Evaluación de los efectos electrotérmicos de campos electromagnéticos de baja frecuencia en el tejido asociado a extremidades del cuerpo humano

dc.contributor.advisorHerrera León, Fernando Augusto
dc.contributor.authorGelvez Osorio, Samuel Andrey
dc.contributor.cvlacGelvez Osorio, Samuel Andrey [1007407129]spa
dc.date.accessioned2025-03-25T16:24:51Z
dc.date.available2025-03-25T16:24:51Z
dc.date.issued2025-03
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractDada la naturaleza de su funcionamiento, la infraestructura de transmisión y distribución de energía eléctrica genera campos electromagnéticos en el ambiente, los cuales pueden generar efectos biológicos que van desde la percepción hasta la molestia [1]. Ahora bien, el límite del nivel de exposición a estos campos no es un estándar internacional; en su lugar, cada país se encarga de establecer sus límites de exposición. Asimismo existe literatura que permite aproximarse a los efectos de la exposición a campos electromagnéticos de baja frecuencia en el cuerpo humano. Con esta información, es posible evaluar los valores límite de exposición según la población de cada país, incluso en ausencia de un estándar establecido para este propósito. La presente investigación parte de una revisión de la bibliografía sobre los efectos de la radiación no ionizante en tejidos biológicos. Esta proporciona las bases para el desarrollo de modelos computacionales de extremidades para la evaluación de dosimetría a baja frecuencia. Los modelos usan geometrías simples como círculos (2D) y cilindros (3D), los cuales contemplan diferentes capas de tejidos con sus respectivos parámetros eléctricos. Posteriormente, estos datos se complementan con los parámetros térmicos con el objetivo de aproximar los efectos electrotérmicos ocasionados por la radiación no ionizante a 60 Hz. Los resultados muestran cómo la orientación, el tamaño, los parámetros eléctricos de los tejidos y las condiciones de frontera de las extremidades influyen en los campos eléctricos internos distribuidos o inducidos. Por último, se estimaron los efectos eléctricos de densidad de corriente, campo eléctrico interno y densidad de flujo magnético para diferentes niveles de exposición, los cuales aproximan variaciones de temperatura entre 10^{-9} °C y 10^{-5} °C en tejidos como la piel. El estudio concluye con la propuesta de un modelo computacional basado en extremidades del cuerpo humano que aproxima los efectos eléctricos generados por la exposición a campos electromagnéticos de 60 Hz, permitiendo estimar densidades volumétricas de energía y aumentos de temperatura. Finalmente, se proponen recomendaciones enfocadas al ajuste de los valores normativos colombianos y a la elección de parámetros eléctricos de los tejidos para el desarrollo de modelos computacionales de dosimetría a baja frecuencia (Texto tomado de la fuente)spa
dc.description.abstractGiven the nature of its operation, the electric power transmission and distribution infrastructure generates electromagnetic fields in the environment, which can generate biological effects ranging from perception to annoyance [1]. However, the exposure level limit to these fields is not an international standard; each country is responsible for setting its exposure limits. There is also literature that makes it possible to approximate the effects of exposure to low-frequency electromagnetic fields on the human body. With this information, it is possible to evaluate the exposure limit values according to the population of each country, even in the absence of an established standard for this purpose. The present research is based on a literature review of the effects of non-ionizing radiation on biological tissues. It provides the basis for the development of computational models of extremities for the evaluation of low-frequency dosimetry. The models use simple geometries such as circles (2D) and cylinders (3D), which contemplate different tissue layers with their respective electrical parameters. Subsequently, these data are complemented with thermal parameters to approximate the electrothermal effects caused by non-ionizing radiation at 60 Hz. The results show how the orientation, size, electrical parameters of the tissues, and boundary conditions of the limbs influence the distributed or induced internal electric fields. Finally, electrical effects of current density, internal electric field, and magnetic flux density were estimated for different exposure levels, which approximate temperature variations between 10^{-9} °C and 10^{-5} °C in tissues such as skin. The study concludes with the proposal of a computational model based on human body extremities that approximates the electrical effects generated by exposure to 60 Hz electromagnetic fields, allowing the estimation of volumetric energy densities and temperature increases. Finally, recommendations focused on the adjustment of Colombian normative values and the choice of electrical parameters of tissues for developing computational models of low-frequency dosimetry are proposed.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.methodsDesarrollo y evaluación de modelos computacionales 2D y 3D en el ámbito del electromagnetismo y su interacción con el cuerpo humano.spa
dc.description.researchareaEnergía y electromagnetismospa
dc.format.extentxviii, 121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87728
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesI. C. O. N. R. PROTECTION, “Icnirp guidelines - for limiting exposure to time-varying electric and magnetic fields (1hz – 100 khz),” 2010.spa
dc.relation.referencesA.-R. M. B. M. Timur Saliev, Dinara Begimbetova, “Biological effects of non-ionizing electromagnetic fields: Two sides of a coin,” p. 26, 2018.spa
dc.relation.referencesSim4life. The premier simulation platform device design. interactions with anatomy. physiological responses. February 2024. [Online]. Available: https://sim4life.swiss/.spa
dc.relation.referencesE. G. Jiménez, “Composición corporal: estudio y utilidad clínica,” Endocrinol Nutr., vol. 60, no. 2, pp. 69-75, 2013.spa
dc.relation.referencesS. R. Alejandro Fernandez Schrunder and A. Rusu, “A finite element analysis and circuit modelling methodology for studying electrical impedance myography of human limbs,” in IEEE Transactions on Biomedical Engineering, vol. 69, no. 1, pages 244-252, year 2022.spa
dc.relation.referencesO. M. de la Salud. (Julio de 2023) Efectos en la salud de las radiaciones ionizantes. Noviembre del 2023. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/ionizing-radiation-and-health-effects.spa
dc.relation.referencesI. Foundation. Tissue properties - dielectric properties. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/.spa
dc.relation.referencesI. Foundation. Tissue properties - low frequency (conductivity). December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/low-frequency-conductivity/.spa
dc.relation.referencesI. Foundation. Tissue properties - density. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/density/.spa
dc.relation.referencesI. Foundation. Tissue properties - heat capacity. December 2023. [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/heat-capacity/.spa
dc.relation.referencesG. B. y. M. B. A. Zubiaga, C. Kirsch, “A simple instrument to measure thermal transport properties of the human skin,” IEEE International Symposium on Medical Measurements and Applications (MeMeA), DOI: 10.1109/MeMeA52024.2021.9478754, 2021.spa
dc.relation.referencesC. Multiphysics®, COMSOL Multiphysics, Reference Manual. COMSOL Multiphysics®, 2018.spa
dc.relation.referencesO. M. de la Salud. (2016) ¿Qué son los campos electromagnéticos? Febrero del 2023. Disponible en: https://www.who.int/es/news-room/questions-and-answers/item/electromagnetic-fields.spa
dc.relation.referencesN. I. for Public Health and R. the Environment, "Comparison of international policies on electromagnetic fields (power frequency and radiofrequency fields)," 2018.spa
dc.relation.referencesR. d. C. CE 519, "Relativa a la exposición del público en general a campos electromagnéticos (0 Hz a 300 GHz)," de 12 de julio de 1999.spa
dc.relation.referencesM. D. M. y Energía de Colombia, RESOLUCIÓN 40117 DE 2024, Por la cual se modifica el Reglamento Técnico de Instalaciones Eléctricas (RETIE), 2024.spa
dc.relation.referencesI. I. C. O. E. S. IEEE Standards Coordinating Committee 39, "IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz." 2019.spa
dc.relation.referencesI. A. for Research on Cancer. (Última actualización: 27 de julio de 2023) Agentes clasificados. Agosto 2023. Disponible en: https://monographs.iarc.who.int/agents-classified-by-the-iarc/.spa
dc.relation.referencesI. A. for Research on Cancer. (Última actualización: 19 de febrero de 2021) IARC monographs preamble – preamble to the IARC monographs. Agosto 2023. Disponible en: https://monographs.iarc.who.int/iarc-monographs-preamble-preamble-to-the-iarc-monographs/.spa
dc.relation.referencesI. A. for Research on Cancer. (Última actualización: 2023) Lista de clasificaciones. Agosto 2023. Disponible en: https://monographs.iarc.who.int/list-of-classifications.spa
dc.relation.referencesI. C. O. N. R. PROTECTION, "ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," 2020.spa
dc.relation.referencesH. D. T. N. C. R. Van den Heuvel AMJ, Haberley BJ, "The independent influences of heat strain and dehydration upon cognition," en Euro J Appl Physiol 117: páginas 1025–1037, año 2017.spa
dc.relation.referencesB. M. J. R. Ramsey JD, Buford C, "Effects of work place thermal conditions on safe work behavior," en J Safety Res 14: páginas 105–114, año 1983.spa
dc.relation.referencesC. WPJr, "Thermoregulatory disorders and illness related to heat and cold stress," en Autonomic Neurosci: Basic and Clinical 196: páginas 91–104, año 2016.spa
dc.relation.referencesA. H. et al, "The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz," in Phys. Med. Biol., vol. 58, no. 4, páginas 903-921, año 2013.spa
dc.relation.referencesA. F. M. O. y. K. L. R. T. Brockow, A. Wagner, "A randomized controlled trial on the effectiveness of mild water-filtered near infrared whole-body hyperthermia as an adjunct to a standard multimodal rehabilitation in the treatment of fibromyalgia," in Clin J Pain, vol. 23, no. 1, páginas 67-75, año 2007.spa
dc.relation.referencesM. L.-M. M. H. y. P. J. H. M. W. Dewhirst, B. L. Viglianti, "Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia," in Int. J. Hyperthermia, vol. 19, no. 3, páginas 267-294, año 2003.spa
dc.relation.referencesC. L.-A. M. D. W. H. B. L. V. y. M. W. D. P. S. Yarmolenko, E. J. Moon, "Thresholds for thermal damage to normal tissues: An update," in International Journal of Hyperthermia, vol. 27, no. 4, páginas 320-343, año 2011.spa
dc.relation.referencesS. T. Y. P. S. D. M. W. N. E. . K. N. Van Rhoon, G. C., "Cem43°C thermal dose thresholds: A potential guide for magnetic resonance radiofrequency exposure levels?" in Eur Radiol, vol. 23, páginas 2215-2227, año 2013.spa
dc.relation.referencesM. M. W. K. . W. S. Sasaki, K., "Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz," in Physics in Medicine Biology, páginas 6993-7010, año 2017.spa
dc.relation.referencesI. C. O. N. R. PROTECTION, "ICNIRP guidelines on limits of exposure to static magnetic fields," 2009.spa
dc.relation.referencesR. W. R. H. Y. K. R. T. E. J. F. Schenck, C. L. Dumoulin and I. L. McDougall, "Human exposure to 4.0 tesla magnetic fields in a whole body scanner," in Med Phys, vol. 19, páginas 1089-1098, año 1992.spa
dc.relation.referencesT. S. B. B. v.-d.-J. P. H. E. P. Frank de Vocht, MS and P. Hans Kromhout, "Acute neurobehavioral effects of exposure to static magnetic fields: Analyses of exposure-response relations," in J Magn Reson Imaging, vol. 23, páginas 291-297, año 2006.spa
dc.relation.referencesH. E. Frank de Vocht, Berna van-Wendel-de-Joode and H. Kromhout, "Neurobehavioral effects among subjects exposed to high static and gradient magnetic fields from a 1.5 tesla magnetic resonance imaging system—a case-crossover pilot study," in Magn Reson Med 50: pages 670–674, year 2003.spa
dc.relation.referencesH. Y. Y. Kinouchi and T. Tenforde, "Theoretical analysis of magnetic field interactions with aortic blood flow," in Bioelectromagnetics 17: pages 21–32, year 1996.spa
dc.relation.referencesP. Dimbylow, “Development of the female voxel phantom, naomi, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields,” in Phys. Med. Biol., vol. 50, no. 6, pages 1047-1070, year 2005.spa
dc.relation.referencesC. H. A. Bahr, T. Bolz, “Numerical dosimetry elf: Accuracy of the method, variability of models and parameters, and the implication for quantifying guidelines,” in Health Physics, vol. 92, no. 6, pages 521-530, year 2007.spa
dc.relation.referencesS. W. y. M. T. A. Hirata, K. Wake, “In-situ electric field and current density in japanese male and female models for uniform magnetic field exposures,” in Radiation Protection Dosimetry, vol. 135, no. 4, pages 272-275, year 2009.spa
dc.relation.referencesT. N. et al., “Development of realistic high-resolution whole-body voxel models of japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry,” in Phys. Med. Biol., vol. 49, no. 1, pages 1-15, year 2004.spa
dc.relation.referencesO. de Naciones Unidas. Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Septiembre del 2023. [Online]. Available: https://www.un.org/sustainabledevelopment/es/energy/.spa
dc.relation.referencesZ. J. y L. Janoušek, “Low frequency electromagnetic field in microenvironments and their possible health impacts,” en Proc. IEEE, Žilina, Slovak Republic, 2019.spa
dc.relation.referencesIEEE, “Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – part 1528: Human models, instrumentation, and procedures (frequency range of 4 mhz to 10 ghz),” IEEE Standard, New York, NY, USA, 2020.spa
dc.relation.referencesE. P. J. V. M. P.-F. R. y. J. A. S.I. Rodríguez, A. Gallego, “Low-cost setup for electromagnetic sar evaluation in a human phantom,” Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, 2022.spa
dc.relation.referencesA. C. P.E. Munhoz-Rojas, C.S. Segura-Salas, “Fields and current densities induced in the human body by low-frequency electromagnetic fields,” Institutos Lactec, Curitiba, Brasil, y R. Martins, J. Hoffmann-Neto, Substation Projects Division, COPEL GT, Curitiba, 2018.spa
dc.relation.referencesH. Sánchez, “Importancia de la bioimpedancia eléctrica en la identificación de enfermedades,” diciembre 2023. [Online]. Disponible en: https://periodico.unal.edu.co/articulos/que-es-la-bioimpedancia-electrica-y-para-que-sirve/.spa
dc.relation.referencesR. W. L. S. Gabriel and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, no. 41, pp. 2251–2269, 1996.spa
dc.relation.referencesE. Salkim, “Analysis of tissue electrical properties on bio-impedance variation of upper limbs,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 5, pp. 1839–1850, 2022. [Online]. Available: https://doi.org/10.55730/1300-0632.3908.spa
dc.relation.referencesY. E. L. G.-M. R. Avila-Chaurand, L. R. Prado-León, “Dimensiones antropométricas de la población latinoamericana: México, Cuba, Colombia, Chile,” Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, Centro de Investigaciones en Ergonomía, Guadalajara, Jalisco, México, 2007.spa
dc.relation.referencesG. X.-Z. Z. Y. W. y. W. Y. D. Geng, C. Li, “Development of electromagnetic environment of three-phase power lines for bio-effects evaluation,” Tianjin, China, 2012.spa
dc.relation.referencesA. N. del Espectro, “Resolución 774 de 2018, límites máximos de exposición a campos electromagnéticos generados por estaciones radioeléctricas,” 2018.spa
dc.relation.referencesF. Rojas Leal, “Determinación de los niveles de exposición humana a los campos electromagnéticos generados por el uso de las estructuras arquitectónicas como bajantes naturales de rayo,” Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia, 2017.spa
dc.relation.referencesA. Fellner, A. Heshmat, P. Werginz, and F. Rattay, “A finite element method framework to model extracellular neural stimulation,” Journal of Neural Engineering, vol. 19, no. 2, 2022. [Online]. Available: https://doi.org/10.1088/1741-2552/ac6060.spa
dc.relation.referencesM. C. B. F. B. F. W. y. G. R. B. Mercadal, R. Salvador, “Modeling implanted metals in electrical stimulation applications,” J. Neural Eng., vol. 19, no. 026003, 2022.spa
dc.relation.referencesT. S. Bronk, A. C. Everitt, E. K. Murphy, and R. J. Halter, “Novel electrode placement in electrical bioimpedance-based stroke detection: Effects on current penetration and injury characterization in a finite element model,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 5, pp. 1745–1757, 2022. [Online]. Available: https://doi.org/10.1109/TBME.2021.3129734.spa
dc.relation.referencesM. Jafarpoor, A. J. Spieker, J. Li, M. Sung, B. T. Darras, and S. B. Rutkove, "Assessing electrical impedance alterations in spinal muscular atrophy via the finite element method," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, pp. 1871–1874. [Online]. Available: https://doi.org/10.1109/IEMBS.2011.6090531.spa
dc.relation.referencesB. M. Isaacson, J. G. Stinstra, R. D. Bloebaum, P. F. Pasquina, y R. S. MacLeod, “Establishing multiscale models for simulating whole limb estimates of electric fields for osseointegrated implants,” en IEEE Transactions on Biomedical Engineering, vol. 58, no. 10 PART 2, págs. 2991–2994, año 2011. [Online]. Disponible: https://doi.org/10.1109/TBME.2011.2160722.spa
dc.relation.referencesP. Brocklehurst, H. Zhang, y J. Ye, “Effects of fibroblast on electromechanical dynamics of human atrial tissue—insights from a 2d discrete element model,” en Frontiers in Physiology, vol. 13, año 2022. [Online]. Disponible: https://doi.org/10.3389/fphys.2022.938497.spa
dc.relation.referencesK. O. M. Basharahil y A. N. Ahmad, “Electromagnetic fields characteristics from overhead lines, underground cables and transformers determined using finite element method,” en Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, julio 2021, págs. 338–341. [Online]. Disponible: https://doi.org/10.1109/ICPADM49635.2021.9493976.spa
dc.relation.referencesD. P. K. K. y K. E. K. D. A. Laissaoui, B. Nekhoul, “Current density and internal electric field in a model of the human body exposed to ELF electric and magnetic fields,” en Proc. of the 2014 International Symposium on Electromagnetic Compatibility (EMC Europe 2014), año 2014.spa
dc.relation.referencesC. Multiphysics®, “Licencia número 2092283.”spa
dc.relation.referencesComsol Multiphysics. Fecha de acceso: 01/03/2024. [Online]. Disponible: https://www.comsol.com/comsol-multiphysics.spa
dc.relation.referencesM. Olsson. (Última actualización: 27 marzo 2020) What is gauge fixing? A theoretical introduction. Septiembre 2024. [Online]. Disponible: https://www.comsol.com/blogs/what-is-gauge-fixing-a-theoretical-introduction.spa
dc.relation.referencesL. Liu. (Última actualización: 2 abril 2020) How do I use gauge fixing in Comsol Multiphysics®? Septiembre 2024. [Online]. Disponible: https://www.comsol.com/blogs/how-do-i-use-gauge-fixing-in-comsol-multiphysics.spa
dc.relation.referencesI. S. 644-2019, “IEEE standard procedures for measurement of power frequency electric and magnetic fields from AC power lines12,” en el año 2019.spa
dc.relation.referencesJ. C. G. C. H. Galeano, J. M. Mantilla, El método de los elementos finitos, Bogotá D. C., Colombia, año 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembCAMPOS MAGNETICOS-EFECTOS FISIOLOGICOSspa
dc.subject.lembMagnetic fields - Physiological effectseng
dc.subject.lembBIOMAGNETISMOspa
dc.subject.lembBiomagnetismeng
dc.subject.proposalCampo eléctricospa
dc.subject.proposalCampo magnéticospa
dc.subject.proposalExposiciónspa
dc.subject.proposalEfectos electrotérmicosspa
dc.subject.proposalBaja frecuenciaspa
dc.subject.proposalTejidos humanosspa
dc.subject.proposalModelamiento computacionalspa
dc.subject.proposalRadiación no ionizantespa
dc.subject.proposalDosimetríaspa
dc.subject.proposalElectric fieldeng
dc.subject.proposalMagnetic fieldeng
dc.subject.proposalExposureeng
dc.subject.proposalElectrothermal effectseng
dc.subject.proposalLow-frequencyeng
dc.subject.proposalHuman tissueseng
dc.subject.proposalComputational modelingeng
dc.subject.proposalNon-ionizing radiationeng
dc.subject.proposalDosimetryeng
dc.subject.wikidataelectromagnetic pollutioneng
dc.subject.wikidatacontaminación electromagnéticaspa
dc.subject.wikidatapermeabilityeng
dc.subject.wikidatapermeabilidadspa
dc.subject.wikidatapermittivityeng
dc.subject.wikidatapermitividadspa
dc.subject.wikidataelectrical conductivityeng
dc.subject.wikidataconductividad eléctricaspa
dc.titleEvaluación de los efectos electrotérmicos de campos electromagnéticos de baja frecuencia en el tejido asociado a extremidades del cuerpo humanospa
dc.title.translatedEvaluation of the electrothermal effects of low-frequency electromagnetic fields on human limb-associated tissueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1007407129.2025.pdf
Tamaño:
7.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: