da enseada das garças, baía de Sepetiba, RJ [Tesis de Maestría, Universidade Federal Fluminense]. https://app.uff.br/riuff/handle/1/5820spa
dc.relation.referencesCordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L. A., Velásquez-López, P. C., Roeser, M. (2011). Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of The Total Environment, 410-411, 154-160. https://doi.org/10.1016/j.scitotenv.2011.09.006spa
dc.relation.referencesCossa, D. (1989). A review of the use of Mytilus ssp. As quantitative indicators of cadmium and mercury contamination in coastal waters. Oceanologica Acta, 12(4), 417-432. https://archimer.ifremer.fr/doc/00106/21736/19309.pdfspa
dc.relation.referencesCosta, M., Paiva, E., Moreira, I. (2000). Total mercury in Perna perna mussels from Guanabara Bay-10 years later. The Science of the Total Environment, 261(1-3), 69-73. https://doi.org/10.1016/S0048-9697(00)00596-9spa
dc.relation.referencesCurtius, A. J., Seibert, E. L., Fiedler, H. D., Ferreira, J. F., Vieira, P. H. F. (2003). Avaliando a contaminação por elementos traço em atividades de maricultura: Resultados parciais de um estudo de caso realizado na ilha de Santa Catarina, Brasil. Química Nova, 26(1), 44-52. https://doi.org/10.1590/S0100-40422003000100010spa
dc.relation.referencesda Silva Ferreira, M. D. S., Mársico, E. T., Conte Junior, C. A., Marques Júnior, A. N., Mano, S. B., Clemente, S. C. D. S. (2013). Contaminação por metais traço em mexilhões Perna perna da costa brasileira. Ciência Rural, 43(6), 1012-1020. https://doi.org/10.1590/S0103-84782013005000062spa
dc.relation.referencesde Gregori, I., Delgado, D., Pinochet, H., Gras, N., Muñoz, L., Bruhn, C., Navarrete, G. (1994). Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle solida (Almeja) from the Chilean coast. The Science of the Total Environment, 148(1), 1-10. https://doi.org/10.1016/0048-9697(94)90367-0spa
dc.relation.referencesde Gregori, I., Pinochet, H., Gras, N., Muñoz, L. (1996). Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile. Environmental Pollution, 92(3), 359-368. https://doi.org/10.1016/0269-7491(95)00077-1spa
dc.relation.referencesDepledge, M. H., Rainbow, P. S. (1990). Models of regulation and accumulation of trace metals in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 97(1), 1-7. https://doi.org/10.1016/0742-8413(90)90163-4spa
dc.relation.referencesDesideri, D., Meli, M. A., Roselli, C., Feduzi, L. (2009). A biomonitoring study: 210Po and heavy metals in mussels. Journal of Radioanalytical and Nuclear Chemistry, 279(2), 591-600. https://doi.org/10.1007/s10967-008-7334-0spa
dc.relation.referencesDharmadasa, P., Kim, N., Thunders, M. (2017). Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food and Chemical Toxicology, 109(1), 714-720. https://doi.org/10.1016/j.fct.2017.09.002spa
dc.relation.referencesDíaz, O., Encina, F., Chuecas, L., Becerra, J., Cabello, J., Figueroa, A., Muñoz, F. (2001). Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioconcentración de mercurio total y metilmercurio en Tagelus dombeii. Revista de biología marina y oceanografía, 36(1), 15-29. https://doi.org/10.4067/S0718-19572001000100003spa
dc.relation.referencesDietz, R., Fort, J., Sonne, C., Albert, C., Bustnes, J. O., Christensen, T. K., Ciesielski, T. M., Danielsen, J., Dastnai, S., Eens, M., Erikstad, K. E., Galatius, A., Garbus, S.-E., Gilg, O., Hanssen, S. A., Helander, B., Helberg, M., Jaspers, V. L. B., Jenssen, B. M., Jhonson, J. E., Kauhala, K., Kolveinsson, Y., Kyhn, L. A., Labansen, A. L., Larsen, M. M., Lindstom, U., Sveegaard, S., Sondergaard, J., Sun, J., Teilmann, J., Therkildsen, O. R., Thorarinsson, T. L., Tjornlov, R. S., Wilson, S., Eulaers, I. (2021). A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves. Environment International, 146, 106178. https://doi.org/10.1016/j.envint.2020.106178spa
dc.relation.referencesDing, H., Zhao, Y., Sheng, X., Kang, X., Ning, J., Zhong, X., Shang, D. (2022). Heavy metal bioaccumulation in five bivalves from coastal areas of yellow sea and Bohai Sea, China: Evaluation of contamination and human health risk. Research Square. https://doi.org/10.21203/rs.3.rs-1512790/v1spa
dc.relation.referencesDuarte, C. A., Giarratano, E., Amin, O. A., Comoglio, L. I. (2011). Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Marine Pollution Bulletin, 62(8), 1895-1904. https://doi.org/10.1016/j.marpolbul.2011.05.031spa
dc.relation.referencesEdward, F. B., Yap, C. K., Ismail, A., Tan, S. G. (2008). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196(1-4), 297-309. https://doi.org/10.1007/s11270-008-9777-xspa
dc.relation.referencesEl-Moselhy, K. M., Yassien, M. H. (2005). Accumulation patterns of heavy metals in venus clams, Paphia undulata (born, 1780) and Gafrarium pectinatum (linnaeus, 1758), from Lake Timsah, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 31(1), 13-27.spa
dc.relation.referencesEPA. Environmental Protection Agency. (2007). Method 7473 Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Environmental Protection Agency, 1-17. https://www.epa.gov/esam/epa-method-7473-sw-846-mercury-solids-and-solutions-thermal-decomposition-amalgamation-andspa
dc.relation.referencesEspinosa, L. F., Parra, J. P., Villamil, C. (2011). Determinación del contenido de metales pesados en las fracciones geoquímicas del sedimento superficial asociado a los manglares de la Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 40(1), 7-23. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/98spa
dc.relation.referencesEspinosa, L. F., Ramírez, G., Campos, N. H. (1995). Análisis de residuos de organoclorados en sedimentos de zonas de manglar en la Ciénaga Grande de Santa Marta y la bahía de Chengue, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 24, 79-94. https://doi.org/10.25268/bimc.invemar.1995.24.0.378spa
dc.relation.referencesEto, K. (1997). Review Article: Pathology of Minamata Disease. Toxicologic Pathology, 25(6), 614-623. https://journals.sagepub.com/doi/epdf/10.1177/019262339702500612spa
dc.relation.referencesFAO/WHO. (2022). GSFA Online. Information on the group(s) of food additives (The Food and Agriculture Organization of the United Nations, and World Health Organization). CODEX alimentarius. https://www.fao.org/gsfaonline/groups/details.html?id=83spa
dc.relation.referencesFeria, J. J., Marrugo, J. L., González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America. Revista Facultad de Ingeniería Universidad de Antioquía, 55, 35-44. https://doi.org/10.17533/udea.redin.14679spa
dc.relation.referencesFernandez, A., Singh, A., Jaffé, R. (2007). A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Marine Pollution Bulletin, 54(11), 1681-1691. https://doi.org/10.1016/j.marpolbul.2007.08.007spa
dc.relation.referencesFernández-Martínez, R., Rucandio, I., Gómez-Pinilla, I., Borlaf, F., García, F., Larrea, M. T. (2015). Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry. Journal of Food Composition and Analysis, 38, 7-12. https://doi.org/10.1016/j.jfca.2014.10.003spa
dc.relation.referencesFischer, H. (1989). Cadmium in seawater recorded by mussels: Regional decline established. Marine Ecology Progress Series, 55, 159-169. https://doi.org/10.3354/meps055159spa
dc.relation.referencesFörstner, U., Wittmann, G. T. W. (1981). Metal pollution in the aquatic environment. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69385-4spa
dc.relation.referencesFrancioni, E., Wagener, A. D. L. R., Calixto, R. D. C., Bastos, G. C. (2004). Evaluation of Perna perna (Linné, 1758) as a tool to monitoring trace metals contamination in estuarine and coastal waters of Río de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 15(1), 103-110. https://doi.org/10.1590/S0103-50532004000100016spa
dc.relation.referencesFrías-Espericueta, M. G., Ortiz-Arellano, M. A., Osuna-López, J. I., Ronson-Paulin, J. A. (1999). Heavy metals in.the rock oyster Crassostrea iridescens (Filibranchia: Ostreidae) from Mazatlan, Sinaloa, Mexico. Revista de Biología Tropical, 47(4), 843-849. https://doi.org/10.15517/rbt.v47i4.19261spa
dc.relation.referencesGagnaire, B., Thomas-Guyon, H., Renault, T. (2004). In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish & Shellfish Immunology, 16(4), 501-512. https://doi.org/10.1016/j.fsi.2003.08.007spa
dc.relation.referencesGambrell, R. P. (1994). Trace and Toxic Metals in Wetlands-A Review. Journal of Environmental Quality, 23, 883-891. https://doi.org/10.2134/jeq1994.00472425002300050005xspa
dc.relation.referencesGarcés-Ordóñez, O., Rodríguez Rodríguez, J. A., Espinosa Díaz, L. E., Escobar Toledo, F. E., DelValle Borrero, D. (2021). Respuesta a corto plazo de parámetros fisicoquímicos del agua a la rehabilitación hidrológica de caños en manglares de Cispata, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 50(2), 151-160. https://doi.org/10.25268/bimc.invemar.2021.50.2.1106spa
dc.relation.referencesGiarratano, E., Duarte, C. A., Amin, O. A. (2010). Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicology and Environmental Safety, 73(3), 270-279. https://doi.org/10.1016/j.ecoenv.2009.10.009spa
dc.relation.referencesGray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1-12), 46-52. https://doi.org/10.1016/S0025-326X(01)00323-Xspa
dc.relation.referencesGriscom, S. B., Fisher, N. S. (2004). Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview. Estuaries, 27(5), 826-838. https://doi.org/10.1007/BF02912044spa
dc.relation.referencesGutiérrez-Galindo, E. A. G., Pérez-Rodríguez, J. C. P., Muñoz-Barbosa, A. M. (2014). Cadmio, cobre, zinc en el mejillón Mytilus californianus (Conrad 1837) de la costa oeste de Baja California. Revista Internacional de Contaminación Ambiental, 30(3), 285-295. https://www.redalyc.org/articulo.oa?id=37031522005spa
dc.relation.referencesHarada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1-24. https://doi.org/10.3109/10408449509089885spa
dc.relation.referencesHarada, M., Kawaguchi, T., Kumemura, H., Terada, K., Ninomiya, H., Taniguchi, E., Hanada, S., Baba, S., Maeyama, M., Koga, H., Ueno, T., Furuta, K., Suganuma, T., Sugiyama, T., Sata, M. (2005). The Wilson Disease Protein ATP7B Resides in the Late Endosomes with Rab7 and the Niemann-Pick C1 Protein. The American Journal of Pathology, 166(2), 499-510. https://doi.org/10.1016/S0002-9440(10)62272-9spa
dc.relation.referencesHungspreugs, M., Utoomprurkporn, W., Dharmvanij, S., Sompongchaiyakul, P. (1989). The present status of the aquatic environment of Thailand. Marine Pollution Bulletin, 20(7), 327-332. https://doi.org/10.1016/0025-326X(89)90155-0spa
dc.relation.referencesHussein, A., Khaled, A. (2014). Determination of metals in tuna species and bivalves from Alexandria, Egypt. The Egyptian Journal of Aquatic Research, 40(1), 9-17. https://doi.org/10.1016/j.ejar.2014.02.003spa
dc.relation.referencesIkuta, K. (1986). Metal concentrations in byssuses and soft bodies of bivalves. Bulletin of the Faculty of Agriculture, Yamagata University, 33, 255-264.spa
dc.relation.referencesNVEMAR (2022). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Instituto de Investigaciones Marinas y Costeras. Informe Técnico Final 2022, Volumen 21. Santa Marta 168p. https://www.invemar.org.co/inf-cgsmspa
dc.relation.referencesIsmail, A. (2006). The use of intertidal molluscs in the monitoring of heavy metals and organotin compounds in the west coast of Peninsular Malaysia. Coastal Marine Science, 30(1), 401-406. https://doi.org/10.15083/00040804spa
dc.relation.referencesJaffé, R., Leal, I., Alvarado, J., Gardinali, P. R., Sericano, J. L. (1998). Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 36(11), 925-929. https://doi.org/10.1016/S0025-326X(98)00090-3spa
dc.relation.referencesKhalid, R. A., Gambrell, R. P., Patrick, W. H. (1981). Chemical Availability of Cadmium in Mississippi River Sediment. Journal of Environmental Quality, 10(4), 523-528. https://doi.org/10.2134/jeq1981.00472425001000040021xspa
dc.relation.referencesKasuya, M., Teranishi, H., Aoshima, K., Katoh, T., Horiguchi, H., Nishijo, M. (1992). Water pollution by cadmium and the onset of Itai-itai disease. Water Science and Tecnology, 25(11), 149-156. https://doi.org/10.2166/wst.1992.0286spa
dc.relation.referencesKenny, A. J., Sotheran, I. (2013). Characterising the Physical Properties of Seabed Habitats. En: A. Eleftheriou (Ed.), Methods for the Study of Marine Benthos. John Wiley and Sons, Ltd, 47-95. https://doi.org/10.1002/9781118542392.ch2spa
dc.relation.referencesKılıç, Ö., Belivermiş, M. (2013). Spatial and seasonal distribution of trace metal concentrations in mussel (Mytilus galloprovincialis) and sediment of Bosphorus and Golden Horn. Bulletin of Environmental Contamination and Toxicology, 91(4), 402-408. https://doi.org/10.1007/s00128-013-1077-5spa
dc.relation.referencesKim, G.-H., Yang, J. Y., Park, J.-Y., Lee, J. J., Kim, J. H., Yoo, H.-W. (2008). Estimation of Wilson’s Disease Incidence and Carrier Frequency in the Korean Population by Screening ATP7B Major Mutations in Newborn Filter Papers Using the SYBR Green Intercalator Method Based on the Amplification Refractory Mutation System. Genetic Testing, 12(3), 395-399. https://doi.org/10.1089/gte.2008.0016spa
dc.relation.referencesKljaković-Gašpić, Z., Herceg-Romanić, S., Kožul, D., Veža, J. (2010). Biomonitoring of organochlorine compounds and trace metals along the Eastern Adriatic coast (Croatia) using Mytilus galloprovincialis. Marine Pollution Bulletin, 60(10), 1879-1889. https://doi.org/10.1016/j.marpolbul.2010.07.019spa
dc.relation.referencesKumar Gupta, S. K., Singh, J. (2011). Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. Institute of Integrative Omics and Applied Biotecnology, 2(1), 49-57. http://www.iioab.org/Vol2n1.htmspa
dc.relation.referencesLagos Bayona, A. L., Daza, P. V., Sanabria Ochoa, A. I. (2007). La ostra del Caribe Crassostrea rhizophorae: una alternativa de maricultura. Ministerio de Agricultura y Desarrollo Rural: INCODER, Instituto Colombiano de Desarrollo Rural. http://hdl.handle.net/20.500.12324/34353spa
dc.relation.referencesLangston, W. J., Bryan, G. W. (1984). The relationships between metal speciation in the environment and bioaccumulation in aquatic organisms. En: Kramer, C. J. M., Duinker, J. C. (Eds.), Complexation of trace metals in natural waters. Springer Netherlands,1, 375-392 https://doi.org/10.1007/978-94-009-6167-8spa
dc.relation.referencesLee, J. A., Marsden, I. D., Glover, C. N. (2010). The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquatic Toxicology, 99(1), 65-72. https://doi.org/10.1016/j.aquatox.2010.04.006spa
dc.relation.referencesLettieri, G., Mollo, V., Ambrosino, A., Caccavale, F., Troisi, J., Febbraio, F., Piscopo, M. (2019). Molecular effects of copper on the reproductive system of Mytilus galloprovincialis. Molecular Reproduction and Development, 86(10), 1357-1368. https://doi.org/10.1002/mrd.23114spa
dc.relation.referencesLi, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244, 125516. https://doi.org/10.1016/j.chemosphere.2019.125516spa
dc.relation.referencesLiao, J., Cui, X., Feng, H., Yan, S. (2021). Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water, 14(1), 51-67. https://doi.org/10.3390/w14010051spa
dc.relation.referencesLiu, Q., Xu, X., Zeng, J., Shi, X., Liao, Y., Du, P., Tang, Y., Huang, W., Chen, Q., Shou, L. (2019). Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin, 141, 215-226. https://doi.org/10.1016/j.marpolbul.2019.02.058spa
dc.relation.referencesLópez-Sánchez, C. M. (2017). Estructura poblacional de la ostra del mangle Crassostrea rhizophorae (Guilding, 1828) en el sistema estuarino de Bahía Cispatá, Colombia [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63446spa
dc.relation.referencesLópez-Sánchez, C. M., Mancera-Pineda, J. E. (2019). Parámetros estructurales de dos poblaciones de Crassostrea rhizophorae (Ostreidae) en Bahía Cispatá, Caribe Colombiano. Acta Biológica Colombiana, 24(2), 361-371. https://doi.org/10.15446/abc.v24n2.68941spa
dc.relation.referencesMacFarlane, G. R., Koller, C. E., Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69(9), 1454-1464. https://doi.org/10.1016/j.chemosphere.2007.04.059spa
dc.relation.referencesMadero, A., Marrugo-Negrete, J. (2011). Detección de metales pesados en bovinos, en los valles de los ríos Sinú y San Jorge, departamento de Córdoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401. https://doi.org/10.21897/rmvz.298spa
dc.relation.referencesMadrigal Castro, E., Alfaro Montoya, J., Quesada Quesada, R., Pacheco Urpí, O., Zamora Madriz, E. (1985). Estructura de la población y distribución de talla del ostión de manglar (Crassostrea rhizophorae, Guilding, 1828), en el Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 33(1), 61-62. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24502spa
dc.relation.referencesMancera-Rodríguez, N. J., Álvarez-León, R. (2006). Estado de conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulciacuícolas de Colombia. Acta Biológica Colombiana, 11(1), 3-23. https://revistas.unal.edu.co/index.php/actabiol/article/view/27140spa
dc.relation.referencesManjarrez-Paba, G. M., Angulo, I. C., Padilla, L. U. (2008). Bioconcentración de cadmio en ostras de la bahía de Cartagena. Revista Ingenierías Universidad de Medellín, 7(13), 11-20. https://revistas.udem.edu.co/index.php/ingenierias/article/view/192spa
dc.relation.referencesMarigómez, I., Soto, M., Cajaraville, M. P., Angulo, E., Giamberini, L. (2002). Cellular and subcellular distribution of metals in molluscs. Microscopy Research and Technique, 56(5), 358-392. https://doi.org/10.1002/jemt.10040spa
dc.relation.referencesMarrugo-Negrete, J. L., Paternina-Uribe, R. (2011). Evaluación de la contaminación por metales pesados en la Ciénaga la Soledad y bahía de Cispatá, cuencua del Bajo Sinú, Departamento de Córdoba [Informe final]. Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Química, 121p. https://docplayer.es/12366607-Evaluacion-de-la-contaminacion-por-metales-pesados-en-la-cienaga-la-soledad-y-bahia-de-cispata-cuenca-del-bajo-sinu-departamento-de-cordoba.htmlspa
dc.relation.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., Marrugo-Madrid, S., Navarro-Frómeta, E., Díez, S. (2020). Sea cucumber as Bioindicator of Trace Metal Pollution in Coastal Sediments. Biological Trace Element Research, 199(5), 2022-2030. https://doi.org/10.1007/s12011-020-02308-3spa
dc.relation.referencesMartinčić, D., Nürnberg, H. W., Branica, M. (1986). Bioaccumulation of heavy metals by bivalves from Limski Kanal (North Adriatic Sea). II. Copper distribution between oysters, Ostrea edulis, and ambient water. Marine Chemistry, 18(2-4), 299-319. https://doi.org/10.1016/0304-4203(86)90014-9spa
dc.relation.referencesMasson, R. P., Reinfelder, J. R., Morel, F. M. M. (1995). Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution, 80(1-4), 915-921. https://doi.org/10.1007/BF01189744spa
dc.relation.referencesMcBride, M. B. (1994). Environmental Chemistry of Soils. Oxford University Press, Inc., New York. 406p.spa
dc.relation.referencesMehri, A., Marjan, R. F. (2013). Review article trace elements in human nutrition: a review. International Journal of Medical Investigation, 2(3), 115-128. https://intjmi.com/article-1-141-en.htmlspa
dc.relation.referencesMejía-Torres, L. A. M. (2008). Variación espacio temporal de la larva de la ostra de mangle Crassostrea rhizophorae (Guilding, 1828), de abril a agosto de 2006, en la Bahía de Cispatá, Caribe colombiano [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1198spa
dc.relation.referencesMelwani, A. R., Gregorio, D., Jin, Y., Stephenson, M., Ichikawa, G., Siegel, E., Crane, D., Lauenstein, G., Davis, J. A. (2014). Mussel watch update: Long-term trends in selected contaminants from coastal California, 1977–2010. Marine Pollution Bulletin, 81(2), 291-302. https://doi.org/10.1016/j.marpolbul.2013.04.025spa
dc.relation.referencesMills, W. B. (1995). Water Quality Assessment: A screening procedure for toxic and conventional pollutants in surface and ground water – part 1 (Revised 1985). US EPA. https://rais.ornl.gov/documents/WQASP.PDFspa
dc.relation.referencesMinoia, C., Caroli, S. (1992). Applications of Zeeman Graphite Furnace Atomic Absorption Spectrometry in the chemical laboratory and toxicology. Pergmon press. https://shop.elsevier.com/books/applications-of-zeeman-graphite-furnace-atomic-absorption-spectrometry-in-the-chemical-laboratory-and-in-toxicology/minoia/978-0-08-041019-7spa
dc.relation.referencesMonsefrad, F., Namin, J. I., Heidary, S. (2012). Concentration of heavy and toxic metals Cu, Zn, Cd, Pb and Hg in liver and muscles of Rutilus frisii kutum during spawning season with respect to growth parameters. Iranian Journal of Fisheries Sciences, 1(4), 825-839. http://dorl.net/dor/20.1001.1.15622916.2012.11.4.10.2spa
dc.relation.referencesMoore, H. J. (1971). The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Marine Biology, 11(1), 23-27. https://doi.org/10.1007/BF00348017spa
dc.relation.referencesMountouris, A., Voutsas, E., Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44(10), 1136-1141. https://doi.org/10.1016/S0025-326X(02)00168-6spa
dc.relation.referencesMubiana, V. K., Qadah, D., Meys, J., Blust, R. (2005). Temporal and spatial trends in heavy metal concentrations in the marine mussel Mytilus edulis from the Western Scheldt estuary (The Netherlands). Hydrobiologia, 540(1-3), 169-180. https://doi.org/10.1007/s10750-004-7134-7spa
dc.relation.referencesMuñoz-Maya, O. G., Vélez-Hernández, J. E., Santos, O. M., Marín, J. I., Restrepo-Gutiérrez, J. C. (2021). Enfermedad de Wilson: Experiencia de un centro de referencia en Colombia. Revista colombiana de Gastroenterología, 36(1), 51-57. https://doi.org/10.22516/25007440.593spa
dc.relation.referencesNavarro-Aviño, J. P., Aguilar Alonso, I., López-Moya, J. R. (2007). Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2), 10-25. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/125spa
dc.relation.referencesNOAA. (1995). Lnternational Mussel Watch Project- Initial Implementation Phase Final Report. National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/1507spa
dc.relation.referencesNor, Y. M. (1987). Ecotoxicity of copper to aquatic biota a review. Environmental Research, 43, 274-282. https://doi.org/10.1016/S0013-9351(87)80078-6spa
dc.relation.referencesPacheco Urpí, P., Cabrera Peña, J., Zamora Madriz, E. (1983). Crecimiento y madurez sexual de Crassostrea rhizophorae (Guilding, 1828) cultivada en sistema suspendido en Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 31(2), 277-281. https://revistas.ucr.ac.cr/index.php/rbt/article/view/25006spa
dc.relation.referencesPanesso Guevara, M. (2017). Influencia de las variables ambientales en la estructura de las comunidades bentónicas y su relación con el flujo de mercurio en la bahía de Buenaventura [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/59430spa
dc.relation.referencesParra, J. P., Espinosa, L. F. (2007). Acumulación de Pb, Cd y Zn en sedimentos asociados a Rhizophora mangle, en el río Sevilla, Ciénaga Grande de Santa Marta, Colombia. Academía Colombiana de Ciencias Exactas, Físicas y Naturales, 31(120), 347-354. https://doi.org/10.18257/raccefyn.31(120).2007.2344spa
dc.relation.referencesParra, J. P., Espinosa, L. F. (2008). Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a Rhizophora mangle en el río Sevilla-Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 37(1), 95-110. https://doi.org/10.25268/bimc.invemar.2008.37.1.184spa
dc.relation.referencesPatiño, C., Flórez, A. (1993). Ecología Marina del Golfo de Morrosquillo. Universidad Nacional de Colombia y Fondo FEN. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4881spa
dc.relation.referencesPerošević, A., Joksimović, D., Đurović, D., Milašević, I., Radomirović, M., Stanković, S. (2018). Human exposure to trace elements via consumption of mussels Mytilus galloprovincialis from Boka Kotorska Bay, Montenegro. Journal of Trace Elements in Medicine and Biology, 50, 554-559. https://doi.org/10.1016/j.jtemb.2018.03.018spa
dc.relation.referencesPhillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments-A review. Environmental Pollution (1970), 13(4), 281-317. https://doi.org/10.1016/0013-9327(77)90047-7spa
dc.relation.referencesPineda-Osorio, M. C. P. (2013). Composición de la malacofauna asociada a sustratos duros en dos ecosistemas (zonas portuarias y zonas estuarinas) del Caribe colombiano, primer semestre de 2010 [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1311spa
dc.relation.referencesPinto, R., Acosta, V., Segnini, M. I., Brito, L., Martínez, G. (2015). Temporal variations of heavy metals levels in Perna viridis, on the Chacopata-Bocaripo lagoon axis, Sucre State, Venezuela. Marine Pollution Bulletin, 91(2), 418-423. https://doi.org/10.1016/j.marpolbul.2014.09.059spa
dc.relation.referencesPinzón-Bedoya, C. H. (2020). Metales pesados en sedimentos y peces de la Ciénaga Grande de Santa Marta, como indicadores de riesgo para la salud humana y el ambiente [Tesis de Maestría]. Universidad del Atlántico. https://hdl.handle.net/20.500.12834/603spa
dc.relation.referencesPourang, N., Bahrami, A., Nasrolahzadeh Saravi, H. (2019). Shells of Bufonaria echinata as biomonitoring materials of heavy metals (Cd, Ni and Pb) pollution in the Persian Gulf: With emphasis on the annual growth sections. Iranian Journal of Fisheries Sciences, 18(2), 256-271. https://doi.org/10.22092/ijfs.2018.115734spa
dc.relation.referencesPujos, M., Pagliardini, J.-L., Steer, R., Vernette, G., Weber, O. (1986). Influencia de la contracorriente norte colombiana para la circulación de las aguas en la plataforma continental. Boletín Científico del CIOH, 6, 3-15. https://doi.org/10.26640/22159045.18spa
dc.relation.referencesRainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31(4-12), 183-192. https://doi.org/10.1016/0025-326X(95)00116-5spa
dc.relation.referencesRainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120(3), 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5spa
dc.relation.referencesRainbow, P., Wolowicz, M., Fialkowski, W., Smith, B. D., Sokolowski, A. (2000). Biomonitoring of trace metals in the Gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Research, 34(6), 1823-1829. https://doi.org/10.1016/S0043-1354(99)00345-0spa
dc.relation.referencesRajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., Li, X. (2017). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626-638. https://doi.org/10.1016/j.chemosphere.2017.10.078spa
dc.relation.referencesRangel-Ch, J., Arellano, H. (2010). Clima. En: J. Rangel-Ch (Ed.), Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad, ecología y manejo ambiental. Instituto de Ciencias Naturales. Universidad Nacional de Colombia-CVS, 1-14. https://repositorio.unal.edu.co/handle/unal/81890spa
dc.relation.referencesRiaño, R., de la Osa, J. (1999). Guía para el manejo, cría y conservación de la ostra Crassostrea rhizophorae (Guilding). Convenio Instituto de Investigación Marinas y Costeras José Benito Vives de Andréis. https://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/U_204.pdfspa
dc.relation.referencesRichter, C. A., Martyniuk, C. J., Annis, M. L., Brumbaugh, W. G., Chasar, L. C., Denslow, N. D., Tillitt, D. E. (2014). Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). General and Comparative Endocrinology, 203, 215-224. https://doi.org/10.1016/j.ygcen.2014.03.029spa
dc.relation.referencesRivera, L. F. (1978). Experiencias en el cultivo de la ostra Crassostrea rhizophorae, Guilding (1828), en la Ciénaga Grande do Santa Marta y estudio preliminar de Ia dinámica de su población [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería.spa
dc.relation.referencesRomero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., Vélez-Terreros, P. Y., Navarrete, H. (2019). Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry. Universitas Scientiarum, 24(3), 497-521. https://doi.org/10.11144/Javeriana.SC24-3.eotsspa
dc.relation.referencesRomero-Murillo, P., Campos-Campos, N. H., Orrego, R. (2023). Metal concentrations in Isognomon alatus by stages and climatic seasons in San Andrés Island, Colombian Caribbean. Acta Biológica Colombiana, 28(3), 415-427. https://doi.org/10.15446/abc.v28n3.97227spa
dc.relation.referencesRueda, M., Defeo, O. (2003). Linking fishery management and conservation in a tropical estuarine lagoon: Biological and physical effects of an artisanal fishing gear. Estuarine, Coastal and Shelf Science, 56(5-6), 935-942. https://doi.org/10.1016/S0272-7714(02)00298-6spa
dc.relation.referencesRuelas-Inzunza, J., Soto, L. A., Páez-Osuna, F. (2003). Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California. Deep Sea Research Part I: Oceanographic Research Papers, 50(6), 757-761. https://doi.org/10.1016/S0967-0637(03)00054-2spa
dc.relation.referencesRuesink, J. L., Lenihan, H. S., Trimble, A. C., Heiman, K. W., Micheli, F., Byers, J. E., Kay, M. C. (2005). Introduction of Non-Native Oysters: Ecosystem Effects and Restoration Implications. Annual Review of Ecology, Evolution, and Systematics, 36(1), 643-689. https://doi.org/10.1146/annurev.ecolsys.36.102003.152638spa
dc.relation.referencesSadiq, M. (1992). Toxic metal chemistry in marine environments. Boca Raton. https://doi.org/10.1201/9781003210214spa
dc.relation.referencesSalomons, W., Kerdijk, H., van Pagee, H., Klomp, R., Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuarine and coastal zones. In: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. (Eds), Metals in coastal environments of Latin America. Springer-Verlag, Berlin, Heidelberg, 157-198. https://link.springer.com/chapter/10.1007/978-3-642-71483-2_17spa
dc.relation.referencesSánchez-Páez, H., Ulloa-Delgado, G. A., Tavera-Escobar, H. A. (2004). Manejo integral de los manglares por comunidades locales del Caribe de Colombia. MinAmbiente, CONIF, OIMT.spa
dc.relation.referencesSatoh, M., Koyama, H., Kaji, T., Kito, H., Tohyama, C. (2002). Perspectives on cadmium toxicity research. Tohoku Journal of Experimental Medicine, 196, 23-32. https://doi.org/10.1620/tjem.196.23spa
dc.relation.referencesSbriz, L., Aquino, M. R., Alberto De Rodriguez, N. M., Fowler, S. W., Sericano, J. L. (1998). Levels of chlorinated hydrocarbons and trace metals in bivalves and nearshore sediments from the Dominican Republic. Marine Pollution Bulletin, 36(12), 971-979. https://doi.org/10.1016/S0025-326X(98)00097-6spa
dc.relation.referencesShulkin, V. M., Presley, B. J., Kavun, V. Ia. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29(4), 493-502. https://doi.org/10.1016/S0160-4120(03)00004-7spa
dc.relation.referencesSilva, C. A. R., Rainbow, P. S., Smith, B. D. (2003). Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: Comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia, 501, 199-206. https://doi.org/10.1023/A:1026242417427spa
dc.relation.referencesSilva, C. A. R., Smith, B. D., Rainbow, P. S. (2006). Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Marine Environmental Research, 61(4), 439-455. https://doi.org/10.1016/j.marenvres.2006.02.001spa
dc.relation.referencesSingh, O. V., Labana, S., Pandey, G., Budhiraja, R., Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5-6), 405-412. https://doi.org/10.1007/s00253-003-1244-4spa
dc.relation.referencesSkoog, D. A., Holler, F. J., Crouch, S. R. (2017). Principles of Instumental Analysis. Section two: Atomic Spectroscopy. Thomson Learning Academic Resource Center, 131-334. ISBN-13: 978-495-012101-6.spa
dc.relation.referencesSquadrone, S., Brizio, P., Stella, C., Prearo, M., Pastorino, P., Serracca, L., Ercolini, C., Abete, M. C. (2016). Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environmental Pollution, 215, 77-83. https://doi.org/10.1016/j.envpol.2016.04.096spa
dc.relation.referencesSunlu, U. (2006). Trace Metal Levels in Mussels (Mytilus Galloprovincialis L. 1758) from Turkish Aegean Sea Coast. Environmental Monitoring and Assessment, 114(1-3), 273-286. https://doi.org/10.1007/s10661-006-4780-4spa
dc.relation.referencesSuryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Nurdiani, R., Putra, R. B. D. S. (2018). Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iredalei and Crassostrea glomerata. F1000Research, 7, 1239. https://doi.org/10.12688/f1000research.14861.1spa
dc.relation.referencesSuryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Putra, R. B. D. S. (2021). Density and intensity of metallothionein of Crassostrea sp. As biomarkers of heavy metal contamination in the Northern coast of East Java, Indonesia. The Egyptian Journal of Aquatic Research, 47(2), 109-116. https://doi.org/10.1016/j.ejar.2021.04.006spa
dc.relation.referencesSzefer, P., Kim, B.-S., Kim, C.-K., Kim, E.-H., Lee, C.-B. (2004). Distribution and coassociations of trace elements in soft tissue and byssus of Mytilus galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of the Korean Peninsula. Environmental Pollution, 129(2), 209-228. https://doi.org/10.1016/j.envpol.2003.10.012spa
dc.relation.referencesTakeuchi, T., Morikawa, N., Matsumoto, H., Shiraishi, Y. (1962). A pathological study of Minamata disease in Japan. Acta Neuropathologica, 2(1), 40-57. https://doi.org/10.1007/BF00685743spa
dc.relation.referencesTirado Amador, L. R., González Martínez, F. D., Martínez Hernández, L. J., Wilches Vergara, L. A., Celedón Suárez, J. N. (2015). Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional de Odontología, 11(21), 83-98. https://doi.org/10.16925/od.v11i21.895spa
dc.relation.referencesTroncoso Olivo, W., Campos C., N. H., Marín Z., B. (2004). Variaciones en las concentraciones de cadmio, cobre y zinc en la planta Ipomea setifera en el canal del Clarín (Ciénaga Grande de Santa Marta). En: Contribuciones en ciencias del mar en Colombia: Investigación y desarrollo de territorios promisorios. Universidad Nacional de Colombia UNIBIBLIOS, 139-153. https://centrodocumentacion.invemar.org.co/cgi-bin/koha/opac-detail.pl?biblionumber=4871spa
dc.relation.referencesTudor, D. T., Williams, A. T., Randerson, P., Ergin, A., Earll, R. E. (2002). The use of multivariate statistical techniques to establish beach debris pollution sources. Journal of Coastal Research, 36, 716-725. https://doi.org/10.2112/1551-5036-36.sp1.716spa
dc.relation.referencesTudor, D. T., Williams, A. T. (2004). The use of multivariate statistical tecniques to establish beach debris pollution sources. Journal of Coastal Conservation, 10(1), 119-127. https://doi.org/10.1652/1400-0350(2004)010[0119:DOAMST]2.0.CO;2spa
dc.relation.referencesUNESCO. (2001). Ciénaga Grande de Santa Marta Biosphere Reserve, Colombia. En: Final Report International. Part 8. New Biosphere Reserves: Results of the MAB Bureau. Co-ordinating Council of the Programe on Man and the Biosphere. Sixteenth Session UNESCO Headquaters. 21p.spa
dc.relation.referencesUriu-Adams, J. Y., Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26(4-5), 268-298. https://doi.org/10.1016/j.mam.2005.07.015spa
dc.relation.referencesUsme, S. (1984). Evaluación de los niveles de contaminación por cobre y cadmio en sedimentos procedentes de la Ciénaga Grande de Santa Marta [Tesis de pregrado]. Universidad Nacional de Colombia.spa
dc.relation.referencesUwah, I. E., Dan, S. F., Etiuma, R. A., Umoh, U. E. (2013). Evaluation of Status of Heavy Metals Pollution of Sediments in Qua-Iboe River Estuary and Associated Creeks, South-Eastern Nigeria. Environment and Pollution, 2(4), 110-122. https://doi.org/10.5539/ep.v2n4p110spa
dc.relation.referencesValdelamar-Villegas, J., Olivero-Verbel, J. (2018). Bioecological aspects and heavy metal contamination of the mollusk Donax denticulatus in the Colombian Caribbean coastline. Bulletin of Environmental Contamination and Toxicology, 100, 234-239. https://doi.org/10.1007/s00128-017-2203-6spa
dc.relation.referencesVardanyan, L. G., Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32(2), 208-218. https://doi.org/10.1016/j.envint.2005.08.013spa
dc.relation.referencesVelasco, L. A., Vega, D., Acosta, E., Barros, J. (2010). Reproducción artificial de la ostra del mangle Crassostrea rhizophorae Guilding, 1828 en el Caribe colombiano. Revista Intropica, 5, 47-56. https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/150spa
dc.relation.referencesVélez-Mendoza, A., Rico Mora, J.P., Campos-C., N.H., Almario-García, M.L., Sanjuan-Muñoz, A. (sometido). Heavy metals in bivalves: a global view. Reviews of Environmental Contamination and Toxicology.spa
dc.relation.referencesVictoria-Daza, P. L., Arias, M., Rodríguez, H. (1994). Evaluación preliminar del cultivo de ostra Crassostrea rhizophorae en el estuario de la Bahía de Cispatá, Ciénaga de Mestizo y Pepino (San Antero, Córdoba). In: Memorias primera reunión grupo de trabajo sobre cultivo de bivalvos en Colombia. INPA-CVS. Córdoba. 38-49p.spa
dc.relation.referencesViarengo, A., Nott, J. A. (1993). Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 104(3), 355-372. https://doi.org/10.1016/0742-8413(93)90001-2spa
dc.relation.referencesVillamil, C. A. V. (2010). Evaluación de manglar con diferente cobertura en cuanto a los procesos de retención, absorción y acumulación de metales pesados (Cr, Cd, Pb, Zn y Cu) [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/6731spa
dc.relation.referencesVolety, A. K. (2008). Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology, 17(7), 579-590. https://doi.org/10.1007/s10646-008-0242-9spa
dc.relation.referencesWang, L., Wang, X., Chen, H., Wang, Z., Jia, X. (2021). Oyster As, Cd, Cu, Hg, Pb and Zn Levels in the Northern South China Sea: Long-term Spatiotemporal Distributions, Interacting Effects, and Risk Assessment to Human Health. Research Square. https://doi.org/10.21203/rs.3.rs-478762/v1spa
dc.relation.referencesWang, W.-X. (2013). Prediction of metal toxicity in aquatic organisms. Chinese Science Bulletin, 58(2), 194-202. https://doi.org/10.1007/s11434-012-5403-9spa
dc.relation.referencesWang, X.-N., Gu, Y.-G., Wang, Z.-H., Ke, C.-L., Mo, M.-S. (2018). Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Marine Pollution Bulletin, 133, 312-319. https://doi.org/10.1016/j.marpolbul.2018.05.059spa
dc.relation.referencesWang, Z., Lin, Q., Wang, X., Li, L-D. (2011). Characteristics of heavy metal content in oysters along the coast of South China and their risk assessment. Journal of Fisheries of China, 35(2), 291-297. https://www.china-fishery.com/jfcen/article/issue/2011_35_2spa
dc.relation.referencesWedler, E. (1980). Experimental spat collecting and growing of the oyster, Crassostrea rhizophorae Guilding, in the Ciénaga Grande de Santa Marta, Colombia. Aquaculture, 21(3), 251-259. https://doi.org/10.1016/0044-8486(80)90135-0spa
dc.relation.referencesWedler, E. (1983). El cultivo de la ostra del Caribe: Crassostrea rhizophorae. Ingeniería Pesquera, 3(2). Serie de Manuales y Técnicas.spa
dc.relation.referencesWhite, S. L., Rainbow, P. S. (1985). On the metabolic requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research, 16(3), 215-229. https://doi.org/10.1016/0141-1136(85)90139-4spa
dc.relation.referencesYap, C. K., Chew, W. (2011). A higher bioavailability and contamination of trace metals in Pantai Lido than Sungai Semerak: Evidence from trace metal concentrations in Polymesoda expansa and surface sediments. Malaysian Applied Biology, 40(1), 55-59. https://www.mabjournal.com/images/40_1_June_2011/10_yapck.pdfspa
dc.relation.referencesYbañez, N., Montoro, R., Caroli, S. (1996). Trace element food toxicology: An old and ever‐growing discipline. Critical Reviews in Food Science and Nutrition, 36(4), 299-320. https://doi.org/10.1080/10408399609527727spa
dc.relation.referencesZar, J. H. (2010). Biostatistical analysis. Upper Sadd. Prentice-Hall NJ, editor.spa
dc.relation.referencesZhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Science of The Total Environment, 599-600, 721-731. https://doi.org/10.1016/j.scitotenv.2017.04.232spa
dc.relation.referencesZhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G. (2008). Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135-150. https://doi.org/10.1016/j.aca.2007.11.018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc570 - Biologíaspa
dc.subject.proposalElementos potencialmente tóxicosspa
dc.subject.proposalSestonspa
dc.subject.proposalSedimentosspa
dc.subject.proposalOstrasspa
dc.subject.proposalPotencially toxic elementseng
dc.subject.proposalSestoneng
dc.subject.proposalSedimentseng
dc.subject.proposalOysterseng
dc.titleContaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombianospa
dc.title.translatedContamination by heavy metals (Hg, Cd, Pb and Cu) in the oyster Crassostrea rhizophorae for two marine-coastal ecosystems of the Colombian Caribbeaneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleNiveles de contaminación por metales pesados (Hg, Cd, Cr, Ni, Pb, Se, As y Cu), PCB (bifenilos policlorados) y HAP (hidrocarburos aromáticos policíclicos) en ambientes marinos y costeros del Caribe colombiano (Código 71641)spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143147191.2024.pdf
Tamaño:
4.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: