Evaluación de los efectos electrotérmicos de campos electromagnéticos de baja frecuencia en el tejido asociado a extremidades del cuerpo humano
dc.contributor.advisor | Herrera León, Fernando Augusto | |
dc.contributor.author | Gelvez Osorio, Samuel Andrey | |
dc.contributor.cvlac | Gelvez Osorio, Samuel Andrey [1007407129] | spa |
dc.date.accessioned | 2025-03-25T16:24:51Z | |
dc.date.available | 2025-03-25T16:24:51Z | |
dc.date.issued | 2025-03 | |
dc.description | ilustraciones, diagramas, tablas | |
dc.description.abstract | Dada la naturaleza de su funcionamiento, la infraestructura de transmisión y distribución de energía eléctrica genera campos electromagnéticos en el ambiente, los cuales pueden generar efectos biológicos que van desde la percepción hasta la molestia [1]. Ahora bien, el límite del nivel de exposición a estos campos no es un estándar internacional; en su lugar, cada país se encarga de establecer sus límites de exposición. Asimismo existe literatura que permite aproximarse a los efectos de la exposición a campos electromagnéticos de baja frecuencia en el cuerpo humano. Con esta información, es posible evaluar los valores límite de exposición según la población de cada país, incluso en ausencia de un estándar establecido para este propósito. La presente investigación parte de una revisión de la bibliografía sobre los efectos de la radiación no ionizante en tejidos biológicos. Esta proporciona las bases para el desarrollo de modelos computacionales de extremidades para la evaluación de dosimetría a baja frecuencia. Los modelos usan geometrías simples como círculos (2D) y cilindros (3D), los cuales contemplan diferentes capas de tejidos con sus respectivos parámetros eléctricos. Posteriormente, estos datos se complementan con los parámetros térmicos con el objetivo de aproximar los efectos electrotérmicos ocasionados por la radiación no ionizante a 60 Hz. Los resultados muestran cómo la orientación, el tamaño, los parámetros eléctricos de los tejidos y las condiciones de frontera de las extremidades influyen en los campos eléctricos internos distribuidos o inducidos. Por último, se estimaron los efectos eléctricos de densidad de corriente, campo eléctrico interno y densidad de flujo magnético para diferentes niveles de exposición, los cuales aproximan variaciones de temperatura entre 10^{-9} °C y 10^{-5} °C en tejidos como la piel. El estudio concluye con la propuesta de un modelo computacional basado en extremidades del cuerpo humano que aproxima los efectos eléctricos generados por la exposición a campos electromagnéticos de 60 Hz, permitiendo estimar densidades volumétricas de energía y aumentos de temperatura. Finalmente, se proponen recomendaciones enfocadas al ajuste de los valores normativos colombianos y a la elección de parámetros eléctricos de los tejidos para el desarrollo de modelos computacionales de dosimetría a baja frecuencia (Texto tomado de la fuente) | spa |
dc.description.abstract | Given the nature of its operation, the electric power transmission and distribution infrastructure generates electromagnetic fields in the environment, which can generate biological effects ranging from perception to annoyance [1]. However, the exposure level limit to these fields is not an international standard; each country is responsible for setting its exposure limits. There is also literature that makes it possible to approximate the effects of exposure to low-frequency electromagnetic fields on the human body. With this information, it is possible to evaluate the exposure limit values according to the population of each country, even in the absence of an established standard for this purpose. The present research is based on a literature review of the effects of non-ionizing radiation on biological tissues. It provides the basis for the development of computational models of extremities for the evaluation of low-frequency dosimetry. The models use simple geometries such as circles (2D) and cylinders (3D), which contemplate different tissue layers with their respective electrical parameters. Subsequently, these data are complemented with thermal parameters to approximate the electrothermal effects caused by non-ionizing radiation at 60 Hz. The results show how the orientation, size, electrical parameters of the tissues, and boundary conditions of the limbs influence the distributed or induced internal electric fields. Finally, electrical effects of current density, internal electric field, and magnetic flux density were estimated for different exposure levels, which approximate temperature variations between 10^{-9} °C and 10^{-5} °C in tissues such as skin. The study concludes with the proposal of a computational model based on human body extremities that approximates the electrical effects generated by exposure to 60 Hz electromagnetic fields, allowing the estimation of volumetric energy densities and temperature increases. Finally, recommendations focused on the adjustment of Colombian normative values and the choice of electrical parameters of tissues for developing computational models of low-frequency dosimetry are proposed. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.methods | Desarrollo y evaluación de modelos computacionales 2D y 3D en el ámbito del electromagnetismo y su interacción con el cuerpo humano. | spa |
dc.description.researcharea | Energía y electromagnetismo | spa |
dc.format.extent | xviii, 121 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87728 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | I. C. O. N. R. PROTECTION, “Icnirp guidelines - for limiting exposure to time-varying electric and magnetic fields (1hz – 100 khz),” 2010. | spa |
dc.relation.references | A.-R. M. B. M. Timur Saliev, Dinara Begimbetova, “Biological effects of non-ionizing electromagnetic fields: Two sides of a coin,” p. 26, 2018. | spa |
dc.relation.references | Sim4life. The premier simulation platform device design. interactions with anatomy. physiological responses. February 2024. [Online]. Available: https://sim4life.swiss/. | spa |
dc.relation.references | E. G. Jiménez, “Composición corporal: estudio y utilidad clínica,” Endocrinol Nutr., vol. 60, no. 2, pp. 69-75, 2013. | spa |
dc.relation.references | S. R. Alejandro Fernandez Schrunder and A. Rusu, “A finite element analysis and circuit modelling methodology for studying electrical impedance myography of human limbs,” in IEEE Transactions on Biomedical Engineering, vol. 69, no. 1, pages 244-252, year 2022. | spa |
dc.relation.references | O. M. de la Salud. (Julio de 2023) Efectos en la salud de las radiaciones ionizantes. Noviembre del 2023. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/ionizing-radiation-and-health-effects. | spa |
dc.relation.references | I. Foundation. Tissue properties - dielectric properties. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. | spa |
dc.relation.references | I. Foundation. Tissue properties - low frequency (conductivity). December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/low-frequency-conductivity/. | spa |
dc.relation.references | I. Foundation. Tissue properties - density. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/density/. | spa |
dc.relation.references | I. Foundation. Tissue properties - heat capacity. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/heat-capacity/. | spa |
dc.relation.references | G. B. y. M. B. A. Zubiaga, C. Kirsch, “A simple instrument to measure thermal transport properties of the human skin,” IEEE International Symposium on Medical Measurements and Applications (MeMeA), DOI: 10.1109/MeMeA52024.2021.9478754, 2021. | spa |
dc.relation.references | C. Multiphysics®, COMSOL Multiphysics, Reference Manual. COMSOL Multiphysics®, 2018. | spa |
dc.relation.references | O. M. de la Salud. (2016) ¿Qué son los campos electromagnéticos? Febrero del 2023. Disponible en: https://www.who.int/es/news-room/questions-and-answers/item/electromagnetic-fields. | spa |
dc.relation.references | N. I. for Public Health and R. the Environment, "Comparison of international policies on electromagnetic fields (power frequency and radiofrequency fields)," 2018. | spa |
dc.relation.references | R. d. C. CE 519, "Relativa a la exposición del público en general a campos electromagnéticos (0 Hz a 300 GHz)," de 12 de julio de 1999. | spa |
dc.relation.references | M. D. M. y Energía de Colombia, RESOLUCIÓN 40117 DE 2024, Por la cual se modifica el Reglamento Técnico de Instalaciones Eléctricas (RETIE), 2024. | spa |
dc.relation.references | I. I. C. O. E. S. IEEE Standards Coordinating Committee 39, "IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz." 2019. | spa |
dc.relation.references | I. A. for Research on Cancer. (Última actualización: 27 de julio de 2023) Agentes clasificados. Agosto 2023. Disponible en: https://monographs.iarc.who.int/agents-classified-by-the-iarc/. | spa |
dc.relation.references | I. A. for Research on Cancer. (Última actualización: 19 de febrero de 2021) IARC monographs preamble – preamble to the IARC monographs. Agosto 2023. Disponible en: https://monographs.iarc.who.int/iarc-monographs-preamble-preamble-to-the-iarc-monographs/. | spa |
dc.relation.references | I. A. for Research on Cancer. (Última actualización: 2023) Lista de clasificaciones. Agosto 2023. Disponible en: https://monographs.iarc.who.int/list-of-classifications. | spa |
dc.relation.references | I. C. O. N. R. PROTECTION, "ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," 2020. | spa |
dc.relation.references | H. D. T. N. C. R. Van den Heuvel AMJ, Haberley BJ, "The independent influences of heat strain and dehydration upon cognition," en Euro J Appl Physiol 117: páginas 1025–1037, año 2017. | spa |
dc.relation.references | B. M. J. R. Ramsey JD, Buford C, "Effects of work place thermal conditions on safe work behavior," en J Safety Res 14: páginas 105–114, año 1983. | spa |
dc.relation.references | C. WPJr, "Thermoregulatory disorders and illness related to heat and cold stress," en Autonomic Neurosci: Basic and Clinical 196: páginas 91–104, año 2016. | spa |
dc.relation.references | A. H. et al, "The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz," in Phys. Med. Biol., vol. 58, no. 4, páginas 903-921, año 2013. | spa |
dc.relation.references | A. F. M. O. y. K. L. R. T. Brockow, A. Wagner, "A randomized controlled trial on the effectiveness of mild water-filtered near infrared whole-body hyperthermia as an adjunct to a standard multimodal rehabilitation in the treatment of fibromyalgia," in Clin J Pain, vol. 23, no. 1, páginas 67-75, año 2007. | spa |
dc.relation.references | M. L.-M. M. H. y. P. J. H. M. W. Dewhirst, B. L. Viglianti, "Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia," in Int. J. Hyperthermia, vol. 19, no. 3, páginas 267-294, año 2003. | spa |
dc.relation.references | C. L.-A. M. D. W. H. B. L. V. y. M. W. D. P. S. Yarmolenko, E. J. Moon, "Thresholds for thermal damage to normal tissues: An update," in International Journal of Hyperthermia, vol. 27, no. 4, páginas 320-343, año 2011. | spa |
dc.relation.references | S. T. Y. P. S. D. M. W. N. E. . K. N. Van Rhoon, G. C., "Cem43°C thermal dose thresholds: A potential guide for magnetic resonance radiofrequency exposure levels?" in Eur Radiol, vol. 23, páginas 2215-2227, año 2013. | spa |
dc.relation.references | M. M. W. K. . W. S. Sasaki, K., "Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz," in Physics in Medicine Biology, páginas 6993-7010, año 2017. | spa |
dc.relation.references | I. C. O. N. R. PROTECTION, "ICNIRP guidelines on limits of exposure to static magnetic fields," 2009. | spa |
dc.relation.references | R. W. R. H. Y. K. R. T. E. J. F. Schenck, C. L. Dumoulin and I. L. McDougall, "Human exposure to 4.0 tesla magnetic fields in a whole body scanner," in Med Phys, vol. 19, páginas 1089-1098, año 1992. | spa |
dc.relation.references | T. S. B. B. v.-d.-J. P. H. E. P. Frank de Vocht, MS and P. Hans Kromhout, "Acute neurobehavioral effects of exposure to static magnetic fields: Analyses of exposure-response relations," in J Magn Reson Imaging, vol. 23, páginas 291-297, año 2006. | spa |
dc.relation.references | H. E. Frank de Vocht, Berna van-Wendel-de-Joode and H. Kromhout, "Neurobehavioral effects among subjects exposed to high static and gradient magnetic fields from a 1.5 tesla magnetic resonance imaging system—a case-crossover pilot study," in Magn Reson Med 50: pages 670–674, year 2003. | spa |
dc.relation.references | H. Y. Y. Kinouchi and T. Tenforde, "Theoretical analysis of magnetic field interactions with aortic blood flow," in Bioelectromagnetics 17: pages 21–32, year 1996. | spa |
dc.relation.references | P. Dimbylow, “Development of the female voxel phantom, naomi, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields,” in Phys. Med. Biol., vol. 50, no. 6, pages 1047-1070, year 2005. | spa |
dc.relation.references | C. H. A. Bahr, T. Bolz, “Numerical dosimetry elf: Accuracy of the method, variability of models and parameters, and the implication for quantifying guidelines,” in Health Physics, vol. 92, no. 6, pages 521-530, year 2007. | spa |
dc.relation.references | S. W. y. M. T. A. Hirata, K. Wake, “In-situ electric field and current density in japanese male and female models for uniform magnetic field exposures,” in Radiation Protection Dosimetry, vol. 135, no. 4, pages 272-275, year 2009. | spa |
dc.relation.references | T. N. et al., “Development of realistic high-resolution whole-body voxel models of japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry,” in Phys. Med. Biol., vol. 49, no. 1, pages 1-15, year 2004. | spa |
dc.relation.references | O. de Naciones Unidas. Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Septiembre del 2023. [Online]. Available: https://www.un.org/sustainabledevelopment/es/energy/. | spa |
dc.relation.references | Z. J. y L. Janoušek, “Low frequency electromagnetic field in microenvironments and their possible health impacts,” en Proc. IEEE, Žilina, Slovak Republic, 2019. | spa |
dc.relation.references | IEEE, “Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – part 1528: Human models, instrumentation, and procedures (frequency range of 4 mhz to 10 ghz),” IEEE Standard, New York, NY, USA, 2020. | spa |
dc.relation.references | E. P. J. V. M. P.-F. R. y. J. A. S.I. Rodríguez, A. Gallego, “Low-cost setup for electromagnetic sar evaluation in a human phantom,” Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, 2022. | spa |
dc.relation.references | A. C. P.E. Munhoz-Rojas, C.S. Segura-Salas, “Fields and current densities induced in the human body by low-frequency electromagnetic fields,” Institutos Lactec, Curitiba, Brasil, y R. Martins, J. Hoffmann-Neto, Substation Projects Division, COPEL GT, Curitiba, 2018. | spa |
dc.relation.references | H. Sánchez, “Importancia de la bioimpedancia eléctrica en la identificación de enfermedades,” diciembre 2023. [Online]. Disponible en: https://periodico.unal.edu.co/articulos/que-es-la-bioimpedancia-electrica-y-para-que-sirve/. | spa |
dc.relation.references | R. W. L. S. Gabriel and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, no. 41, pp. 2251–2269, 1996. | spa |
dc.relation.references | E. Salkim, “Analysis of tissue electrical properties on bio-impedance variation of upper limbs,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 5, pp. 1839–1850, 2022. [Online]. Available: https://doi.org/10.55730/1300-0632.3908. | spa |
dc.relation.references | Y. E. L. G.-M. R. Avila-Chaurand, L. R. Prado-León, “Dimensiones antropométricas de la población latinoamericana: México, Cuba, Colombia, Chile,” Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, Centro de Investigaciones en Ergonomía, Guadalajara, Jalisco, México, 2007. | spa |
dc.relation.references | G. X.-Z. Z. Y. W. y. W. Y. D. Geng, C. Li, “Development of electromagnetic environment of three-phase power lines for bio-effects evaluation,” Tianjin, China, 2012. | spa |
dc.relation.references | A. N. del Espectro, “Resolución 774 de 2018, límites máximos de exposición a campos electromagnéticos generados por estaciones radioeléctricas,” 2018. | spa |
dc.relation.references | F. Rojas Leal, “Determinación de los niveles de exposición humana a los campos electromagnéticos generados por el uso de las estructuras arquitectónicas como bajantes naturales de rayo,” Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia, 2017. | spa |
dc.relation.references | A. Fellner, A. Heshmat, P. Werginz, and F. Rattay, “A finite element method framework to model extracellular neural stimulation,” Journal of Neural Engineering, vol. 19, no. 2, 2022. [Online]. Available: https://doi.org/10.1088/1741-2552/ac6060. | spa |
dc.relation.references | M. C. B. F. B. F. W. y. G. R. B. Mercadal, R. Salvador, “Modeling implanted metals in electrical stimulation applications,” J. Neural Eng., vol. 19, no. 026003, 2022. | spa |
dc.relation.references | T. S. Bronk, A. C. Everitt, E. K. Murphy, and R. J. Halter, “Novel electrode placement in electrical bioimpedance-based stroke detection: Effects on current penetration and injury characterization in a finite element model,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 5, pp. 1745–1757, 2022. [Online]. Available: https://doi.org/10.1109/TBME.2021.3129734. | spa |
dc.relation.references | M. Jafarpoor, A. J. Spieker, J. Li, M. Sung, B. T. Darras, and S. B. Rutkove, "Assessing electrical impedance alterations in spinal muscular atrophy via the finite element method," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, pp. 1871–1874. [Online]. Available: https://doi.org/10.1109/IEMBS.2011.6090531. | spa |
dc.relation.references | B. M. Isaacson, J. G. Stinstra, R. D. Bloebaum, P. F. Pasquina, y R. S. MacLeod, “Establishing multiscale models for simulating whole limb estimates of electric fields for osseointegrated implants,” en IEEE Transactions on Biomedical Engineering, vol. 58, no. 10 PART 2, págs. 2991–2994, año 2011. [Online]. Disponible: https://doi.org/10.1109/TBME.2011.2160722. | spa |
dc.relation.references | P. Brocklehurst, H. Zhang, y J. Ye, “Effects of fibroblast on electromechanical dynamics of human atrial tissue—insights from a 2d discrete element model,” en Frontiers in Physiology, vol. 13, año 2022. [Online]. Disponible: https://doi.org/10.3389/fphys.2022.938497. | spa |
dc.relation.references | K. O. M. Basharahil y A. N. Ahmad, “Electromagnetic fields characteristics from overhead lines, underground cables and transformers determined using finite element method,” en Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, julio 2021, págs. 338–341. [Online]. Disponible: https://doi.org/10.1109/ICPADM49635.2021.9493976. | spa |
dc.relation.references | D. P. K. K. y K. E. K. D. A. Laissaoui, B. Nekhoul, “Current density and internal electric field in a model of the human body exposed to ELF electric and magnetic fields,” en Proc. of the 2014 International Symposium on Electromagnetic Compatibility (EMC Europe 2014), año 2014. | spa |
dc.relation.references | C. Multiphysics®, “Licencia número 2092283.” | spa |
dc.relation.references | Comsol Multiphysics. Fecha de acceso: 01/03/2024. [Online]. Disponible: https://www.comsol.com/comsol-multiphysics. | spa |
dc.relation.references | M. Olsson. (Última actualización: 27 marzo 2020) What is gauge fixing? A theoretical introduction. Septiembre 2024. [Online]. Disponible: https://www.comsol.com/blogs/what-is-gauge-fixing-a-theoretical-introduction. | spa |
dc.relation.references | L. Liu. (Última actualización: 2 abril 2020) How do I use gauge fixing in Comsol Multiphysics®? Septiembre 2024. [Online]. Disponible: https://www.comsol.com/blogs/how-do-i-use-gauge-fixing-in-comsol-multiphysics. | spa |
dc.relation.references | I. S. 644-2019, “IEEE standard procedures for measurement of power frequency electric and magnetic fields from AC power lines12,” en el año 2019. | spa |
dc.relation.references | J. C. G. C. H. Galeano, J. M. Mantilla, El método de los elementos finitos, Bogotá D. C., Colombia, año 2016. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.lemb | CAMPOS MAGNETICOS-EFECTOS FISIOLOGICOS | spa |
dc.subject.lemb | Magnetic fields - Physiological effects | eng |
dc.subject.lemb | BIOMAGNETISMO | spa |
dc.subject.lemb | Biomagnetism | eng |
dc.subject.proposal | Campo eléctrico | spa |
dc.subject.proposal | Campo magnético | spa |
dc.subject.proposal | Exposición | spa |
dc.subject.proposal | Efectos electrotérmicos | spa |
dc.subject.proposal | Baja frecuencia | spa |
dc.subject.proposal | Tejidos humanos | spa |
dc.subject.proposal | Modelamiento computacional | spa |
dc.subject.proposal | Radiación no ionizante | spa |
dc.subject.proposal | Dosimetría | spa |
dc.subject.proposal | Electric field | eng |
dc.subject.proposal | Magnetic field | eng |
dc.subject.proposal | Exposure | eng |
dc.subject.proposal | Electrothermal effects | eng |
dc.subject.proposal | Low-frequency | eng |
dc.subject.proposal | Human tissues | eng |
dc.subject.proposal | Computational modeling | eng |
dc.subject.proposal | Non-ionizing radiation | eng |
dc.subject.proposal | Dosimetry | eng |
dc.subject.wikidata | electromagnetic pollution | eng |
dc.subject.wikidata | contaminación electromagnética | spa |
dc.subject.wikidata | permeability | eng |
dc.subject.wikidata | permeabilidad | spa |
dc.subject.wikidata | permittivity | eng |
dc.subject.wikidata | permitividad | spa |
dc.subject.wikidata | electrical conductivity | eng |
dc.subject.wikidata | conductividad eléctrica | spa |
dc.title | Evaluación de los efectos electrotérmicos de campos electromagnéticos de baja frecuencia en el tejido asociado a extremidades del cuerpo humano | spa |
dc.title.translated | Evaluation of the electrothermal effects of low-frequency electromagnetic fields on human limb-associated tissue | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1007407129.2025.pdf
- Tamaño:
- 7.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: