Aproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi

dc.contributor.advisorMelgarejo Muñoz, Luz Marina
dc.contributor.advisorArdila Barrantes, Harold Duban
dc.contributor.authorPérez Mora, Walter Hernando
dc.contributor.cvlacPérez Mora, Walter Hernando [0001375535]spa
dc.contributor.googlescholarPérez Mora, Walter Hernando [https://scholar.google.com/citations?user=hKtonb0AAAAJ&hl=es]spa
dc.contributor.orcidPérez Mora, Walter Hernando [0000000272901874]spa
dc.contributor.researchgatePérez Mora, Walter Hernando [https://www.researchgate.net/profile/Walter-Perez-Mora]spa
dc.contributor.researchgroupFisiología del Estrés y Biodiversidad en Plantas y Microorganismosspa
dc.contributor.researchgroupEstudio de Actividades Metabólicas Vegetalesspa
dc.date.accessioned2024-01-18T20:05:54Z
dc.date.available2024-01-18T20:05:54Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa floricultura es un sector económico de interés en Colombia, siendo el clavel uno de los productos destacados. No obstante, el clavel se ve afectado por enfermedades como el marchitamiento vascular causado por Fusarium oxysporum f.sp. dianthi (Fod), el cual es el factor de mayor impacto en la producción. Ante esta problemática, se están explorando distintas estrategias para el control de esta enfermedad, como es el caso de la potencialización de la respuesta de defensa innata mediante el uso de inductores de resistencia. En el presente estudio se evaluó el efecto que tienen moléculas inductoras en el patosistema y se seleccionó la tiamina aplicada por aspersión foliar en concentración 1mmol L-1 como potencial inductor de resistencia para el control del patógeno en el clavel. Posteriormente, se estudiaron los cambios bioquímicos causados por la tiamina en la planta a nivel de proteínas y metabolitos, usando herramientas de la proteómica y la metabólomica. La aplicación de tiamina promueve la acumulación de proteínas de diversos procesos bioquímicos en la raíz, que han sido previamente vinculados a la defensa vegetal. Además, también promueve la acumulación de metabolitos de tipo flavonoide y derivados del antranilato, que han sido relacionados a cultivares de clavel resistentes a Fod. Los resultados obtenidos sugieren que los tratamientos con tiamina permiten la activación de mecanismos de defensa que protegen a la planta frente al patógeno. Estos resultados aumentan el conocimiento sobre el uso de tiamina como agente bioestimulante en plantas y permiten proponer los principales mecanismos bioquímicos asociados a su modo de acción. (Texto tomado de la fuente)spa
dc.description.abstractFloriculture holds significant economic importance in Colombia, with carnation among the prominent products. Unfortunately, carnations are highly susceptible to diseases, with vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) being a major production-limiting factor. Various strategies are being explored to address this issue, including enhancing the innate defense response using resistance inducers. In this study, we investigated the effect of inducing molecules on the pathosystem and specifically evaluated thiamine as a potential resistance inducer for controlling the Fod pathogen incarnation. Thiamine was applied through foliar spraying at a concentration of 1mmol L-1. Subsequently, we delved into the biochemical changes induced by thiamine in the plants at the protein and metabolite levels, employing proteomic and metabolomic tools. Remarkably, thiamine application promoted the accumulation of proteins involved in diverse biochemical processes in the roots, which have been previously linked to plant defense mechanisms. Additionally, it stimulated the accumulation of flavonoid-type metabolites and anthranilate derivatives, known to be associated with Fod-resistant carnation cultivars. These results suggest that thiamine treatments activate defense mechanisms safeguarding plants against this pathogen. By shedding light on using thiamine as a biostimulant agent in plants, our findings contribute to a better understanding of its mode of action. This knowledge allows us to propose the primary biochemical mechanisms associated with thiamine effectiveness in bolstering plant resistance. Overall, our study opens new possibilities for disease control in carnation and advances our comprehension of how thiamine can be harnessed as a valuable tool in promoting plant defense strategies.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaBioquímica de las interacciones hospedero-patógenospa
dc.format.extentxxi, 179 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85369
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesAbd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/ajb.v2i4.14830spa
dc.relation.referencesAbdel Monaim, M. F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10(53), 10842–10855. https://doi.org/10.5897/ajb11.253spa
dc.relation.referencesAbdul Hasseb, H., Zhang, J., Guo, Y. shuang, Gao, M. xu, & Guo, W. (2022). Proteomic analysis of pathogen-responsive proteins from maize stem apoplast triggered by Fusarium verticillioides. Journal of Integrative Agriculture, 21(2), 446–459. https://doi.org/10.1016/S2095-3119(21)63657-2spa
dc.relation.referencesAhmad, M. Z., Li, P., Wang, J., Rehman, N. U., & Zhao, J. (2017). Isoflavone malonyltransferases GmiMaT1 and GmiMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Frontiers in Plant Science, 8, 1–17. https://doi.org/10.3389/fpls.2017.00735spa
dc.relation.referencesAhmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 3(3), 24–34.spa
dc.relation.referencesAhn, I., Kim, S., & Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138, 1505–1515. https://doi.org/10.1104/pp.104.058693.cytosolicspa
dc.relation.referencesAhn, I., Kim, S., Lee, Y. H., & Suh, S. C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in arabidopsis. Plant Physiology, 143, 838–848. https://doi.org/10.1104/pp.106.092627spa
dc.relation.referencesAkram, W., Anjum, T., & Ali, B. (2016). Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Frontiers in Plant Science, 7, 1–12. https://doi.org/10.3389/fpls.2016.00498spa
dc.relation.referencesAleandri, M. P., Reda, R., Tagliavento, V., Magro, P., & Chilosi, G. (2010). Effect of chemical resistance inducers on the control of Monosporascus root rot and vine decline of melon. Phytopathologia Mediterranea, 49(1), 18–26. https://doi.org/10.14601/phytopathol_mediterr-3117spa
dc.relation.referencesAlexandersson, E., Mulugeta, T., Lankinen, Å., & Liljeroth, E. (2016). Plant Resistance Inducers against Pathogens in Solanaceae Species — From Molecular Mechanisms to Field Application. International Journal of Molecular Sciences, 17(10), 1673. https://doi.org/10.3390/ijms17101673spa
dc.relation.referencesAnup, C. P., Melvin, P., Shilpa, N., Gandhi, M. N., Jadhav, M., Ali, H., & Kini, K. R. (2015). Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. Journal of Proteomics, 120, 58–74. https://doi.org/10.1016/j.jprot.2015.02.013spa
dc.relation.referencesArbelaez G. y Calderon O.L. (1991). Determinacion de las razas fisiologicas de Fusarium oxysporum. Agronomía Colombiana, 8(2), 243–247.spa
dc.relation.referencesArdila, Harold Duban, Baquero, B., & Martínez, S. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.spa
dc.relation.referencesArdila, Harold Duban, & Higuera, B. L. (2005). Induccion diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infeccion por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biologica Colombiana, 10(2), 61–74.spa
dc.relation.referencesArdila, Harold Duban, Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35, 1233–1245. https://doi.org/10.1007/s11738-012-1162-0spa
dc.relation.referencesArdila, Harold Duban, Raquel, G. F., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein extraction and gel-based separation methods to analyze responses to pathogens in carnation (Dianthus caryophyllus L). In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 573–591). Humana Press - Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39spa
dc.relation.referencesArdila, Harold Duban, Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003spa
dc.relation.referencesArdila, Harold Duban. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesAsensi-Fabado, M., & Munné-Bosch, S. (2010). Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15(10), 582–592. https://doi.org/10.1016/j.tplants.2010.07.003spa
dc.relation.referencesBaayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.xspa
dc.relation.referencesBahuguna, R. N., Joshi, R., Shukla, A., Pandey, M., & Kumar, J. (2012). Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 57, 159–167. https://doi.org/10.1016/j.plaphy.2012.05.003spa
dc.relation.referencesBanasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kȩpczyńska, E., Figlerowicz, M., & Jasiński, M. (2013). A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. Journal of Experimental Botany, 64(4), 1005–1015. https://doi.org/10.1093/jxb/ers380spa
dc.relation.referencesBasallote-Ureba, M. J., Vela-Delgado, M. D., Capote, N., Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., & Talavera-Rubia, M. F. (2016). Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Protection, 89, 184–192. https://doi.org/10.1016/j.cropro.2016.07.013spa
dc.relation.referencesBehr, M., Neutelings, G., El Jaziri, M., & Baucher, M. (2020). You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.571399spa
dc.relation.referencesBertini, L., Palazzi, L., Proietti, S., Pollastri, S., Arrigoni, G., de Laureto, P. P., & Caruso, C. (2019). Proteomic analysis of MeJa-induced defense responses in rice against wounding. International Journal of Molecular Sciences, 20(2025), 1–24. https://doi.org/10.3390/ijms20102525spa
dc.relation.referencesBheri, M., M. Bhosle, S., & Makandar, R. (2019). Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiological Research, 222, 25–34. https://doi.org/10.1016/j.micres.2019.02.006spa
dc.relation.referencesBoubakri, H. (2017). The Role of Ascorbic Acid in Plant – Pathogen Interactions The Role of Ascorbic Acid in Plant – Pathogen Interactions. In Hossain, M, S. Munné-Bosch, D. Burritt, P. Diaz-Vivancos, M. Fujita, & A. Lorence (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance (Issue January, pp. 255–271). Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7spa
dc.relation.referencesBoubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds : Possible mechanisms. In M. A. Hossain, F. Liu, D. J. Burritt, M. Fujita, & B. Huang (Eds.), Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Academic Press Elsevier Inc. https://doi.org/10.1016/B978-0-12-817892-8.00005-2spa
dc.relation.referencesBoubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0spa
dc.relation.referencesBoubakri, H., Poutaraud, A., Wahab, M. A., Clayeux, C., Baltenweck-guyot, R., Steyer, D., Marcic, C., Mliki, A., & Soustre-gacougnolle, I. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13(1), 1. https://doi.org/10.1186/1471-2229-13-31spa
dc.relation.referencesBoubakri, H., Wahab, M., Chong, J., Bertsch, C., Mliki, A., & Soustre, I. (2012). Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiology and Biochemistry, 57, 120–133. https://doi.org/10.1016/j.plaphy.2012.05.016spa
dc.relation.referencesCamoni, L., Visconti, S., Aducci, P., & Marra, M. (2018). 14-3-3 proteins in plant hormone signaling: Doing several things at once. Frontiers in Plant Science, 9, 1–8. https://doi.org/10.3389/fpls.2018.00297spa
dc.relation.referencesCarvalho, H. H., Silva, P. A., Mendes, G. C., Brustolini, O. J. B., Pimenta, M. R., Gouveia, B. C., Valente, M. A. S., Ramos, H. J. O., Soares-Ramos, J. R. L., & Fontes, E. P. B. (2014). The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiology, 164(2), 654–670. https://doi.org/10.1104/pp.113.231928spa
dc.relation.referencesCastillejo, María Ángeles, Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1210/endo-22-1-92spa
dc.relation.referencesCastillejo, Mariá Ángeles, Fondevilla, S., Fuentes, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance against Ascochyta Blight (Peyronellaea pinodes) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365spa
dc.relation.referencesChandrasekhar, B., Umesha, S., & Naveen Kumar, H. N. (2017). Proteomic analysis of salicylic acid enhanced disease resistance in bacterial wilt affected chilli (Capsicum annuum) crop. Physiological and Molecular Plant Pathology, 98, 85–96. https://doi.org/10.1016/j.pmpp.2017.04.002spa
dc.relation.referencesChiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169spa
dc.relation.referencesClematis, F., Tedeschini, J., Dolci, M., Lanzotti, V., & Cangelosi, B. (2011). Phenol Composition and Susceptibility to Fusarium oxysporum Dianthi in Carnation. Journal of Life Sciences, 5, 921–925.spa
dc.relation.referencesCuervo, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesCuervo, D., Martinez, S., Ardila, H., & Higuera, B. (2009). Differential Induction of Peroxidase Enzyme and Its relationship with lignification in carnation defense (dianthus caryophyllus l.) mechanism against Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Quimica, 38(3), 379–393.spa
dc.relation.referencesCueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achon, M. Á., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11. https://doi.org/10.1016/j.pmpp.2015.11.003spa
dc.relation.referencesCurir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672spa
dc.relation.referencesCurir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-Xspa
dc.relation.referencesDarwesh, Y., Nour El-deen, A., & Fayad Eman, M. (2015). In-Vitro Investigation for Improving Secondary Metabolites in Origanum Vulgare Plants Using Tissue Culture Technique at Taif Governorate, KSA. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1117), 1117–1122.spa
dc.relation.referencesde Borba, M., Velho, A., Maia-Grondard, A., Baltenweck, R., Magnin, M., Randoux, B., Holvoet, M., Hilbert, J., Flahaut, C., Reignault, P., Hugueney, P., Stadnik, M., & Siah, A. (2021). The Algal Polysaccharide Ulvan Induces Resistance in Wheat Against Zymoseptoria tritici Without Major Alteration of Leaf Metabolome. Frontiers in Plant Science, 12, 703712. https://doi.org/10.3389/fpls.2021.703712spa
dc.relation.referencesDehestani, M., Gholamnezhad, J., Alizadeh, S., Meftahizadeh, H., & Ghorbanpour, M. (2022). Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flower. South African Journal of Botany, 150, 1192–1204. https://doi.org/10.1016/j.sajb.2022.09.028spa
dc.relation.referencesDevi, B., Singh, G., Dash, A. K., & Gupta, S. K. (2020). Chemically induced systemic acquired resistance in the inhibition of French bean rust. Current Plant Biology, 23, 1–10. https://doi.org/10.1016/j.cpb.2020.100151spa
dc.relation.referencesDías Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 257–267.spa
dc.relation.referencesDong, W., Stockwell, V. O., & Goyer, A. (2015). Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering. Plant & Cell Physiology, 56(12), 2285–2296. https://doi.org/10.1093/pcp/pcv148spa
dc.relation.referencesEl Kasmi, F., Chung, E. H., Anderson, R. G., Li, J., Wan, L., Eitas, T. K., Gao, Z., & Dangl, J. L. (2017). Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 114(35), E7385–E7394. https://doi.org/10.1073/pnas.1708288114spa
dc.relation.referencesFernandes, L. B., & Ghag, S. B. (2022). Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. Plant Physiology and Biochemistry, 174(January), 22–34. https://doi.org/10.1016/j.plaphy.2022.01.032spa
dc.relation.referencesFernández-Cabanás, V. M., Borrero, C., Cozzolino, D., & Avilés, M. (2022). Feasibility of near infrared spectroscopy for estimating suppressiveness of carnation (Dianthus cariophyllus L.) fusarium wilt in different plant growth media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 280, 1–5. https://doi.org/10.1016/j.saa.2022.121528spa
dc.relation.referencesFinkina, E. I., Melnikova, D. N., Bogdanov, I. V., & Ovchinnikova, T. V. (2017). Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Current Medicinal Chemistry, 24, 1772–1787. https://doi.org/10.2174/0929867323666161026154111spa
dc.relation.referencesGaleotti, F., Barile, E., Lanzotti, V., Dolci, M., & Curir, P. (2008). Quantification of Major Flavonoids in Carnation Tissues. Z Naturforsch, 63, 161–168.spa
dc.relation.referencesGao, H., Ma, K., Ji, G., Pan, L., Wang, Z., Cui, M., & Zhou, Q. (2022). Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. International Journal of Biological Macromolecules, 212, 381–392. https://doi.org/10.1016/j.ijbiomac.2022.05.126spa
dc.relation.referencesGao, H., Ma, K., Ji, G., Pan, L., & Zhou, Q. (2022). Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Molecular Plant Pathology, 23(12), 1815–1829. https://doi.org/10.1111/mpp.13264spa
dc.relation.referencesGoellner, K., & Conrath, U. (2008). Priming: It’s all the world to induced disease resistance. Sustainable Disease Management in a European Context, 121, 233–242. https://doi.org/10.1007/978-1-4020-8780-6_3spa
dc.relation.referencesGómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34.spa
dc.relation.referencesGonzález-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028spa
dc.relation.referencesGoyer, A. (2010). Thiamine in plants : Aspects of its metabolism and functions. Phytochemistry, 71(14–15), 1615–1624. https://doi.org/10.1016/j.phytochem.2010.06.022spa
dc.relation.referencesGullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003spa
dc.relation.referencesGullner, G., Komives, T., Király, L., & Schröder, P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science, 871, 1–19. https://doi.org/10.3389/fpls.2018.01836spa
dc.relation.referencesHamada, A. M., Fatehi, J., & Jonsson, L. M. V. (2017). Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bulletin of Entomological Research, 108(1), 84–92. https://doi.org/10.1017/S0007485317000529spa
dc.relation.referencesHamada, Afaf M, & Jonsson, L. M. V. (2013). Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry, 94, 135–141. https://doi.org/10.1016/j.phytochem.2013.05.012spa
dc.relation.referencesHiguera, B. L. (2001). Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesHirakawa, H. (2020). Draft genome sequence. In T. Onozaki & M. Yagi (Eds.), The carnation genome. Compendium of Plant Genomes (pp. 1–12). Springer Nature.spa
dc.relation.referencesHönig, M., Roeber, V. M., Schmülling, T., & Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1–21. https://doi.org/10.3389/fpls.2023.1146577spa
dc.relation.referencesHosseinii Zarandi, M. M., Yali, M. P., & Ahmadi, K. (2022). Induction of Resistance to Macrosiphum rosae by Foliar Applicatrion of Salicylic Acid and Potassium Sulfate in Rose Plant. International Journal of Horticultural Science and Technology, 9(2), 227–236. https://doi.org/10.22059/ijhst.2021.305196.378spa
dc.relation.referencesHuang, W. K., Ji, H. L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316spa
dc.relation.referencesIbraheem, F., Gaffoor, I., & Chopra, S. (2010). Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics, 184(4), 915–926. https://doi.org/10.1534/genetics.109.111831spa
dc.relation.referencesInternational Trade Center. (2022). Lista de los mercados importadores para un producto exportado por Colombia en 2021 Producto : 060312 "Claveles" "flores y capullos" "cortados para ramos o adornos, frescos". Trade Map: Estadísticas Del Comercio Para El Desarrollo Internacional de Las Empresas. https://www.trademap.orgspa
dc.relation.referencesJain, A., Singh, H. B., & Das, S. (2021). Deciphering plant-microbe crosstalk through proteomics studies. Microbiological Research, 242, 126590. https://doi.org/10.1016/j.micres.2020.126590spa
dc.relation.referencesJawaharlal, M., Ganga, M., Padmadevi, K., Jegadeeswari, V., & Karthikeyan, S. (2010). A technical guide on carnation. College and Research Institute Tamil Nadu Agricultural University.spa
dc.relation.referencesJi, H., Peng, Y., Meckes, N., Allen, S., Stewart, C. N., & Traw, M. B. (2014). ATP-dependent binding cassette transporter G family member 16 increases plant tolerance to abscisic acid and assists in basal resistance against Pseudomonas syringae DC3000. Plant Physiology, 166(2), 879–888. https://doi.org/10.1104/pp.114.248153spa
dc.relation.referencesJia, X., Qin, H., Bose, S. K., Liu, T., He, J., Xie, S., Ye, M., & Yin, H. (2020). Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. Plant Physiology and Biochemistry, 149, 301–312. https://doi.org/10.1016/j.plaphy.2020.01.037spa
dc.relation.referencesJorrín-novo, J. V, Maldonado, A. M., Echevarría-zomeño, S., Valledor, L., Castillejo, M. A., Curto, M., Valero, J., Sghaier, B., Donoso, G., & Redondo, I. (2009). Plant proteomics update ( 2007 – 2008): Second-generation proteomic techniques , an appropriate experimental design , and data analysis to fulfill MIAPE standards , increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72(3), 285–314. https://doi.org/10.1016/j.jprot.2009.01.026spa
dc.relation.referencesJoshi, S. M., De Britto, S., & Jogaiah, S. (2021). Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. Journal of Biotechnology, 325, 196–206. https://doi.org/10.1016/j.jbiotec.2020.10.023spa
dc.relation.referencesKamarudin, A. N., Lai, K. S., Lamasudin, D. U., Idris, A. S., & Balia Yusof, Z. N. (2017). Enhancement of thiamine biosynthesis in oil palm seedlings by colonization of endophytic fungus hendersonia toruloidea. Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.01799spa
dc.relation.referencesKarmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3spa
dc.relation.referencesKatam, R., Lin, C., Grant, K., Katam, C. S., & Chen, S. (2022). Advances in Plant Metabolomics and Its Applications in Stress and Single‐Cell Biology. International Journal of Molecular Sciences, 23(13), 1–35. https://doi.org/10.3390/ijms23136985spa
dc.relation.referencesKheyri, F., Taheri, P., & Jafarinejad-Farsangi, S. (2022). Thiamine and Piriformospora indica induce bean resistance against Rhizoctonia solani: The role of polyamines in association with iron and reactive oxygen species. Biological Control, 172, 1–13. https://doi.org/10.1016/j.biocontrol.2022.104955spa
dc.relation.referencesKim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany, 65(9), 2295–2306. https://doi.org/10.1093/jxb/eru109spa
dc.relation.referencesKumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001spa
dc.relation.referencesKuźniak, E. (2010). The Ascorbate–Gluathione cycle and related redox signals in plant–pathogen interactions. In N. A. Anjum, S. Umar, & M. T. Chan (Eds.), Ascorbate-Glutathione Pathway and Stress Tolerance in Plants (1st ed., pp. 115–136). Springer Dordrecht. https://doi.org/10.1007/978-90-481-9404-9spa
dc.relation.referencesLe Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(735), 1–19. https://doi.org/10.3389/fpls.2016.00735spa
dc.relation.referencesLecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004spa
dc.relation.referencesLee, I., Seo, Y., Coltrane, D., Hwang, S., Oh, T., & Marcotte, E. M. (2011). Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences, 108(45), 18548–18553. https://doi.org/10.1073/pnas.1110384108spa
dc.relation.referencesLemaître-Guillier, C., Hovasse, A., Schaeffer-Reiss, C., Recorbet, G., Poinssot, B., Trouvelot, S., Daire, X., Adrian, M., & Héloir, M. C. (2017). Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. Journal of Proteomics, 156, 113–125. https://doi.org/10.1016/j.jprot.2017.01.016spa
dc.relation.referencesLi, Lin, Zhu, X. M., Zhang, Y. R., Cai, Y. Y., Wang, J. Y., Liu, M. Y., Wang, J. Y., Bao, J. D., & Lin, F. C. (2022). Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094658spa
dc.relation.referencesLi, Linlin, Guo, P., Jin, H., & Li, T. (2016). Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato. Horticultural Plant Journal, 2(3), 154–162. https://doi.org/10.1016/j.hpj.2016.08.004spa
dc.relation.referencesLi, X., Bai, T., Li, Y., Ruan, X., & Li, H. (2013). Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Science, 11(1), 1–14. https://doi.org/10.1186/1477-5956-11-41spa
dc.relation.referencesLi, Y., Xiong, W., He, F., Qi, T., Sun, Z., Liu, Y., Bai, S., Wang, H., Wu, Z., & Fu, C. (2022). Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis, and improves cell wall digestibility in switchgrass. Journal of Experimental Botany, 73(12), 4157–4169. https://doi.org/10.1093/jxb/erac147spa
dc.relation.referencesLightfoot, D. J., Mcgrann, G., & Able, A. J. (2017). The role of a cytosolic superoxide dismutase in barley–pathogen interactions. Molecular Plant Pathology, 18(3), 323–335. https://doi.org/10.1111/mpp.12399spa
dc.relation.referencesLim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., & Wang-Pruski, G. (2013). Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. In Journal of Proteomics (Vol. 93). Elsevier B.V. https://doi.org/10.1016/j.jprot.2013.03.010spa
dc.relation.referencesLin, C. H., Pan, Y., Ye, N., Shih, Y., Liu, F. W., & Chen, C. Y. (2020). LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Molecular Plant Pathology, 21(9), 1149–1166. https://doi.org/10.1111/mpp.12968spa
dc.relation.referencesLiu, B., Stevens-Green, R., Johal, D., Buchanan, R., & GeddeSMcAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. Journal of Plant Physiology, 269, 153593. https://doi.org/10.1016/j.jplph.2021.153593spa
dc.relation.referencesLiu, Z., Zhang, M., Chen, P., Harnly, J. M., & Sun, J. (2022). Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. Journal of Agricultural and Food Chemistry, 70(36), 11138–11153. https://doi.org/10.1021/acs.jafc.2c01878spa
dc.relation.referencesLlorens, E., García-Agustín, P., & Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection. Scientia Agricola, 74(1), 90–100. https://doi.org/10.1590/1678-992x-2016-0012spa
dc.relation.referencesLópez-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., Conejero, V., & Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8, 1–15. https://doi.org/10.3389/fpls.2017.01188spa
dc.relation.referencesLorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005spa
dc.relation.referencesLozano-Durán, R., & Robatzek, S. (2015). 14-3-3 Proteins in plant-pathogen interactions. Molecular Plant-Microbe Interactions, 28(5), 511–518. https://doi.org/10.1094/MPMI-10-14-0322-CRspa
dc.relation.referencesMADR, A.-. (2022). Asocolflores y el éxito de la floricultura colombiana en los mercados internacionales. Agronet. https://www.agronet.gov.co/Noticias/Paginas/Asocolflores-y-el-éxito-de-la-floricultura-colombiana-en-loSMercados-internacionales.aspxspa
dc.relation.referencesMaldonado Alconada, M. A., Castillejo, M. Á., Rey, M. D., Labella, M., Tienda Parrilla, M., Hernández Lao, T., Honrubia, I., Ramírez, J., Guerrero, V., López, C., Valledor, L., Navarro, R., & Jorrin Novo, J. V. (2022). Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for and How. International Journal of Molecular Sciences, 23(9980), 1–26.spa
dc.relation.referencesManghwar, H., & Li, J. (2022). Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. International Journal of Molecular Sciences, 23(2). https://doi.org/10.3390/ijms23020828spa
dc.relation.referencesMartínez-González, A. P., Coy-barrera, E., & Ardila, H. D. (2022). Extraction and analysis of apoplastic phenolic me- tabolites in carnation roots and stems (Dianthus caryophyllus L). Revista Colombiana de Química, 51(1), 3–13. https://doi.org/https://doi.org/10.15446/rev.colomb.quim.v51n1.99258spa
dc.relation.referencesMartínez González, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Universidad Nacional de colombia.spa
dc.relation.referencesMatern, U. (1994). Dianthus Species (Carnation): In Vitro Culture and the Biosynthesis of Dianthalexin and Other Secondary Metabolites. In Y. Bajaj (Ed.), Medicinal and Aromatic Plants (pp. 170–184). Springer-Verlag. https://doi.org/10.1007/978-3-662-30369-6_12spa
dc.relation.referencesMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68, 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132spa
dc.relation.referencesMehta, C. M., Palni, U., Franke-Whittle, I. H., & Sharma, A. K. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34(3), 607–622. https://doi.org/10.1016/j.wasman.2013.11.012spa
dc.relation.referencesMelero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., Vela-Delgado, M. D., Navas-Becerra, J. A., & Basallote-Ureba, M. J. (2011). Effects of soil amendment with poultry manure on carnation Fusarium wilt in greenhouses in southwest Spain. Crop Protection, 30(8), 970–976.spa
dc.relation.referencesMhlongo, M. I., Tugizimana, F., Piater, L. A., Steenkamp, P. A., Madala, N. E., & Dubery, I. A. (2017). Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells. Biochemical and Biophysical Research Communications, 482(4), 1498–1503. https://doi.org/10.1016/j.bbrc.2016.12.063spa
dc.relation.referencesMhlongo, Msizi I., Steenkamp, P. A., Piater, L. A., Madala, N. E., & Dubery, I. A. (2016). Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Frontiers in Plant Science, 7, 1–16. https://doi.org/10.3389/fpls.2016.01527spa
dc.relation.referencesMierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as Important Molecules of Plant Interactions with the Environment. 16240–16265. https://doi.org/10.3390/molecules191016240spa
dc.relation.referencesMohammadi, M. A., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., & Wang-Pruski, G. (2019). Effects of potassium phosphite on biochemical contents and enzymatic activities of chinese potatoes inoculated by phytophthora infestans. Applied Ecology and Environmental Research, 17(2), 4499–4514.spa
dc.relation.referencesMorkunas, I., Formela, M., Floryszak-Wieczorek, J., Marczak, Ł., Narozna, D., Nowak, W., & Bednarski, W. (2013). Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. Plant Science, 211, 102–121. https://doi.org/10.1016/j.plantsci.2013.07.007spa
dc.relation.referencesMoya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control, 92, 153–163. https://doi.org/10.1016/j.biocontrol.2015.10.006spa
dc.relation.referencesNaeem Bajwa, M., Bibi, A., Zaeem Idrees, M., Zaman, G., Farooq, U., & Tufail Bhatti, T. (2021). Elicitation, A Mechanistic Approach to Change the Metabolic Pathway of Plants to Produce Pharmacological Important Compounds in In-vitro Cell Cultures. Global Journal of Engineering Sciences, 8(1), 1–7. https://doi.org/10.33552/gjes.2021.08.000678spa
dc.relation.referencesNakkeeran, S., Vinodkumar, S., Dheepa, R., & Renukadevi, P. (2018). Diseases of Carnation and their management. In V. Devappa, D. Singh, & S. Jahagirdar (Eds.), Diseases of Ornamental Crops (pp. 99–130). Indian Phytopathological Society.spa
dc.relation.referencesNgou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34, 1447–1478. https://doi.org/10.1093/plcell/koac041spa
dc.relation.referencesNiemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054spa
dc.relation.referencesOMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación (Organización Mundial de la salud (ed.)).spa
dc.relation.referencesOrozco-Mosqueda, M. del C., Fadiji, A. E., Babalola, O. O., & Santoyo, G. (2023). Bacterial elicitors of the plant immune system: An overview and the way forward. Plant Stress, 7, 1–8. https://doi.org/10.1016/j.stress.2023.100138spa
dc.relation.referencesOverbeek, L. van, Leiss, K., Bac-Molenaar, J., Duhamel, M., & Mouden, S. (2022). Plant resilience - role of chemical and microbial elicitors on metabolome and microbiome (Issue WPR-1043). https://doi.org/10.18174/566561spa
dc.relation.referencesParaschivu, M., Simnic-craiova, D. S., Timisoara, V. M., Faculty, H., & County, D. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat. Research Journal of Agricultural Science, 45(1), 193–201.spa
dc.relation.referencesPastor-Fernández, J., Sánchez-Bel, P., Gamir, J., Pastor, V., Sanmartín, N., Cerezo, M., AndréSMoreno, S., & Flors, V. (2022). Tomato Systemin induces resistance against Plectosphaerella cucumerina in Arabidopsis through the induction of phenolic compounds and priming of tryptophan derivatives. Plant Science, 321, 1–12. https://doi.org/10.1016/j.plantsci.2022.111321spa
dc.relation.referencesPérez-Mora, W., Jorrin-Novo, J. V., & Melgarejo, L. M. (2018). Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 240. https://doi.org/10.1016/j.foodchem.2017.07.128spa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734spa
dc.relation.referencesPérez Mora, W., Castillejo, M. Á., Jorrín Novo, J., Melgarejo, L. M., & Ardila, H. D. (2024). Thiamine-induced resistance in carnation against Fusarium oxysporum f. sp dianthi and mode of action studies based on the proteomics analysis of root tissue. Scientia Horticulturae, 323, 112549. https://doi.org/10.1016/j.scienta.2023.112549spa
dc.relation.referencesPinto, K. M. S., Cordeiro, L., de Souza Gomes, H., da Silva, H. F., & Miranda, J. dos reis. (2012). Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola : epidemiological , biochemical and economic aspects. European Journal of Plant Pathology, 134, 745–754. https://doi.org/10.1007/s10658-012-0050-1spa
dc.relation.referencesPizano de M, M. (2000). Clavel (Dianthus caryophyllus L) (E. Hortitecnia (ed.)).spa
dc.relation.referencesPluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(395), 1–11. https://doi.org/10.1186/1471-2105-11-395spa
dc.relation.referencesPoli, A., Bertetti, D., Rapetti, S., Gullino, M. L., & Garibaldi, A. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 95(2), 255–263.spa
dc.relation.referencesPoór, P., Czékus, Z., Tari, I., & Ördög, A. (2019). The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20235842spa
dc.relation.referencesPorter, K., Shimono, M., Tian, M., & Day, B. (2012). Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLoS Pathogens, 8(11), e1003006. https://doi.org/10.1371/journal.ppat.1003006spa
dc.relation.referencesPushpalatha, H. G., Sudisha, J., Geetha, N. P., Amruthesh, K. N., & Shetty, H. S. (2011). Thiamine seed treatment enhances LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biologia Plantarum, 55(3), 522–527. https://doi.org/10.1007/s10535-011-0118-3spa
dc.relation.referencesRamagli, L. S., & Rodriguez, L. V. (1985). Quantitation of microgram amounts of protein in two‐dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6(11), 559–563. https://doi.org/10.1002/elps.1150061109spa
dc.relation.referencesRamaroson, M. L., Koutouan, C., Helesbeux, J. J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. (2022). Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules, 27(8371), 1–24. https://doi.org/10.3390/molecules27238371spa
dc.relation.referencesRamos, O., Smith, M., Fritz, A. K., & Madl, R. L. (2017). Salicylic Acid-Mediated Synthetic Elicitors of Systemic Acquired Resistance Administered to Wheat Plants at Jointing Stage Induced Phenolics in Mature Grains. Crop Science, 3128, 3122–3128. https://doi.org/10.2135/cropsci2015.11.0697spa
dc.relation.referencesRiaz, T., Khan, S. N., & Javaid, A. (2009). Effect of co-cultivation and crop rotation on corm rot disease of Gladiolus. Scientia Horticulturae, 121(2), 218–222. https://doi.org/10.1016/j.scienta.2009.01.041spa
dc.relation.referencesRojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 1–12. https://doi.org/10.3389/fpls.2014.00017spa
dc.relation.referencesRomanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez Martínez, P., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003spa
dc.relation.referencesRomero-Cuervo, W. A., Pinzon-Sandoval, E. H., & Luis-Ayala, M. A. (2021). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas, 39(1), 7–15. https://doi.org/10.22267/rcia.223901.167spa
dc.relation.referencesRomero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192, 112933. https://doi.org/10.1016/j.phytochem.2021.112933spa
dc.relation.referencesRomero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.spa
dc.relation.referencesSadeghi, B., Mirzaei, S., & Fatehi, F. (2022). The proteomic analysis of the resistance responses in tomato during interaction with Alternaria alternate. Scientia Horticulturae, 304, 111295. https://doi.org/10.1016/j.scienta.2022.111295spa
dc.relation.referencesSaikia, R., Yadav, M., Varghese, S., Singh, B. P., Gogoi, D. K., Kumar, R., & Arora, D. K. (2006). Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathology Journal, 22(4), 339–347. https://doi.org/10.5423/PPJ.2006.22.4.339spa
dc.relation.referencesSanabria, K., Pérez, W., & Andrade, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 1–7. https://doi.org/10.1016/j.cropro.2020.105241spa
dc.relation.referencesSant, D., Casanova, E., Segarra, G., Avilés, M., Reis, M., & Trillas, M. I. (2010). Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biological Control, 53(3), 291–296. https://doi.org/10.1016/j.biocontrol.2010.01.012spa
dc.relation.referencesSantos-Rodríguez, J., Coy, E., & Ardila, H. D. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10(1447), 1–20. https://doi.org/10.3390/plants10071447spa
dc.relation.referencesSathiyabama, M., Gandhi, M., & Indhumathi, M. (2022). Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microbial Pathogenesis, 173(PB), 105893. https://doi.org/10.1016/j.micpath.2022.105893spa
dc.relation.referencesSathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/j.ijbiomac.2021.12.105spa
dc.relation.referencesSathiyabama, Muthukrishnan, Indhumathi, M., & Muthukumar, S. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/10.1016/j.carbpol.2019.02.037spa
dc.relation.referencesSchwachtje, J., Fischer, A., Erban, A., & Kopka, J. (2018). Primed primary metabolism in systemic leaves: A functional systems analysis. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18397-5spa
dc.relation.referencesSchymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105spa
dc.relation.referencesShen, S., Zhan, C., Yang, C., Fernie, A. R., & Luo, J. (2023). Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant, 16(1), 43–63. https://doi.org/10.1016/j.molp.2022.09.007spa
dc.relation.referencesSingh, K. S., van der Hooft, J. J. J., van Wees, S. C. M., & Medema, M. H. (2022). Integrative omics approaches for biosynthetic pathway discovery in plants. Natural Product Reports, 39(9), 1876–1896. https://doi.org/10.1039/d2np00032fspa
dc.relation.referencesSingh, P., Singh, J., Ray, S., Rajput, R. S., Vaishnav, A., Singh, R. K., & Singh, H. B. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 1–13. https://doi.org/10.1016/j.micres.2020.126482spa
dc.relation.referencesSoto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 30(2), 172–178. http://redalyc.org/articulo.oa?id=180325300002spa
dc.relation.referencesSoto-sedano, J., & Filgueira-Duarte, J. J. (2012). Evaluation or the reproduction proficiency of carnation (Dianthus caryophyllus L.) hybrids and varieties as search of useful parentals for a breeding program. Revista Facultad de Ciencias Básicas, 8(2), 184–195.spa
dc.relation.referencesSoto, C. J., Pabón, F., & Filgueria, J. (2009). Relación Entre El Color De La Flor Y La Tolerancia a Patógenos. Revista Facultad de Ciencias Básicas, 5(1), 116–129.spa
dc.relation.referencesSukarta, O. C. A., Zheng, Q., Slootweg, E. J., Mekken, M., Mendel, M., Putker, V., Bertran, A., Brand, A., Overmars, H., Pomp, R., Roosien, J., Boeren, S., Smant, G., & Goverse, A. (2022). Glycine-rich rna-binding protein 7 potentiates effector-triggered immunity through an RNA recognition motif. Plant Physiology, 189(2), 972–987. https://doi.org/10.1093/plphys/kiac081spa
dc.relation.referencesSuprakash Ojha, N. C. C. (2012). Induction of Resistance in Tomato Plants Against Through Salicylic Acid and Trichoderma Harzianum. Journal of Plant Protection Research, 52(2), 220–225. https://doi.org/10.2478/v10045-012-0034-3spa
dc.relation.referencesSzklarczyk, D., Gable, A., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), 607–613, doi.org/10.1093/nar/gky1131spa
dc.relation.referencesTon, J., Van Der Ent, S., Van Hulten, M., Pozo, M., Van Oosten, V., van Loon, L., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC Wprs Bull, 44, 3–13.spa
dc.relation.referencesTorky, Z. A. (2016). Vitamin B Mediated Priming of Disease Resistance and Defense Responses to Tobacco Mosaic Virus in Capsicum annuum L. Plants. Journal of Antivirals & Antiretrovirals, 8(2), 35–53. https://doi.org/10.4172/jaa.1000133spa
dc.relation.referencesTripathi, D., Raikhy, G., & Kumar, D. (2019). Chemical elicitors of systemic acquired resistance - Salicylic acid and its functional analogs. Current Plant Biology, 17, 48–59. https://doi.org/10.1016/j.cpb.2019.03.002spa
dc.relation.referencesTugizimana, F., Mhlongo, M., Piater, L., & Dubery, I. A. (2018). Metabolomics in plant priming research: The way forward? International Journal of Molecular Sciences, 19(6), 1–18. https://doi.org/10.3390/ijms19061759spa
dc.relation.referencesTunc-ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress, Plant Physiology 151 (1), 421–432. https://doi.org/10.1104/pp.109.140046spa
dc.relation.referencesValledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V. Jorrín-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics: Methods and Protocols (2nd ed., Vol. 1072, pp. 347–358). Humana Press - Springer Protocols. https://doi.org/10.7551/mitpress/1247.003.0039spa
dc.relation.referencesVanegas-Cano, L. J., Martínez-Peralta, S. T., Coy-Barrera, E., & Ardila-Barrantes, H. D. (2022). Plant hormones accumulation and its relationship with symplastic peroxidases expression during carnation-Fusarium oxysporum interaction. Ornamental Horticulture, 28(1), 49–59. https://doi.org/10.1590/2447-536X.V28I1.2412spa
dc.relation.referencesVerchot, J., & Pajerowska, K. M. (2021). UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Current Opinion in Virology, 47, 9–17. https://doi.org/10.1016/j.coviro.2020.11.001spa
dc.relation.referencesVimala, R., & Suriachandraselvan, M. (2009). Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2(1), 111–114.spa
dc.relation.referencesVinchesi, A. C., Rondon, S., & Goyer, A. (2017). Priming Potato with Thiamin to Control Potato Virus Y. American Journal of Potato Research, 94, 120–128. https://doi.org/10.1007/s12230-016-9552-2spa
dc.relation.referencesWang, J., Lian, N., Zhang, Y., Man, Y., Chen, L., Yang, H., Lin, J., & Jing, Y. (2022). The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. International Journal of Molecular Sciences, 23(24). https://doi.org/10.3390/ijms232415553spa
dc.relation.referencesWang, Lanxiang, Chen, M., Lam, P. Y., Dini-Andreote, F., Dai, L., & Wei, Z. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 10(1), 1–13. https://doi.org/10.1186/s40168-022-01420-xspa
dc.relation.referencesWang, Lanxiang, Lui, A. C. W., Lam, P. Y., Liu, G., Godwin, I. D., & Lo, C. (2020). Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal, 18(11), 2170–2172. https://doi.org/10.1111/pbi.13397spa
dc.relation.referencesWang, Long, Wang, L., Yang, T., Wang, B., Lin, Q., Zhu, S., Li, C., Ma, Y., Tang, J., Xing, J., Li, X., Liao, H., Staiger, D., Hu, Z., Yu, F., & Yu, F. (2020). RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances, 6(21), 1–14. https://doi.org/10.1126/sciadv.aaz1622spa
dc.relation.referencesWang, Y., Wei, X., Jing, X., Chang, Y., Hu, C., Wang, X., & Chen, K. (2016). The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. International Journal of Molecular Sciences, 17, 2–18. https://doi.org/10.3390/ijms17060805spa
dc.relation.referencesWang, Z., Song, Q., Shuai, L., Htun, R., Malviya, M. K., Li, Y., Liang, Q., Zhang, G., Zhang, M., & Zhou, F. (2020). Metabolic and proteomic analysis of nitrogen metabolism mechanisms involved in the sugarcane – Fusarium verticillioides interaction. Journal of Plant Physiology, 251, 153207. https://doi.org/10.1016/j.jplph.2020.153207spa
dc.relation.referencesWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5, 1–13. https://doi.org/10.3389/fpls.2014.00655spa
dc.relation.referencesWolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. . McGovern & W. H. Elmer (Eds.), Handbook of Plant Disease Management (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319-39670-5_14spa
dc.relation.referencesXie, X., Han, Y., Yuan, X., Zhang, M., Li, P., Ding, A., Wang, J., Cheng, T., & Zhang, Q. (2022). Transcriptome Analysis Reveals that Exogenous Melatonin Confers Lilium Disease Resistance to Botrytis elliptica. Frontiers in Genetics, 13, 1–12. https://doi.org/10.3389/fgene.2022.892674spa
dc.relation.referencesYáñez-Juárez, M. G., López-Orona, C. A., Ayala-Tafoya, F., Partida Ruvalcaba, L., Velázquez-Alcaraz, T. de J., & Medina-López, R. (2018). Phosphites as alternative for the management of phytopathological problems Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Revista Mexicana de Fitopatología, 79–94. https://doi.org/10.18781/R.MEX.FIT.1710-7spa
dc.relation.referencesYang, F., Wu, C., Zhu, G., Yang, Q., Wang, K., & Li, Y. (2022). An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics, 114(6), 110516. https://doi.org/10.1016/j.ygeno.2022.110516spa
dc.relation.referencesYang, Q., Li, J., Sun, J., & Cui, X. (2022). Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology, 119, 101814. https://doi.org/10.1016/j.pmpp.2022.101814spa
dc.relation.referencesYin, Y., Bi, Y., Li, Y., Wang, Y., & Wang, D. (2012). Use of thiamine for controlling Alternaria alternata postharvest rot in Asian pear (Pyrus bretschneideri Rehd. cv. Zaosu). International Journal of Food Science and Technology, 47(10), 2190–2197. https://doi.org/10.1111/j.1365-2621.2012.03088.xspa
dc.relation.referencesYong-hong, G. E., Can-ying, L. I., Jing-yi, L., & Dan-shi, Z. (2017). Effects of thiamine on Trichothecium and Alternaria rots of muskmelon fruit and the possible mechanisms involved. Journal of Integrative Agriculture, 16(11), 2623–2631. https://doi.org/10.1016/S2095-3119(16)61584-8spa
dc.relation.referencesZhang, X., Yang, Z., Wu, D., & Yu, F. (2020). RALF–FERONIA Signaling: Linking Plant Immune response with cell growth. Plant Communications, 1(4), 100084. https://doi.org/10.1016/j.xplc.2020.100084spa
dc.relation.referencesZhao, J. (2015). Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science, 20(9), 576–585. https://doi.org/10.1016/j.tplants.2015.06.007spa
dc.relation.referencesZhao, M., Jin, J., Gao, T., Zhang, N., Jing, T., Wang, J., Ban, Q., Schwab, W., & Song, C. (2019). Glucosyltransferase CsUGT78A14 Regulates Flavonols Accumulation and Reactive Oxygen Species Scavenging in Response to Cold Stress in Camellia sinensis. Frontiers in Plant Science, 10, 1–14. https://doi.org/10.3389/fpls.2019.01675spa
dc.relation.referencesZheng, X., Gong, M., Zhang, Q., Tan, H., Li, L., Tang, Y., Li, Z., Peng, M., & Deng, W. (2022). Metabolism and Regulation of Ascorbic Acid in Fruits. Plants, 11(12), 1–18. https://doi.org/10.3390/plants11121602spa
dc.relation.referencesZhou, J., Sun, A., & Xing, D. (2013). Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany, 64(11), 3261–3272. https://doi.org/10.1093/jxb/ert166spa
dc.relation.referencesZhou, Y., Lambrides, C. J., & Fukai, S. (2013). Drought resistance of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. Environmental and Experimental Botany, 85, 22–29. https://doi.org/10.1016/j.envexpbot.2012.07.008spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembFloriculturaspa
dc.subject.lembFloricultureeng
dc.subject.lembProtección de las plantasspa
dc.subject.lembPlants, protection ofeng
dc.subject.lembVitamina B1spa
dc.subject.lembVitamin B1eng
dc.subject.proposalClavelspa
dc.subject.proposalInductor de resistenciaspa
dc.subject.proposalSensibilizaciónspa
dc.subject.proposalinmunidad innata en plantasspa
dc.subject.proposalTiaminaspa
dc.subject.proposalResistance inductorseng
dc.subject.proposalCarnationeng
dc.subject.proposalPlant innate immunityeng
dc.subject.proposalPrimingeng
dc.subject.proposalResistance inductorseng
dc.subject.proposalThiamineeng
dc.titleAproximación metabolómica y proteómica para el estudio de los mecanismos asociados a la inducción de resistencia mediante el uso de sustancias inductoras comerciales en clavel (Dianthus caryophyllus L), para el control del marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthispa
dc.title.translatedMetabolomics and proteomics-based approach for studying mechanisms associated with resistance induction through the use of commercial inducing substances in carnation (Dianthus caryophyllus L) for the control of vascular wilt caused by Fusarium oxysporum f. sp. dianthieng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio de las respuestas bioquímicas, moleculares y fisiológicas ocasionadas por la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L): nuevas alternativas limpias para el control del marchitamiento vascular, con número de contrato RC No. 80740-148-2019spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013576890.2023.pdf
Tamaño:
4.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: