Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado

dc.contributor.advisorRodriguez Cortina, jaderspa
dc.contributor.advisorRincón Prat, Sonia Lucíaspa
dc.contributor.authorVelásquez Ayala, Fabián Andrésspa
dc.contributor.orcidFabian Velasquez [000-0003-1535-3549]spa
dc.contributor.researchgroupGrupo de Investigación en Biomasa y Optimización Térmica de Procesos, (BIOT)spa
dc.date.accessioned2024-05-08T20:01:15Z
dc.date.available2024-05-08T20:01:15Z
dc.date.issued2024-01-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl azúcar no centrifugado de caña (ANC) es un edulcorante sólido no refinado con un gran potencial de comercialización debido a sus atributos nutracéuticos. Sin embargo, los módulos de producción de ANC presentan problemas de baja eficiencia térmica debido al diseño empírico de sus componentes como la cámara de combustión causando que la energía suministrada por el combustible (bagazo de caña) no sea suficiente para cubrir la demanda energética del proceso. Como resultado, se obtienen bajas temperaturas de combustión y altas tasas de emisión de gases contaminantes. Consecuentemente, para establecer modificaciones y criterios de diseño en estos equipos, es necesario comprender los fenómenos de conversión termoquímica que experimenta el combustible. Por lo tanto, se planteó el desarrollo de un modelo de combustión de bagazo de caña a partir de técnicas de dinámica computacional de fluidos (CFD) en una cámara de combustión plana de lecho fijo. El modelo fue planteado a partir de los balances de energía y masa en estado transitorio para un sistema heterogéneo compuesto por dos fases: gas y sólido. Se tiene en cuenta los procesos de transferencia de calor, masa y las reacciones químicas derivadas de los procesos de degradación térmica del combustible. El modelo fue validado a partir de datos experimentales tomados en una cámara de combustión de lecho fijo para bagazo de caña, dónde se midieron los perfiles de distribución de temperatura y la composición de especies (CO2, CO y O2). El modelo permite determinar la distribución de los perfiles de temperatura y la concentración de especies generadas o destruidas durante el proceso. La validación del modelo muestra la capacidad de predecir un comportamiento promedio de la temperatura y composición de especies que se generan en la combustión de bagazo de caña. (Texto tomado de la fuente).spa
dc.description.abstractNon-centrifuged cane sugar (NCS) is an unrefined solid sweetener with great commercialization potential due to its nutraceutical attributes. However, NCS production modules present problems of low thermal efficiency due to the empirical design of its components such as the combustion chamber causing the energy supplied by the fuel (cane bagasse) is not sufficient to cover the energy demand of the process. As a result, low combustion temperatures and high pollutant gas emission rates are obtained. Consequently, to establish modifications and design criteria for these equipment, it is necessary to understand the thermochemical conversion phenomena experienced by the fuel. Therefore, the development of a cane bagasse combustion model was proposed using computational fluid dynamics (CFD) techniques in a flat fixed-bed combustion chamber. The model was based on the energy and mass balances in transient state for a heterogeneous system composed of two phases: gas and solid. It takes into account the heat and mass transfer processes and the chemical reactions derived from the thermal degradation processes of the fuel. The model was validated from experimental data taken in a fixed bed combustion chamber for sugarcane bagasse, where temperature distribution profiles and species composition (CO2, CO y O2) were measured. The model allows determining the distribution of temperature profiles and the concentration of species generated or destroyed during the process. The validation of the model shows the ability to predict an average behavior of the temperature and species composition generated in the combustion of sugarcane bagasse.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaConversión termoquímica de biomasaspa
dc.description.sponsorshipCorporación Colombiana de investigación Agropecuaria (AGROSAVIA)spa
dc.format.extentxvi, 110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86054
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAgronegocios (2021). Colombia es el segundo mayor productor de panela a nivel mundial. Excerpted from 5th edition of the APA Publication Manual.spa
dc.relation.referencesAllison, T. C. (2013). Nist-janaf thermochemical tables - srd 13 (version 1.0.2) [data set]. National Institute of Standards and Technology.spa
dc.relation.referencesAnca-Couce, A., Sommersacher, P., Shiehnejadhesar, A., Mehrabian, R., Hochenauer, C., and Scharler, R. (2017). CO/CO2 ratio in biomass char oxidation. Energy Procedia, 120:238--245. INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11.spa
dc.relation.referencesAnwar, S. (2010). Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Conversion and Management, 51(2):360--364.spa
dc.relation.referencesBauer, R., Gölles, M., Brunner, T., Dourdoumas, N., and Obernberger, I. (2010). Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass and Bioenergy, 34:417--427.spa
dc.relation.referencesBorray, G. A. R., Carranza, B. H., Murcia, S. M. P., Chavarro, C. F. G., Muñoz, J. L. T., Cortina, J. R., Ayala, F. A. V., Durán, J. R., González, J. J. E., and Zaraza, R. A. L. (2020). Modelo productivo de la caña de azúcar (saccharum officinarum) para la producción de panela en cundinamarca.spa
dc.relation.referencesCadavid, G. O. (2007). Buenas prácticas agrícolas [BPA] y buenas prácticas de manufactura [BPM] en la producción de caña y panela. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO.spa
dc.relation.referencesCanedo, M. S., Figueiredo, M. F. S., Thomik, M., Vorhauer-Huget, N., Tsotsas, E., and Thoméo, J. C. (2021). Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 386:166--175.spa
dc.relation.referencesCengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.spa
dc.relation.referencesDaood, S. S., Munir, S., Nimmo, W., and Gibbs, B. M. (2010). Char oxidation study of sugar cane bagasse, cotton stalk and pakistani coal under 1 % and 3 % oxygen concentrations. Biomass and Bioenergy, 34:263--271.spa
dc.relation.referencesde Souza-Santos, M. L. (2010). Solid fuels combustion and gasification: modeling, simulation. CRC Press.spa
dc.relation.referencesDernbecher, A., Dieguez-Alonso, A., Ortwein, A., and Tabet, F. (2019). Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conversion and Biorefinery, 9:129--182.spa
dc.relation.referencesDi Blasi, C. (1997). Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying, pages 117--131. Springer Netherlands, Dordrecht.spa
dc.relation.referencesDi Blasi, C. (2004). Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE Journal, 50(9):2306--2319.spa
dc.relation.referencesEdwards, C. M. L. (2018). Technical evaluation of available residual biomass in colombia for its thermochemical conversion in fluidized bed reactors.spa
dc.relation.referencesEisermann, W., Johnson, P., and Conger, W. L. (1980). Estimating thermodynamic properties of coal, char, tar and ash. Fuel Processing Technology, 3:39--53.spa
dc.relation.referencesEspitia, J., Velásquez, F., López, R., Escobar, S., and Rodríguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274:109843.spa
dc.relation.referencesFerziger, J. H., Perić, M., and Street, R. L. (2019). Computational methods for fluid dynamics. springer.spa
dc.relation.referencesFigura, L. O. and Teixeira, A. A. (2007). Geometric Properties: Size and Shape, pages 73--115. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesForero, L. E. P., Castro, Z. S., Bernal, H. R. G., and Ávila, H. S. R. (2012). Hornillas paneleras ward-cimpa: Validación de los modelos matemáticos de diseño corpoica-uis. Fuentes: El reventón energético, 10:6.spa
dc.relation.referencesFrigerio, S., Thunman, H., Leckner, B., and Hermansson, S. (2008). Estimation of gas phase mixing in packed beds. Combustion and Flame, 153:137--148.spa
dc.relation.referencesGordillo, G. and García, H. (1992). Manual para el diseño y operación de hornillas paneleras. Technical report, Convenio de Investigación y Divulgación para el Mejoramiento de la Industria Panelera, Bogotá (Colombia).spa
dc.relation.referencesGreenshields, C. J. and Weller, H. G. (2022). Notes on computational fluid dynamics: General principles.spa
dc.relation.referencesGuevara Enciso, J. I. (2014). Modelo computacional de la combustión del bagazo de caña en una cámara de combustión tipo ward-cimpa de una hornilla panelera.spa
dc.relation.referencesGunn, D. J. (1987). Axial and radial dispersion in fixed beds. Chemical engineering science, 42:363--373.spa
dc.relation.referencesGómez, A., Klose, W., and Rincón, S. (2008). Pirólisis de biomasa: cuesco de palma de aceite. kassel university press GmbH.spa
dc.relation.referencesGómez, M., Porteiro, J., Patiño, D., and Míguez, J. (2014). Cfd modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 117:716--732.spa
dc.relation.referencesHugot, E. and Jenkins, G. (1986). Manual de ingeniería de la caña de azúcar. Estados Unidos: Elsevier Scienci.spa
dc.relation.referencesInvima (2015). Registro nacional de trapiches paneleros. Instituto nacional de vigilancia de medicamentos y alimentos Invima.spa
dc.relation.referencesJader, R., Fabián, V., John, E., Sebastián, E., and Oscar, M. (2018). Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization. Energy, 152:858--865.spa
dc.relation.referencesJaffé, W. (2012). Non-centrifugal sugar: world production and trade. Panela monitor, pages 4--48.spa
dc.relation.referencesJaffé, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43:194--202.spa
dc.relation.referencesJensen, S. (2001). Zur modellierung eines indirekt beheizten festbettbiomassevergasers.spa
dc.relation.referencesJohansson, R., Thunman, H., and Leckner, B. (2007). Sensitivity analysis of a fixed bed combustion model. Energy & Fuels, 21:1493--1503. doi: 10.1021/ef060500z.spa
dc.relation.referencesJurena, T. (2012). Numerical modelling of grate combustion. Brno University of Technology, Brno.spa
dc.relation.referencesKarim, M. R. and Naser, J. (2017). Numerical modelling of solid biomass combustion: Difficulties in initiating the fixed bed combustion. Energy Procedia, 110:390--395.spa
dc.relation.referencesKhodaei, H., Al-Abdeli, Y. M., Guzzomi, F., and Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88:946--972.spa
dc.relation.referencesKhodaei, H., Yeoh, G. H., Guzzomi, F., and Porteiro, J. (2018). A cfd-based comparative analysis of drying in various single biomass particles. Applied Thermal Engineering, 128:1062--1073.spa
dc.relation.referencesKlason, T. (2006). Modelling of biomass combustion in furnaces. Lund University.spa
dc.relation.referencesKumar, A. and Tiwari, G. N. (2006). Effect of shape and size on convective mass transfer coefficient during greenhouse drying (ghd) of jaggery. Journal of Food Engineering, 73:121--134.spa
dc.relation.referencesLa Madrid, R., Marcelo, D., Orbegoso, E. M., and Saavedra, R. (2016). Heat transfer study on open heat exchangers used in jaggery production modules – computational fluid dynamics simulation and field data assessment. Energy Conversion and Management, 125:107--120. Sustainable development of energy, water and environment systems for future energy technologies and concepts.spa
dc.relation.referencesLa Madrid, R., Orbegoso, E. M., Saavedra, R., and Marcelo, D. (2017). Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger. Journal of Environmental Management, 204:622--636.spa
dc.relation.referencesLam, P. S., Sokhansanj, S., Bi, X., Mani, S., Lim, J., and (or initial) (or initial) (2007). Physical characterization of wet and dry wheat straw and switchgrass - bulk and specific density. American Society of Agricultural and Biological Engineers.spa
dc.relation.referencesLu, H., Robert, W., Peirce, G., Ripa, B., and Baxter, L. L. (2008). Comprehensive study of biomass particle combustion. Energy & Fuels, 22:2826--2839.spa
dc.relation.referencesMADR (2018). Cadena agroindustrial de la panela. (No Title), page 15.spa
dc.relation.referencesManya, J. J., Velo, E., and Puigjaner, L. (2003). Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Industrial and engineering chemistry research, 42(3):434-- 441.spa
dc.relation.referencesMcBride, B. J., Gordon, S., and Reno, M. A. (1993). Coefficients for calculating thermodynamic and transport properties of individual species.spa
dc.relation.referencesMendes, R. F., Vilela, A. P., Farrapo, C. L., Mendes, J. F., Denzin Tonoli, G. H., and Mendes, L. M. (2017). 1 - lignocellulosic residues in cement-bonded panels. In Savastano Junior, H., Fiorelli, J., and dos Santos, S. F., editors, Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites, pages 3--16. Woodhead Publishing.spa
dc.relation.referencesMiltner, M., Makaruk, A., Harasek, M., and Friedl, A. (2008). Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches. Clean Technologies and Environmental Policy, 10:165--174.spa
dc.relation.referencesMitsakis, P. (2011). Online analysis of the tar content of biomass gasification producer gas.spa
dc.relation.referencesMoukalled, F., Mangani, L., and Darwish, M. (2016). Solving the System of Algebraic Equations, pages 303--364. Springer International Publishing, Cham.spa
dc.relation.referencesPatankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.spa
dc.relation.referencesPatiño, H. J. G. (2011). Modelación de la gasificación de biomasa en un reactor de lecho fijo.spa
dc.relation.referencesPeters, B. (2002). Measurements and application of a discrete particle model (dpm) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame, 131:132--146.spa
dc.relation.referencesPlaza, M. (2022). Evaluación del efecto de variables asociadas a la calidad del bagazo de caña en el proceso de combustión para uso en unidades productivas de cámara plana en la hoya del rio suarez.spa
dc.relation.referencesPérez, N. P., Pedroso, D. T., Machin, E. B., Antunes, J. S., Tuna, C. E., and Silveira, J. L. (2019). Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies. Renewable Energy, 143:1210--1224.spa
dc.relation.referencesRasul, M. G., Rudolph, V., and Carsky, M. (1999). Physical properties of bagasse. Fuel, 78:905--910.spa
dc.relation.referencesReid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The properties of gases and liquids.spa
dc.relation.referencesRincón, S. and Gómez, A. (2008). Pyrolysis of agroindustrial biomass residues. pages 1200--1204.spa
dc.relation.referencesRyu, C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., and Swithenbank, J. (2006). Effect of fuel properties on biomass combustion: Part i. experiments—fuel type, equivalence ratio and particle size. Fuel, 85(7):1039--1046.spa
dc.relation.referencesSánchez Castro, Z. and Mendieta Menjura, O. A. (2014). Ajuste de un modelo matemático para la combustión de bagazo de caña en una cámara ward-cimpa. Ciencia y Tecnología Agropecuaria, 15(2):133--151.spa
dc.relation.referencesSchlünder, E.-U. and Tsotsas, E. (1988). Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten. Georg Thieme-Verlag.spa
dc.relation.referencesSkinner, F. D. and Smoot, L. D. (1979). Heterogeneous Reactions of Char and Carbon, pages 149--167. Springer US.spa
dc.relation.referencesSrikiatden, J. and Roberts, J. S. (2008). Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering, 84:516--525.spa
dc.relation.referencesTelles, R. S. and Trevisan, O. V. (1993). Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media. International Journal of Heat and Mass Transfer, 36(5):1357--1365.spa
dc.relation.referencesThunman, H. and Leckner, B. (2003). Co-current and counter-current fixed bed combustion of biofuel—a comparison. Fuel, 82:275--283.spa
dc.relation.referencesTiwari, G. N., Prakash, O., and Kumar, S. (2004). Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Conversion and Management, 45:171--179.spa
dc.relation.referencesTurns, S. (2000). An introduction to combustion: concepts and applications. McGrw-Hill Companies, Inc.spa
dc.relation.referencesvan Antwerpen, W., du Toit, C., and Rousseau, P. (2010). A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 240(7):1803--1818.spa
dc.relation.referencesVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., and Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255:32--40.spa
dc.relation.referencesVelásquez Arredondo, H. I., Chejne Janna, F., and Agudelo Santamaría, A. F. (2004). Diagnóstico energético de los procesos productivos de la panela en colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2):2453–2465.spa
dc.relation.referencesVerissimo, G. L. (2018). SimulaÇÃo computacional e anÁlise exergÉtica da gaseificaÇÃo de bagaÇo de cana-de-aÇÚcar em leitos fluidizados borbulhantes.spa
dc.relation.referencesVerissimo, G. L., Leiroz, A. J. K., and Cruz, M. E. (2020). Influence of the pyrolysis and heterogeneous char reactions modeling in the simulation of sugarcane bagasse gasification in a bubbling fluidized bed reactor. Fuel, 281:118750.spa
dc.relation.referencesVersteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2 edition.spa
dc.relation.referencesYang, Y., Nasserzadeh, V., Goodfellow, J., and Swithenbank, J. (2003). Simulation of channel growth in a burning bed of solids. Chemical Engineering Research and Design, 81(2):221--232.spa
dc.relation.referencesYang, Y. B., Goh, Y. R., Zakaria, R., Nasserzadeh, V., and Swithenbank, J. (2002). Mathematical modelling of msw incineration on a travelling bed. Waste Management, 22:369--380.spa
dc.relation.referencesYin, C., Rosendahl, L., Kær, S. K., Clausen, S., Hvid, S. L., and Hille, T. (2008). Mathematical modeling and experimental study of biomass combustion in a thermal 108 mw grate-fired boiler. Energy & Fuels, 22:1380--1390.spa
dc.relation.referencesZhou, H., Jensen, A. D., Glarborg, P., Jensen, P. A., and Kavaliauskas, A. (2005). Numerical modeling of straw combustion in a fixed bed. Fuel, 84:389--403.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocTecnología del azúcarspa
dc.subject.agrovocsugar technologyeng
dc.subject.agrovocBagazospa
dc.subject.agrovocbagasseeng
dc.subject.agrovocEdulcorantesspa
dc.subject.agrovocsweetenerseng
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalDinámica computacional de fluidosspa
dc.subject.proposalModelación matemáticaspa
dc.subject.proposalCombustión en lecho fijospa
dc.subject.proposalBiomasaspa
dc.subject.proposalBagazo de cañaspa
dc.subject.proposalComputational fluid dynamicseng
dc.subject.proposalMathematical modellingeng
dc.subject.proposalFixed bed combustioneng
dc.subject.proposalBiomasseng
dc.subject.proposalSugar cane bagasseeng
dc.titleModelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugadospa
dc.title.translatedModeling of sugarcane bagasse combustion in a non-centrifugal sugar production moduleeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCorporación Colombiana de investigación Agropecuaria (AGROSAVIA)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110506157.2024.pdf
Tamaño:
19.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: