Una propuesta de modelo para la determinación de la probabilidad de recaudo del impuesto vehicular en Antioquia
| dc.contributor.advisor | Villa Garzón, Fernán Alonso | |
| dc.contributor.author | Orozco Zuluaga, Yeison Andrés | |
| dc.contributor.cvlac | Orozco Zuluaga, Yeison Andrés [0001678804] | spa |
| dc.contributor.orcid | Orozco Zuluaga, Yeison Andrés [0000-0002-5719-2731] | spa |
| dc.contributor.orcid | Villa Garzón, Fernán Alonso [0000-0002-3863-6106] | spa |
| dc.contributor.researchgate | Orozco-Zuluaga, Yeison Andrés [profile/Yeison-Orozco-Zuluaga] | spa |
| dc.contributor.researchgroup | Senda R&D Group: Software Engineering And Data Science Research And development Group | spa |
| dc.coverage.country | Colombia | |
| dc.date.accessioned | 2023-11-10T16:24:02Z | |
| dc.date.available | 2023-11-10T16:24:02Z | |
| dc.date.issued | 2023 | |
| dc.description | ilustraciones, diagramas | spa |
| dc.description.abstract | La implementación de tecnologías emergentes y modelos para el soporte de decisiones, como la priorización en los procesos de fiscalización, constituye uno de los retos identificados en la administración tributaria. Con el fin de profundizar en el análisis de datos, surge la necesidad de implementar herramientas que permitan una mayor comprensión. En este sentido, se ha desarrollado un modelo para determinar la probabilidad de recaudo del impuesto vehicular en el departamento de Antioquia. Al revisar la literatura existente, se encontró que se emplean modelos de clasificación y regresión para abordar esta problemática. Después de comprender el contexto empresarial y los datos relevantes, se ha diseñado un modelo robusto que proporciona datos probabilísticos para cada contribuyente. Los resultados indican que el modelo basado en Bosques Aleatorios (Random Forest), un algoritmo de aprendizaje supervisado que permite hacer regresión sobre una variable dependiente a partir de una o más variables independientes, muestra las mejores métricas entre los modelos evaluados y responde de manera más efectiva a las necesidades específicas del problema. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The implementation of emerging technologies and decision support models, such as prioritization in examination processes, constitutes one of the identified challenges in tax administration. In order to enhance data analysis, there is a need to deploy tools that provide deeper insights. Accordingly, a model has been developed to determine the probability of vehicle tax collection in the department of Antioquia. The literature review reveals the utilization of classification and regression models for this purpose. After comprehending the business context and key data insights, a robust model has been designed to generate probabilistic data for each taxpayer. It is concluded that the Random Forest model, a supervised learning algorithm that allows regression on a dependent variable from one or more independent variables, exhibits superior metrics compared to the evaluated models and best addresses the specific requirements of the problem. | eng |
| dc.description.curriculararea | Área Curricular de Ingeniería de Sistemas e Informática | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
| dc.description.researcharea | Analítica | spa |
| dc.format.extent | xii, 112 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84938 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.faculty | Facultad de Minas | spa |
| dc.publisher.place | Medellín, Colombia | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
| dc.relation.indexed | RedCol | spa |
| dc.relation.indexed | LaReferencia | spa |
| dc.relation.references | L. N. Yunianti, N. K. Putri, Y. A. Sudibyo y A. Rafinda, «THE INFLUENCE OF AWARENESS, MORAL OBLIGATIONS, TAX ACCESS, SERVICE QUALITY AND TAX SANCTIONS ON TAXPAYER COMPLIANCE IN PAYING MOTOR VEHICLE TAX,» Journal of Accounting and Strategic Finance, 2019. | spa |
| dc.relation.references | M. Jupri y R. Sarno., «Taxpayer compliance classification using C4. 5, SVM, KNN, Naive Bayes and MLP.,» 2018 International Conference on Information and Communications Technology (ICOIACT), 2018. | spa |
| dc.relation.references | A. Faúndez-Ugalde|, R. Mellado-Silva y E. Aldunate-Lizana, «Use of artificial intelligence by tax administrations: An analysis regarding taxpayers’ rights in Latin Amer ican countries,» Computer Law & Security Review, 2020. | spa |
| dc.relation.references | C. García-Herrera, «The use of Artificial Intelligence by tax administrations, a matter of principles,» 2020. | spa |
| dc.relation.references | OCDE, «Tax Administration: Comparative Information on OECD and Other Advanced and Emerging Economies,» 2021. | spa |
| dc.relation.references | A. Biryukov y N. Antonova, «Expert Systems of Real Time as Key Tendency of Artificial Intelligence in Tax Administration,» Springer Nature Switzerland, 2019. | spa |
| dc.relation.references | D. Gallegos-Baeza, I. Velásquez, A. Rodríguez y A. Caro, «Uso de Arquitecturas Empresariales en e-Government Municipal: Un Mapeo Sistemático de la Literatura,» Revista Ibérica de Sistemas e Tecnologias de Informação, nº E17, pp. 816-829, 2018. | spa |
| dc.relation.references | B. Kitchenham, O. P. Brereton, M. Turner, J. Bailey y S. Linkman, «Systematic literature reviews in software engineering – A systematic literature review,» Information and Software Technology, nº 51, pp. 7-15, 2009. | spa |
| dc.relation.references | F. J. García-Peñalvo, «Revisión sistemática de literatura en los Trabajos de Final de Máster y en las Tesis Doctorales,» de Grupo de Investigación en InterAcción y eLearning, Salamanca, 2017. | spa |
| dc.relation.references | G. V. Mabe-Madisa, «A Decision Tree and Naïve Bayes algorithm for income tax prediction,» African Journal of Science, Technology, Innovation and Development, vol. 10, nº 4, pp. 401-409, 2018. | spa |
| dc.relation.references | B. H.A Pilon, J. J. Murillo-Fuentes, J. P. C.L. da Costa, R. T. de Sousa Júnior y A. M.R. Serrano, «Predictive Analytics in Business Intelligence Systems via Gaussian Processes for Regression,» de Communications in Computer and Information Science, Lisboa, Portugal, Springer, 2016, p. 421–442. | spa |
| dc.relation.references | R. A. S. RAJA-WAHA y A. A. BAKAR, «Digital Economy Tax Compliance Model in Malaysia using Machine Learning Approach,» Sains Malaysiana, vol. 20, nº 7, pp. 2059-2077, 2021. | spa |
| dc.relation.references | Õ. R. Siimon y O. Lukason, «A Decision Support System for Corporate Tax Arrears Prediction,» Sustainability , vol. 13, nº 8363, pp. 1-23, 2021. | spa |
| dc.relation.references | C. K. HUAMÁN INGA, «NÁLISIS Y PRONÓSTICO DE LA RECAUDACIÓN DEL IMPUESTO VEHICULAR MUNICIPAL MEDIANTE LA METODOLOGÍA BOX-JENKINS,» 2020. | spa |
| dc.relation.references | R. Y. CONDORI CHAMBI, «MODELO DE PRONÓSTICO DEL IMPUESTO PREDIAL DE ADMINISTRACION TRIBUTARIA DE LA MUNICIPALIDAD PROVINCIAL DE PUNO - 2014,» 2014. | spa |
| dc.relation.references | P. Villalobos Villegas, «PRONÓSTICO DE INGRESOS TRIBUTARIOS RECAUDADOS DE IMPUESTOS GENERALES A LAS VENTAS A NIVEL NACIONAL, POR LA SUNAT, MEDIANTE LA METODOLOGÍA DE BOX Y JENKINS Y REDES NEURONALES ARTIFICIALES PARA EL AÑO 2014.,» 2014. | spa |
| dc.relation.references | V. Nagadevara y M. Gupta, «Audit Selection Strategy for Improving Tax Compliance – Application of Data Mining Techniques,» Foundations of Risk-Based Audits. Proceedings of the eleventh International Conference on e-Governance, Hyderabad, India, 2007. | spa |
| dc.relation.references | S. A. P. B. Neto, S. B. S. Monteiro, J. C. F. Souza y R. Matos-Chaim, «Using Data Envelopment Analysis to Ranking ICMS’s Taxpayers,» Mathematics and Computer Science, 2018. | spa |
| dc.relation.references | L. A. Chávez Maza y V. López Toache, «DETERMINANTES DEL RECAUDO DEL IMPUESTO A LA PROPIEDAD INMOBILIARIA: UN ENFOQUE ESTADÍSTICO PARA MÉXICO,» RIEM, pp. 89-119, 2019. | spa |
| dc.relation.references | N. Hashimzade, G. D. Myles y M. D. Rablen, «Predictive analytics and the targeting of audits,» Journal of Economic Behavior and Organization, vol. 124, pp. 130-145, 2016. | spa |
| dc.relation.references | R. Wei, B. Dong, X. Zhu, J. Ruan, Q. Zheng y H. He, «Unsupervised Conditional Adversarial Network for Tax Evasion Detection,» IEEE International Conference on Big Data (Big Data), 2019. | spa |
| dc.relation.references | E. Rahimikia, S. Mohammadi, T. Rahmani y M. Ghazanfari, «Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran,» International Journal of Accounting Information Systems, pp. 1-17, 2017. | spa |
| dc.relation.references | Y. Gao, B. Shi, B. Dong, Y. Wang, L. Mi y Q. Zheng, «Tax Evasion Detection with FBNE-PU Algorithm Based on PnCGCN and PU Learning,» IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021. | spa |
| dc.relation.references | M. Savić, J. Atanasijević, D. Jakovetić y N. Krejić, «Tax evasion risk management using a Hybrid Unsupervised Outlier Detection model,» Expert Systems With Applications, 2022. | spa |
| dc.relation.references | V. Baghdasaryan, H. Davtyanb, A. Sarikyanc y Z. Navas, «Improving Tax Audit Efficiency Using Machine Learning: The Role of Taxpayer’s Network Data in Fraud Detection,» APPLIED ARTIFICIAL INTELLIGENCE, 2021. | spa |
| dc.relation.references | F. Yahyaoui y M. Tkiouat, «Partially observable Markov methods in an agent-based simulation: a tax evasion case study,» Procedia Computer Science, vol. 127, p. 256–263, 2018. | spa |
| dc.relation.references | C. Pérez López, M. J. Delgado Rodríguez y S. De Lucas Santos, «Tax Fraud Detection through Neural Networks: An Application Using a Sample of Personal Income Taxpayers,» Future Internet, 2019. | spa |
| dc.relation.references | M. Zumaya, R. Guerrero, E. Islas, O. Pineda, C. Gershenson, G. Iñiguez y C. Pineda, «Identifying tax evasion in Mexico with tools from network science and machine learning,» arXiv preprint, 2021. | spa |
| dc.relation.references | E. Rahimikia, S. Mohammadi, T. Rahmani y M. Ghazanfari, «Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran,» International Journal of Accounting Information Systems, 2015. | spa |
| dc.relation.references | M. Jupri y R. Sarno, «Data mining, fuzzy AHP and TOPSIS for optimizing taxpayer supervision,» Indonesian Journal of Electrical Engineering and Computer Science, 2020. | spa |
| dc.relation.references | E. Rogstad y L. Briand, «Cost-effective Strategies for the Regression Testing of Database Applications:Case study and Lessons Learned,» Journal of Systems and Software, 2015. | spa |
| dc.relation.references | D. V. Cediel Sánchez, «DETERMINANTES DEL RECAUDO TRIBUTARIO EN LOS MUNICIPIOS DEL DEPARTAMENTO DE CUNDINAMARCA,» 2010. | spa |
| dc.relation.references | J. Creedy y J. F. Sanz-Sanz, «Elasticidades de la recaudación del IRPF,» CUADERNOS DE INFORMACIÓN ECONÓMICA, 2010. | spa |
| dc.relation.references | P. Castellón y J. D. Velásquez, «Caracterización de Contribuyentes que Presentan Facturas Falsas al SII mediante técnicas de Data Mining,» Revista Ingeniería de Sistemas, 2011. | spa |
| dc.relation.references | F. Ameur y M. Tkiouat, «The use of Expected Utility Theory (EUT) in Taxpayers’ Behaviour Modelling,» American Journal of Applied Sciences, 2017. | spa |
| dc.relation.references | C. Milner y B. Berg, «Tax Analytics Artificial Intelligence and Machine Learning,» 2017. [En línea]. Available: https://www.pwc.no/no/publikasjoner/Digitalisering/artificial-intelligence-and-machine-learning-final1.pdf. [Último acceso: 26 09 2021]. | spa |
| dc.relation.references | N. Japkowicz, «The Class Imbalance Problem: Significance and Strategies,» de Proc. 2000 International Conference on Artificial Intelligence, 2000. | spa |
| dc.relation.references | X.-Y. Liu, J. Wu y Z.-H. Zhou, «Exploratory Undersampling for Class-Imbalance Learning,» IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 2009. | spa |
| dc.relation.references | D. CALDARA y C. KAMPS, «The Analytics of SVARs: A Unified Framework to Measure Fiscal Multipliers,» Review of Economic Studies, p. 1015–1040, 2017. | spa |
| dc.relation.references | E. Almeida-Mota y L. Quinto-Lanz, «Risk Classification as an Incentive to Taxpayers’ Compliance,» Journal of Management Policy and Practice, 2018. | spa |
| dc.relation.references | IDECA, «Metodología para la Analítica de datos: Guía de buenas prácticas para analítica.,» Abril 2018. [En línea]. Available: https://ideca.gov.co/sites/default/files/MetodologiaAnaliticaDatos.pdf. [Último acceso: 26 09 2021]. | spa |
| dc.relation.references | CAOBA - Universidad de los Andes, «Perfil Alianza Caoba Reporte técnico,» Bogotá, 2017. | spa |
| dc.relation.references | S. Angée, S. I. Lozano-Argel, E. N. Montoya-Munera, J.-D. Ospina-Arango y M. S. Tabares-Betancur, «Towards an improved ASUM-DM process methodology for cross-disciplinary multi-organization Big Data & Analytics projects,» de Knowledge Management in Organizations, 2018. | spa |
| dc.relation.references | R. Mushtaq, «Augmented Dickey Fuller Test,» Université Paris, 2011. | spa |
| dc.relation.references | D. A. Dickey y W. A. Fuller, «Distribution of the Estimators dor Autoregressive Time Series With a Unit Root,» Journal of the American Statistical Association, vol. 366, pp. 427-431, 1979. | spa |
| dc.relation.references | S. Muñoz Romero, «Análisis multivariante: soluciones eficientes e interpretables,» 2015. | spa |
| dc.relation.references | D. U. Ordiz, «https://quantspace.es/,» 01 08 2020. [En línea]. Available: https://quantspace.es/2020/08/01/analisis-de-series-temporales-con-python-parte-2/. [Último acceso: 10 04 2023]. | spa |
| dc.relation.references | L. Breiman, «Random Forests,» Machine Learning, nº 45, pp. 5-32, 2001. | spa |
| dc.relation.references | J. M. Hilbe, de Practical Guide to Logistic Regression, Boca Ratón, Florida, Taylor & Francis Group, LLC, 2015, pp. 3-4. | spa |
| dc.relation.references | L. Rokach y O. Maimon, «Chapter 9: Decision Trees,» de The Data Mining and Knowledge Discovery Handbook, Beerseba, Israel., 2005, pp. 165-192. | spa |
| dc.relation.references | D. Heckerman, «A Tutorial on Learning With Bayesian Networks,» Learning in Graphical Models, M. Jordan, ed., MIT Press, Cambridge, MA,, pp. 1-48, 1996 (Revisado 2022). | spa |
| dc.relation.references | D. Berrar, «Bayes' Theorem and Naive Bayes Classi,» Encyclopedia of Bioinformatics and Computational Biology, vol. 1, pp. 403-412, 2018. | spa |
| dc.relation.references | E. Brasileiro-Troccoli, A. Guerra-Cerqueira, J. Brian-Lemos y M. Holz, «K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis,» Journal of Applied Geophysics, nº 198, pp. 1-17, 2022. | spa |
| dc.relation.references | L. Lia, S. Liub, Y. Penga y Z. Sun, «Overview of principal component analysis algorithm,» Optik, nº 127, p. 3935–3944, 2016. | spa |
| dc.relation.references | J. Brownlee, «Regression Metrics for Machine Learning,» 20 01 2021. [En línea]. Available: https://machinelearningmastery.com/regression-metrics-for-machine-learning/. [Último acceso: 25 03 2023]. | spa |
| dc.relation.references | CAOBA - Universidad de los Andes, «Perfil Alianza CaobaReporte técnico,» Bogotá, 2017. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.armarc | Automoviles - Impuestos | spa |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
| dc.subject.ddc | 330 - Economía::336 - Finanzas públicas | spa |
| dc.subject.proposal | Modelo estadístico | spa |
| dc.subject.proposal | Algoritmo de regresión | spa |
| dc.subject.proposal | Analítica | spa |
| dc.subject.proposal | Recaudo de impuestos | spa |
| dc.subject.proposal | Auditoría de impuestos | spa |
| dc.subject.proposal | Statistical model | eng |
| dc.subject.proposal | Regression algorithm | eng |
| dc.subject.proposal | Analytics | eng |
| dc.subject.proposal | Tax collection | eng |
| dc.subject.proposal | Tax audit | eng |
| dc.title | Una propuesta de modelo para la determinación de la probabilidad de recaudo del impuesto vehicular en Antioquia | spa |
| dc.title.translated | A propose of model to determine the probability of vehicle tax collection in Antioquia. | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036399995.2023.pdf
- Tamaño:
- 1.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

