Debris-flow processes routing in mountain terrains and tropical environments for hazard assessment

dc.contributor.advisorARISTIZABAL GIRALDO, EDIER VICENTE
dc.contributor.advisorMúnera Estrada, Juan Camilo
dc.contributor.authorGomez Cardona, Federico
dc.contributor.cvlacGómez Cardona, Federico José [0000183866]spa
dc.contributor.googlescholarGómez Cardona, Federico [https://scholar.google.com/citations?hl=en&user=O0ef_-YAAAAJ]spa
dc.contributor.orcidGómez Cardona, Federico [0000-0002-8525-4354]spa
dc.contributor.orcidAristizábal Giraldo, Edier Vicente [0000-0002-2648-2197]spa
dc.contributor.orcidMúnera Estrada, Juan Camilo [0000-0001-8198-3106]spa
dc.contributor.researcherMergili, Martin
dc.contributor.researchgateGómez Cardona, Federico [https://www.researchgate.net/profile/Federico-Gomez-2]spa
dc.contributor.researchgroupInvestigación en Geología Ambiental Geaspa
dc.contributor.researchgroupSemillero GeoHazardspa
dc.contributor.scopusGómez Cardona, Federico [57219451399]spa
dc.date.accessioned2023-02-09T14:12:07Z
dc.date.available2023-02-09T14:12:07Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractDebris-flow processes are complex natural phenomena. As transitional processes, they fall on the spectrum between floods and mass movements. Because of this dualism, debris-flow processes have been regarded differently depending on the expertise and background of the scientist or professional studying them. DesInventar, a disaster database, reports that Colombia saw 1,387 channelized debris flows, debris floods, and flash floods between 1921 and 2020. These events resulted in 3,332 fatalities and more than 1.1 million people being impacted. The current work attempts to analyse the transit of debris-flow processes using various computational techniques, while accounting for the effect of geomorphology on hazard comprehension. It aims to investigate various methodologies and compare them using validation criteria, as well as to investigate the influence of sediment concentration on flow behaviour and simulation tool and parametrization. Two case studies in the Colombian Andes are analysed: the debris flood that occurred in Salgar, Antioquia in 2015, resulting in 112 landslides caused by the uncommon occurrence of two rainstorms and the Potrerito debris flow in Bello, Antioquia, caused by an intense storm with extraordinary maximum instantaneous intensities.eng
dc.description.abstractLas avenidas torrenciales son fenómenos naturales complejos. Como procesos transitorios, se sitúan entre las inundaciones y los movimientos en masa. Debido a este dualismo, las avenidas torrenciales se han considerado de forma diferente dependiendo de la experiencia y formación del científico o profesional que los estudie. DesInventar, una base de datos de desastres, informa de que en Colombia se produjeron 1.387 flujos de escombros canalizados, inundaciones de escombros e inundaciones súbitas entre 1921 y 2020. Estos eventos causaron 3.332 víctimas mortales y más de 1,1 millones de personas afectadas. El presente trabajo trata de analizar el tránsito de las avenidas torrenciales mediante diversas técnicas computacionales, teniendo en cuenta al mismo tiempo el efecto de la geomorfología en la comprensión de la amenaza. El objetivo es investigar diversas metodologías y compararlas utilizando criterios de validación, así como investigar la influencia de la concentración de sedimentos en el comportamiento del flujo y en la herramienta y parametrización de la simulación. Se analizan dos estudios de caso en los Andes colombianos: la inundación de escombros ocurrida en Salgar, Antioquia, en 2015, que provocó 112 deslizamientos causados por la ocurrencia poco común de dos tormentas de lluvia y el flujo de escombros de Potrerito en Bello, Antioquia, causado por una intensa tormenta con intensidades máximas instantáneas extraordinarias. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaGestión del riesgospa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83399
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA.N. Strahler. Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology. McGraw-Hill, New York,, page 4–39., 1964. URL http://hydrologie.org/hsj/101/101010.pdf.spa
dc.relation.referencesAdolf Voellmy. Uber die Zerstorungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg., (73):159–162, 1955. URL https://ci.nii.ac.jp/naid/10003618744/.spa
dc.relation.referencesAlbert Heim. Bergsturz und menschenleben. Number 20. Fretz & Wasmuth, 1932.spa
dc.relation.referencesAlfonso Mariano Ramos Cañón, Antonio Andrés Reyes Merchán, Maddy Alejandra Munévar Peña, Gloria Lucía Ruiz Peña, Silvia Viviana Machuca Castellanos, Michael Steve Rangel Flórez, Luis Felipe Prada Sarmiento, Miguel Angel Cabrera,´ Carlos Eduardo Rodríguez Pineda, Nicolás Escobar Castañeda, Carlos Alberto Quintero Ortíz, Jorge Alberto Escobar Vargas, Juan Diego Giraldo Osorio, Maudi Sorley Medina Orjuela, Leandro Durán Santana, David Enrique Trujillo Osorio, Diego Fernando Medina Avila, Carlos Andrés Capachero Martínez, Danny León Del-´ gado, Karol Constanza Ramírez Hernández, Edna Esperanza González Rojas, Sara Lucía Rincón Chisino, Paula Angélica Solarte Blandón, Lady Carolina Castro Malaver, Carolina López Marín, Sofía del Rosario Navarro Alarcón, and Michael Alejandro Pérez Moreno. Guía metodológica para zonificación de amenaza por avenidas torrenciales. Libros del Servicio Geológico Colombiano, 10 2021. doi: 10.32685/9789585313156.spa
dc.relation.referencesAna María Pérez Hincapié. Zonificación de amenazas por avenidas torrenciales a partir del análisis geomorfológico de los depósitos asociados y su datación. Caso de estudio : cuencas de la vertiente oriental de la Cordillera Occidental Colombiana, Andes del Norte. Maestría en Ciencias de la Tierra, EAFIT, 2019. URL http://repository. eafit.edu.co/handle/10784/15331.spa
dc.relation.referencesAnanta Man Singh Pradhan, Jung Min Lee, and Yun Tae Kim. Semi-quantitative method to identify the vulnerable areas in terms of building aggregation for probable landslide runout at the regional scale: a case study from Soacha Province, Colombia. Bulletin of Engineering Geology and the Environment, 78(8):5745–5762, 12 2019. ISSN 14359537. doi: 10.1007/S10064-019-01533-Y/FIGURES/18. URL https://link.springer.com/article/10.1007/s10064-019-01533-y.spa
dc.relation.referencesArthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63(11):1117–1142, 1952. ISSN 19432674. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.spa
dc.relation.referencesAshley N. Kern, Priscilla Addison, Thomas Oommen, Sean E. Salazar, and Richard A. Coffman. Machine Learning Based Predictive Modeling of Debris Flow Probability Following Wildfire in the Intermountain Western United States. Mathematical Geosciences, 49(6):717–735, 8 2017. ISSN 18748953. doi: 10.1007/s11004-017-9681-2.URL https://link.springer.com/article/10.1007/s11004-017-9681-2.spa
dc.relation.referencesB. Bout, L. Lombardo, C. J. van Westen, and V. G. Jetten. Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environmental Modelling and Software, 105:1–16, 7 2018. ISSN 13648152. doi: 10.1016/j.envsoft.2018.03.017.spa
dc.relation.referencesB. Quan Luna, A. Remaˆıtre, Th W.J. van Asch, J. P. Malet, and C. J. van Westen. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128:63–75, 3 2012. ISSN 0013-7952. doi: 10.1016/J. ENGGEO.2011.04.007.spa
dc.relation.referencesB. Quan Luna, J. Blahut, C. J. Van Westen, S. Sterlacchini, T. W.J. Van Asch, and S. O. Akbas. The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Science, 11(7):2047–2060, 2011. ISSN 15618633. doi: 10.5194/nhess-11-2047-2011.spa
dc.relation.referencesBiswajeet Pradhan and Saro Lee. Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1): 13–30, 2 2010. ISSN 1612510X. doi: 10.1007/s10346-009-0183-2. URL https://link. springer.com/article/10.1007/s10346-009-0183-2.spa
dc.relation.referencesBiswajeet Pradhan, Saro Lee, and Manfred F. Buchroithner. A GIS-based backpropagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34(3):216–235, 5 2010. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2009.12.004.spa
dc.relation.referencesC.O. Clark. Storage and the Unit Hydrograph. Transactions of the American Society of Civil Engineers, 110(1):1419–1446, 1 1945. ISSN 0066-0604. doi: 10.1061/TACEAT.0005800. URL https://ascelibrary.org/doi/abs/10.1061/TACEAT.0005800https://ascelibrary.org/doi/10.1061/TACEAT.0005800.spa
dc.relation.referencesCarlo Gregoretti, Mauro Boreggio, and Massimo Degetto. GIS-based cell model for simulating debris flow runout on a fan Massimo Degetto GIS-based cell model for simulating debris flow runout on a fan. Article in Journal of Hydrology, 2016. doi: 10.1016/j.jhydrol.2015.12.054. URL http://dx.doi.org/10.1016/j.jhydrol.2015.12.054.spa
dc.relation.referencesCarlos D. Hoyos, Lina I. Ceballos, Jhayron S. Pérez-Carrasquilla, Julian Sepulveda, Silvana M. López-Zapata, Manuel D. Zuluaga, Nicolas Velasquez, Laura Herrera-Mejía, Olver Hernández, Gisel Guzmán-Echavarría, and Mauricio Zapata. Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11):2635–2665, 11 2019. ISSN 16849981. doi: 10.5194/NHESS-19-2635-2019.spa
dc.relation.referencesCasey A. Dowling and Paul M. Santi. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Natural Hazards, 71(1):203– 227, 2014. ISSN 0921030X. doi: 10.1007/s11069-013-0907-4.spa
dc.relation.referencesCésar Augusto Hidalgo Montoya. Directrices Y Lineamientos Para La Elaboración De Los Estudios Geológicos Geomorfológicos, Hidrológicos, Hidráulicos, Hidrogeológicos Y Geotécnicos Para Intervenciones En Zonas De Ladera, En El Valle De Aburrá. Area Metropolitana Del Valle De Aburra , 1 2012. ISBN 978-958-8513-64-5.URL https://investigaciones-pure.udem.edu.co/es/publications/ directrices-y-lineamientos-para-la-elaboraci%C3%B3n-de-los-estudios-ge.spa
dc.relation.referencesChristine L. May and Robert E. Gresswell. Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA. Geomorphology, 57(3-4):135–149, 2 2004. ISSN 0169555X. doi: 10.1016/S0169-555X(03)00086-2.spa
dc.relation.referencesChristopher A. Pederson, Paul M. Santi, and David R. Pyles. Relating the compensational stacking of debris-flow fans to characteristics of their underlying stratigraphy: Implications for geologic hazard assessment and mitigation. Geomorphology, 248:47–56, 2015. ISSN 0169555X. doi: 10.1016/j.geomorph.2015.06.030. URL http://dx.doi.org/10.1016/j.geomorph.2015.06.030.spa
dc.relation.referencesChulsang Yoo, Phuong Doan, Changhyun Jun, and Wooyoung Na. Hillslope Contribution to the Clark Instantaneous Unit hydrograph: Application to the Seolmacheon Basin, Korea. 2021. doi: 10.3390/w13121707. URL https://doi.org/10.3390/w13121707.spa
dc.relation.referencesD. J. Wilford, M. E. Sakals, J. L. Innes, R. C. Sidle, and W. A. Bergerud. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1):61–66, 2004. ISSN 16125118. doi: 10.1007/s10346-003-0002-0.spa
dc.relation.referencesD. Rickenmann, D. Laigle, B. W. McArdell, and J. Hübl. Comparison of 2D debris-flow simulation models with field events. In Computational Geosciences, volume 10, pages 241–264, 6 2006. doi: 10.1007/s10596-005-9021-3.spa
dc.relation.referencesD. W. Park, S. R. Lee, N. N. Vasu, S. H. Kang, and J. Y. Park. Coupled model for simulation of landslides and debris flows at local scale. Natural Hazards, 81(3):1653– 1682, 4 2016. ISSN 15730840. doi: 10.1007/s11069-016-2150-2.spa
dc.relation.referencesDaniel Che, Larry W Mays, ; Mandar Nangare, and F Asce. Determination of Clark’s Unit Hydrograph Parameters for Watersheds. Article in Journal of Hydrologic Engineering, 2014. doi: 10.1061/(ASCE)HE.1943-5584.0000796. URL https://www.researchgate.net/publication/273747955.spa
dc.relation.referencesDavid G. Tarboton. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2):309–319, 2 1997. ISSN 1944-7973. doi: 10.1029/96WR03137.URLhttps://onlinelibrary.wiley.com/doi/full/10.1029/96WR03137https://onlinelibrary.wiley.com/doi/abs/10.1029/96WR03137https://agupubs. onlinelibrary.wiley.com/doi/10.1029/96WR03137.spa
dc.relation.referencesDavid Palacio Jiménez. Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas. PhD thesis, Universidad Nacional de Colombia, Medellín, 2022. URL https://repositorio.unal.edu.co/ handle/unal/81507.spa
dc.relation.referencesDavid R. Montgomery and William E. Dietrich. A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4):1153– 1171, 1994. ISSN 19447973. doi: 10.1029/93WR02979.spa
dc.relation.referencesDennis M. Staley, Thad A. Wasklewicz, and Jacek S. Blaszczynski. Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 74(1-4):152–163, 3 2006. ISSN 0169555X. doi: 10.1016/j.geomorph.2005.07.014.spa
dc.relation.referencesDieter Rickenmann and Markus Zimmermann. The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3):175–189, 11 1993. ISSN 0169-555X.doi: 10.1016/0169-555X(93)90036-2.spa
dc.relation.referencesDori J. Kovanen and Olav Slaymaker. The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington State, USA. Geomorphology, 99(1-4):224–245, 7 2008. ISSN 0169555X. doi: 10.1016/ j.geomorph.2007.11.003.spa
dc.relation.referencesE Bruce Pitman, C Camil Nichita, Abani Patra, Andy Bauer, Michael Sheridan, and Marcus Bursik. Computing granular avalanches and landslides a.... aip.scitation.org, 15(12):3638–3646, 2003. doi: 10.1063/1.1614253. URL http://ojps.aip.org/phf/ phfcr.jsp.spa
dc.relation.referencesE. Aristizábal, E. García, and C. Martínez. Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Natural Hazards, 78(1):621–634, 2015. ISSN 15730840. doi: 10.1007/s11069-015-1736-4.spa
dc.relation.referencesE. Bladé, L. Cea, G. Corestein, E. Escolano, J. Puertas, E. Vázquez-Cendón, J. Dolz, and A. Coll. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 30(1):1–10, 1 2014. ISSN 1886158X. doi: 10.1016/j.rimni.2012.07.004.spa
dc.relation.referencesEdier Aristizábal, Jaime Ignacio Vélez, Hernán Eduardo Martínez, and Michel Jaboyedoff. SHIA Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3):497–517, 2016. ISSN 16125118. doi: 10.1007/s10346-015-0580-7.spa
dc.relation.referencesEdier Aristizábal, María Isabel Arango Carmona, and Ingrid Kattherine García López. Definition and classification of torrential avenues and their impact in the Colombian Andes. Cuadernos de Geografia: Revista Colombiana de Geografia, 29(1):242–258, 1 2020. ISSN 22565442. doi: 10.15446/rcdg.v29n1.72612. URL https://revistas.unal. edu.co/index.php/rcg/article/view/72612.spa
dc.relation.referencesEdier Aristizábal, María Isabel Arango Carmona, Federico José Gómez, Sandra Milena López Castro, Alfredo De Villeros Severiche, and Andrés Felipe Riaño Quintanilla. Hazard Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. pages 7–10. Springer, Cham, 2020. doi: 10.1007/978-3-030-34397-2{\ }2.spa
dc.relation.referencesEdwin F. Sierra Hernandez. Zonificación de la amenaza por avenidas torrenciales para las quebradas el Chulo y El Tablón en la zona urbana del municipio de Gachetá, Cundinamarca. Technical Report 8, 2018.spa
dc.relation.referencesEfthymios I. Nikolopoulos, Stefano Crema, Lorenzo Marchi, Francesco Marra, Fausto Guzzetti, and Marco Borga. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology, 221: 286–297, 9 2014. ISSN 0169555X. doi: 10.1016/j.geomorph.2014.06.015. URL https://linkinghub.elsevier.com/retrieve/pii/S0169555X14003158.spa
dc.relation.referencesElisa Destro, William Amponsah, Efthymios I. Nikolopoulos, Lorenzo Marchi, Francesco Marra, Davide Zoccatelli, and Marco Borga. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event. Journal of Hydrology, 558:225–237, 2018. ISSN 00221694. doi: 10.1016/j.jhydrol.2018.01.021.spa
dc.relation.referencesElisa Helena Fernandes, Keith Richard Dyer, and Luis Felipe Hax Niencheski. Calibration and Validation of the TELEMAC-2D Model to the Patos Lagoon (Brazil). Source: Journal of Coastal Research, (1991):470–488, 2001.spa
dc.relation.referencesEric Gaume, Valerie Bain, Pietro Bernardara, Olivier Newinger, Mihai Barbuc, Allen Bateman, Lotta Blaˇskoviˇcová, Günter Bl¨oschl, Marco Borga, Alexandru Dumitrescu, Ioannis Daliakopoulos, Joachim Garcia, Anisoara Irimescu, Silvia Kohnova, Aristeidis Koutroulis, Lorenzo Marchi, Simona Matreata, Vicente Medina, Emanuele Preciso, Daniel Sempere-Torres, Gheorghe Stancalie, Jan Szolgay, Ioannis Tsanis, David Velasco, and Alberto Viglione. A compilation of data on European flash floods. Journal of Hydrology, 367(1-2):70–78, 2009. ISSN 00221694. doi: 10.1016/j.jhydrol.2008.12.028. URL http://dataservice.eea.europa.eu.spa
dc.relation.referencesEsther Julia Olaya M. Miguel Ignacio Barrios P. Calculo y análisis de hidrogramas para el flujo torrencial del 22 de Junio de 2006 ocurrido en la microcuenca ”El Salto”, Ibagué - Colombia. Avances en Recursos Hidráulicos, 16(16):31–40, 2007. ISSN 0121-5701.URL http://rcb.unal.edu.co/index.php/arh/article/viewFile/9311/9960.spa
dc.relation.referencesFausto Guzzetti, Alessandro Cesare Mondini, Mauro Cardinali, Federica Fiorucci, Michele Santangelo, and Kang Tsung Chang. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2):42–66, 4 2012. ISSN 0012-8252. doi: 10.1016/J.EARSCIREV.2012.02.001.spa
dc.relation.referencesFelipe Augusto Fonseca Arevalo. Analysing changing multi- hazard risk to flow-like phenomena for urban planning. Technical report, 2019. URL https://library.itc. utwente.nl/papers_2019/msc/aes/FonsecaArevalo.pdf.spa
dc.relation.referencesFélix Roberto Castro López. Simulación de flujos granulares detonados desde el Cerro Montoso (Nariño, Colombia) e implicaciones para amenazas por remoción en masa. Technical report, 2018. URL https://repositorio.uniandes.edu.co/ handle/1992/45160.spa
dc.relation.referencesFrancesco Neglia, Roberto Sulpizio, Fabio Dioguardi, Lucia Capra, and Damiano Sarocchi. Shallow-water models for volcanic granular flows: A review of strengths and weaknesses of TITAN2D and FLO2D numerical codes. Journal of Volcanology and Geothermal Research, 2021. ISSN 03770273. doi: 10.1016/j.jvolgeores.2020.107146. URL https://www.sciencedirect.com/science/article/pii/S0377027320305825.spa
dc.relation.referencesG Iovine, S Di Gregorio, and V Lupiano. Debris-flow susceptibility assessment through cellular automata modeling: an example from 15-16 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Technical report, 2003.spa
dc.relation.referencesGermán Poveda and Oscar J. Mesa. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10):2690–2702, 1997. ISSN 08948755. doi: 10.1175/1520-0442(1997)010⟨2690: FBHPIT⟩2.0.CO;2.spa
dc.relation.referencesGiuseppe Formetta, Giovanna Capparelli, and Pasquale Versace. Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrology and Earth System Sciences, 20(11):4585–4603, 11 2016. ISSN 16077938. doi:10.5194/HESS-20-4585-2016.spa
dc.relation.referencesGomal Amin and Dilshad Bano. Comprehensive analysis of surface characteristics of debris flow fans in Gilgit-Baltistan and Chitral regions of Pakistan using remote sensing Comprehensive analysis of surface characteristics of debris flow fans in Gilgit-Baltistan and Chitral regions of. (December), 2020. URL https://www.researchgate.net/ publication/346557083.spa
dc.relation.referencesGuillaume G Chevalier. Assessing debris-flow hazard focusing on statistical morpho-fluvial susceptibility models and magnitude-frequency relationships : application to the central-eastern Pyrenees. TDX (Tesis Doctorals en Xarxa),2013. URL https://upcommons.upc.edu/handle/2117/95041https://upcommons. upc.edu/handle/2117/95041#.XIuDr-s3EPw.mendeley.spa
dc.relation.referencesH. Gómez and T. Kavzoglu. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78 (1-2):11–27, 4 2005. ISSN 00137952. doi: 10.1016/j.enggeo.2004.10.004.spa
dc.relation.referencesHansjurgen Meyer, Alberto Sarria, Camilo Cárdenas, Cristina Rosales, Hansjurgen Meyer, and EAFIT. Desastres de origen natural en Colombia 1979-2004, volume 27. 2005. ISBN 9588173892. URL https://books.google.es/books?hl=es& lr=&id=FhxXMyuLJ8oC&oi=fnd&pg=PA91&dq=sismo+murindo&ots=DgMt99JOR4&sig= sdsvB2LxMhZ0I3mpwVf5lprgEi0#v=onepage&q=sismomurindo&f=false.spa
dc.relation.referencesHerbert Aulitzky. Derzeitige Sicherheitserwartungen an verschiedene Lawinenschutzmassnahmen. na, 1980.spa
dc.relation.referencesHerrero Andrés Díez, Huerta L Laín, and M Llorente. Mapas de peligrosidad por avenidas e inundaciones Guía metodológica para su elaboración. Number January. Instituto Geológico y Minero de España IGME. p. 113-118. Madrid, España, 2008. ISBN 9788478407705.spa
dc.relation.referencesHolger Frey, Christian Huggel, Yves Bühler, Daniel Buis, Maria Dulce Burga, Walter Choquevilca, Felipe Fernandez, Javier García Hernández, Claudia Giráldez, Edwin Loarte, Paul Masias, Cesar Portocarrero, Luis Vicuña, and Marco Walser. A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru. Landslides, 13(6):1493–1507, 12 2016. ISSN 16125118. doi: 10.1007/S10346-015-0669-Z/FIGURES/8. URL https://link.springer.com/ article/10.1007/s10346-015-0669-z.spa
dc.relation.referencesHolmes Julián Paéz Martínez and Julia Helena Díaz Ramírez. Las alianzas como mecanismos en función de un desastre natural-antrópico: Salgar. Technical report, Pontificia Universidad Javeriana, Salgar, 2020. URL http://www.grif.umontreal.ca/ acciones/contenu_pages/ADAPTO_Estudio-Caso-Salgar.pdf.spa
dc.relation.referencesJ Blahut, P Horton, S Sterlacchini, and M Jaboyedoff. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Hazards Earth Syst. Sci, 10:2379–2390, 2010. doi: 10.5194/nhess-10-2379-2010. URL www.nat-hazards-earth-syst-sci. net/10/2379/2010/.spa
dc.relation.referencesJ O’Brien and P Julien. Physical properties and mechanics of hyperconcentrated sediment flows. Proc. ASCE HD Delineation of landslides, flash flood and debris flow hazards, pages 260–279, 1985.spa
dc.relation.referencesJ. C. Bathurst, A. Burton, and T. J. Ward. Debris Flow Run-Out and Landslide Sediment Delivery Model Tests. Journal of Hydraulic Engineering, 123(5):410– 419, 5 1997. ISSN 0733-9429. doi: 10.1061/(ASCE)0733-9429(1997)123:5(410).URLhttps://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9429% 281997%29123%3A5%28410%29https://ascelibrary.org/doi/10.1061/%28ASCE% 290733-9429%281997%29123%3A5%28410%29.spa
dc.relation.referencesJ. E. Costa. Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. Flood geomorphology, pages 113–122, 1988.spa
dc.relation.referencesJ. S. O’Brien, P. Y. Julien, and W. T. Fullerton. Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119(2):244–261, 2 1993. ISSN 0733-9429. doi: 10.1061/(asce)0733-9429(1993)119:2(244). URL http://ascelibrary. org/doi/10.1061/%28ASCE%290733-9429%281993%29119%3A2%28244%29.spa
dc.relation.referencesJae-Tae Lim and Byunghyun Kim. Modeling for Debris Flow Behavior on Expressway Using FLO-2D. KSCE Journal of Civil and Environmental Engineering Research, 39 (2):263–272, 2019. ISSN 1015-6348. doi: 10.12652/Ksce.2019.39.2.0263. URL www. kscejournal.or.kr.spa
dc.relation.referencesJean Charles Galland, Nicole Goutal, and Jean Michel Hervouet. TELEMAC: A new numerical model for solving shallow water equations. Advances in Water Resources, 14 (3):138–148, 1991. ISSN 03091708. doi: 10.1016/0309-1708(91)90006-A.spa
dc.relation.referencesJie Yang, Ronald D. Townsend, and Bahram Daneshfar. Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Canadian Journal of Civil Engineering, 33(1):19–28, 2006. ISSN 03151468. doi: 10.1139/l05-102.spa
dc.relation.referencesJohn E. Costa. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. Journal of Hydrology, 93(3-4):313–338, 9 1987. ISSN 00221694. doi: 10.1016/0022-1694(87)90102-8. URL https://www.sciencedirect. com/science/article/pii/0022169487901028.spa
dc.relation.referencesJohn Fairfield and Pierre Leymarie.Drainage networks from grid digital elevation models.Water Resources Research, 27(5):709–717, 5 1991.ISSN 1944-7973.doi: 10.1029/90WR02658. URL https://onlinelibrary.wiley.com/doi/full/10.1029/ 90WR02658https://onlinelibrary.wiley.com/doi/abs/10.1029/90WR02658https: //agupubs.onlinelibrary.wiley.com/doi/10.1029/90WR02658.spa
dc.relation.referencesJohn O’Callaghan and David Mark. The extraction of drainage networks from digital elevation data. 28:323–344, 1984.spa
dc.relation.referencesJonas von Ruette, Peter Lehmann, Linfeng Fan, Samuel Bickel, Dani Or, and Anonymous. STEP-TRAMM; a modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways. Geophysical Research Abstracts, 19:2017–11408, 2017. ISSN 1029-7006, 1029-7006. URL https://ui.adsabs.harvard.edu/abs/2017AGUFMNH41D..03O/abstract%0Ahttps: //search.proquest.com/docview/2368511691?accountid=14874%0Ahttp: //whel-primo.hosted.exlibrisgroup.com/openurl/44WHELF_BANG/44WHELF_ BANG_services_page?genre=article&issn=10297006&title=.spa
dc.relation.referencesJordi Corominas. The angle of reach as a mobility index for small and large landslides. https://doi.org/10.1139/t96-005, 33(2):260–271, 1996. ISSN 00083674. doi: 10.1139/ T96-005. URL https://cdnsciencepub.com/doi/abs/10.1139/t96-005.spa
dc.relation.referencesJosé. Caballero. Las avenidas torrenciales una amenaza potencial en el valle de Aburrá. Gestión y Ambiente, 14(3):45–50, 2012. ISSN 0124-177X.spa
dc.relation.referencesJuan Cao, Zhao Zhang, Jie Du, Liangliang Zhang, Yun Song, and Geng Sun. Multigeohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China. Natural Hazards, 102(3):851–871, 7 2020. ISSN 15730840. doi: 10.1007/s11069-020-03927-8. URL https://link.springer.com/article/10.1007/ s11069-020-03927-8.spa
dc.relation.referencesJuan Luis González, Omar Alberto Chavez, and Hermelín Hermelin. Geomorphological aspects of the torrential rains of January 31st, 1994 in the watershed of the river Fraile and their associated phenomena. Research notebooks, (Document 21-092004):135, 2004.spa
dc.relation.referencesK. Hutter, B. Svendsen, and D. Rickenmann. Debris flow modeling: A review. Continuum Mechanics and Thermodynamics 1996 8:1, 8(1):1–35, 1994. ISSN 1432-0959. doi: 10.1007/BF01175749. URL https://link.springer.com/article/10.1007/ BF01175749.spa
dc.relation.referencesKe Xiong, Basanta Raj Adhikari, Constantine A Stamatopoulos, Yu Zhan, Shaolin Wu, Zhongtao Dong, and Baofeng Di. Comparison of different machine learning methods for debris flow susceptibility mapping: A case study in the Sichuan Province, China. Remote Sensing, 12(2), 2020. ISSN 20724292. doi: 10.3390/rs12020295. URL www.mdpi.com/journal/remotesensing.spa
dc.relation.referencesKenneth Hewitt and Manjari Mehta. Rethinking risk and disasters in mountain areas. http://journals.openedition.org/rga, (100-1):100–101, 2 2012. ISSN 1760-7426. doi: 10. 4000/RGA.1653. URL http://journals.openedition.org/rga/1653.spa
dc.relation.referencesKhabat Khosravi, Binh Thai Pham, Kamran Chapi, Ataollah Shirzadi, Himan Shahabi, Inge Revhaug, Indra Prakash, and Dieu Tien Bui. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627:744–755, 6 2018. ISSN 18791026. doi:10.1016/j.scitotenv.2018.01.266.spa
dc.relation.referencesKo Fei Liu and Ming Chung Huang. Numerical simulation of debris flow with application on hazard area mapping. In Computational Geosciences, volume 10, pages 221–240. Springer, 6 2006. doi: 10.1007/s10596-005-9020-4. URL https://link. springer.com/article/10.1007/s10596-005-9020-4.spa
dc.relation.referencesKui Long, Shaojie Zhang, Fangqiang Wei, Kaiheng Hu, Qun Zhang, and Yu Luo. A hydrology-process based method for correlating debris flow density to rainfall parameters and its application on debris flow prediction. Journal of Hydrology, 589:125124, 10 2020. ISSN 00221694. doi: 10.1016/j.jhydrol.2020.125124.spa
dc.relation.referencesLaura Maria Stancanelli, David Johnny Peres, Antonino Cancelliere, and Enrico Foti. A combined triggering-propagation modeling approach for the assessment of rainfall induced debris flow susceptibility. Journal of Hydrology, 550:130–143, 2017. ISSN 00221694. doi: 10.1016/j.jhydrol.2017.04.038. URL http://dx.doi.org/10.1016/j. jhydrol.2017.04.038.spa
dc.relation.referencesLeonardo Cascini, Sabatino Cuomo, Manuel Pastor, and Ilaria Rendina. Modelling of debris flows and flash floods propagation: a case study from Italian Alps. European Journal of Environmental and Civil Engineering, 2020. ISSN 19648189. doi: 10.1080/ 19648189.2020.1756418.spa
dc.relation.referencesLinfeng Fan, Peter Lehmann, Brian McArdell, and Dani Or. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology, 280:1–15, 2017. ISSN 0169555X. doi: 10.1016/j.geomorph.2016.10.007.URL http://dx.doi.org/10.1016/j.geomorph.2016.10.007.spa
dc.relation.referencesLuis Montoya Jaramillo, Sandra Silvia Arroyave, and Juan González. Evaluación de zonas de amenaza por avenidas torrenciales utilizando metodologías cualitativas. Caso de aplicación a la quebrada Doña María. Revista de Ingenierías: Universidad de Medellín, 8(15):11–29, 2009. ISSN 1692-3324. URL http://www.scielo.org.co/pdf/ rium/v8n15/v8n15a02.pdf.spa
dc.relation.referencesLuisa Fernanda Alvarado Reyes. Análisis de las metodologías implementadas en la zonificación de amenaza por avenidas torrenciales en la gestión del riesgo en Colombia. PhD thesis, 2020. URL http://bibliotecadigital.udea.edu.co/handle/10495/ 14995.spa
dc.relation.referencesM C Rogelis and M Werner. Regional debris flow susceptibility analysis in mountainous peri-urban areas through morphometric and land cover indicators. Hazards Earth Syst. Sci, 14:3043–3064, 2014. doi: 10.5194/nhess-14-3043-2014. URL www.nat-hazards-earth-syst-sci.net/14/3043/2014/.spa
dc.relation.referencesM Pirulli. Natural Hazards and Earth System Sciences On the use of the calibration-based approach for debris-flow forward-analyses. Hazards EarthSyst. Sci, 10:1009–1019, 2010.doi:10.5194/nhess-10-1009-2010.URL www. nat-hazards-earth-syst-sci.net/10/1009/2010/.spa
dc.relation.referencesM Zimmermann. Murganggefahr und Klima¨anderung-ein GIS-basierter Ansatz. 1997. URLhttps://books.google.com/books?hl=en&lr=&id=1eRPabUSm04C&oi=fnd& pg=PA15&dq=Zimmermann,+M.,+Mani,+P.,+and+Gamma,+P.:+Murganggefahr+und+ Klima+anderung+%E2%80%93+ein+GIS-basierter+Ansatz&ots=D4txtZ7Sdp&sig= d-t5XvSlzktTgUJz3iUrcUXMSQM.spa
dc.relation.referencesM. Borga, E. N. Anagnostou, G. Bl¨oschl, and J. D. Creutin. Flash floods: Observations and analysis of hydro-meteorological controls. Journal of Hydrology, 394(1-2):1–3, 2010. ISSN 00221694. doi: 10.1016/j.jhydrol.2010.07.048.spa
dc.relation.referencesM. Cesca and V. D’Agostino. Comparison between FLO-2D and RAMMS in debrisflow modelling: A case study in the Dolomites. In WIT Transactions on Engineering Sciences, volume 60, pages 197–206. WIT Press, 6 2008. ISBN 9781845641184. doi:10.2495/DEB080201. URL www.witpress.com,.spa
dc.relation.referencesM. Christen, J. Kowalski, and P. Bartelt. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2):1–14, 8 2010. ISSN 0165232X. doi: 10.1016/j.coldregions.2010.04.005.spa
dc.relation.referencesM. S. Kappes, J. P. Malet, A. Remaˆıtre, P. Horton, M. Jaboyedoff, and R. Bell. Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Science, 11(2):627–641, 2011. ISSN 15618633. doi: 10.5194/nhess-11-627-2011.spa
dc.relation.referencesMarcel Hürlimann, Dieter Rickenmann, Vicente Medina, and Allen Bateman. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102(3-4):152–163, 12 2008. ISSN 00137952. doi: 10.1016/j.enggeo. 2008.03.012.spa
dc.relation.referencesMarco Borga, Markus Stoffel, Lorenzo Marchi, Francesco Marra, and Matthias Jakob. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518(PB):194–205, 2014. ISSN 00221694. doi: 10. 1016/j.jhydrol.2014.05.022. URL http://dx.doi.org/10.1016/j.jhydrol.2014.05.22spa
dc.relation.referencesMaría Isabel Arango, Edier Aristizábal, and Federico Gómez. Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105(1):983–1012, 2021. ISSN 15730840. doi: 10.1007/s11069-020-04346-5.spa
dc.relation.referencesMaría Victoria, Vélez Otálvaro, and Profesora Asociada. HIDROLOGIA PARA INGENIEROS. 2000.spa
dc.relation.referencesMark A. Melton. An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology; Office of Naval Research Technical Report No. 11. Office of Naval Research, technical report, page 99, 1957. URL http://www.dtic. mil/get-tr-doc/pdf?AD=AD0148373.spa
dc.relation.referencesMartin Mergili, Jan Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini. R.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2):553–569, 2 2017. ISSN 19919603. doi: 10.5194/gmd-10-553-2017.spa
dc.relation.referencesMatthias Jakob, Emily Mark, Scott McDougall, Pierre Friele, Carie Ann Lau, and Stephanie Bale. Regional debris-flow and debris-flood frequency–magnitude relationships. Earth Surface Processes and Landforms, 45(12):2954–2964, 9 2020. ISSN 1096-9837. doi: 10.1002/ESP.4942. URL https://onlinelibrary.wiley.com/doi/ full/10.1002/esp.4942https://onlinelibrary.wiley.com/doi/abs/10.1002/ esp.4942https://onlinelibrary.wiley.com/doi/10.1002/esp.4942.spa
dc.relation.referencesMatthias Jakob, Kris Holm, Owen Lange, and James W. Schwab. Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia. Landslides, 3(3):228–238, 2006. ISSN 1612510X. doi: 10.1007/ s10346-006-0044-1.spa
dc.relation.referencesMatthieu Sturzenegger, Kris Holm, Carie-Ann Lau, and Matthias Jakob.Semiautomated regional scale debris-flow and debris-flood susceptibility mapping based on digital elevation model metrics and Flow-R software.2019URL https:// mountainscholar.org/handle/11124/173134.spa
dc.relation.referencesMelanie Gall, Kevin A. Borden, and Susan L. Cutter. When Do Losses Count?: Six Fallacies of Natural Hazards Loss Data. Bulletin of the American Meteorological Society, 90(6):799–810, 6 2009. ISSN 0003-0007. doi: 10.1175/2008BAMS2721.1. URL https://journals.ametsoc.org/view/journals/bams/90/6/2008bams2721_1.xml.spa
dc.relation.referencesMichael Church and Matthias Jakob. What Is a Debris Flood? Water Resources Research, 56(8):e2020WR027144, 8 2020. ISSN 1944-7973. doi: 10.1029/2020WR027144. URL https://onlinelibrary.wiley.com/doi/full/10.1029/2020WR027144https: //onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027144https://agupubs. onlinelibrary.wiley.com/doi/10.1029/2020WR027144.spa
dc.relation.referencesNan Wang, Weiming Cheng, Min Zhao, Qiangyi Liu, and Jing Wang. Identification of the Debris Flow Process Types within Catchments of Beijing Mountainous Area. Water 2019, Vol. 11, Page 638, 11(4):638, 3 2019. ISSN 2073-4441. doi: 10.3390/W11040638. URL https://www.mdpi.com/2073-4441/11/4/638/htmhttps://www. mdpi.com/2073-4441/11/4/638.spa
dc.relation.referencesNaoto Yokoya, Kazuki Yamanoi, Wei He, Gerald Baier, Bruno Adriano, Hiroyuki Miura, and Satoru Oishi. Breaking Limits of Remote Sensing by Deep Learning From Simulated Data for Flood and Debris-Flow Mapping. IEEE Transactions on Geoscience and Remote Sensing, pages 1–15, 11 2020. ISSN 0196-2892. doi:10.1109/tgrs.2020.3035469.spa
dc.relation.referencesNicolás Velásquez, Carlos D. Hoyos, Jaime I. Vélez, and Esneider Zapata. Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. Hydrology and Earth System Sciences, 24(3):1367–1392, 3 2020. ISSN 16077938. doi: 10.5194/HESS-24-1367-2020.spa
dc.relation.referencesNing Jiang, Fenghuan Su, Yong Li, Xiaojun Guo, Jun Zhang, and Xuemei Liu. Debris Flow Assessment in the Gaizi-Bulunkou Section of Karakoram Highway. Frontiers in Earth Science, 9:451, 6 2021. ISSN 22966463. doi: 10.3389/FEART.2021.660579/ BIBTEX.spa
dc.relation.referencesNurünnisa Usul and Musa Yilmaz. ESTIMATION OF INSTANTANEOUS UNIT HYDROGRAPH WITH CLARK’S TECHNIQUE IN GIS. URL http://proceedings. esri.com/library/userconf/proc02/pap1229/p1229.htm.spa
dc.relation.referencesO. Hungr, S. G. Evans, M. J. Bovis, and J. N. Hutchinson. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3):221– 238, 2001. ISSN 10787275. doi: 10.2113/gseegeosci.7.3.221.spa
dc.relation.referencesOldrich Hungr, Serge Leroueil, and Luciano Picarelli.The Varnes classification of landslide types, an update. Landslides, 11(2):167–194, 2014. ISSN 16125118. doi: 10.1007/s10346-013-0436-y.spa
dc.relation.referencesOldrich Hungr. Flow slides and flows in granular soils. Engineering, 9(February):1–9, 2001.spa
dc.relation.referencesP. D. Bates and A. P.J. De Roo. A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2):54–77, 2000. ISSN 00221694. doi: 10.1016/ S0022-1694(00)00278-X.spa
dc.relation.referencesP. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4):869–885, 2013. ISSN 16849981. doi: 10.5194/nhess-13-869-2013.spa
dc.relation.referencesP. Quinn, K. Beven, P. Chevallier, and O. Planchon. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1):59–79, 1 1991. ISSN 1099-1085. doi: 10.1002/HYP.3360050106. URL https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.3360050106https: //onlinelibrary.wiley.com/doi/abs/10.1002/hyp.3360050106https:// onlinelibrary.wiley.com/doi/10.1002/hyp.3360050106.spa
dc.relation.referencesPascal Horton, Michel Jaboyedoff, Markus Zimmermann, Benoit Mazotti, and Celine Longchamp. Flow-R, a model for debris flow susceptibility mapping at a regional scale - Some case studies. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, pages 875–884, 2011. doi: 10. 4408/IJEGE.2011-03.B-095.spa
dc.relation.referencesPatrick Gamma. dfwalk-Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Geographisches Institut der Universit¨at Bern, Bern, Switzerland, 2000.spa
dc.relation.referencesPaul M Torrens. Cellular Automata 1. 2007.spa
dc.relation.referencesPeter Holmgren. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8 (4):327–334, 7 1994. ISSN 1099-1085. doi: 10.1002/HYP.3360080405. URL https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.3360080405https: //onlinelibrary.wiley.com/doi/abs/10.1002/hyp.3360080405https:// onlinelibrary.wiley.com/doi/10.1002/hyp.3360080405.spa
dc.relation.referencesPhilippe Coussot and Maurice Meunier. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4):209–227, 1996. ISSN 00128252. doi: 10.1016/0012-8252(95)00065-8. URL http://linkinghub.elsevier. com/retrieve/pii/0012825295000658.spa
dc.relation.referencesPierre Y. Julien and Yongqiang Lan. Rheology of Hyperconcentrations. Journal of Hydraulic Engineering, 117(3):346–353, 3 1991. ISSN 0733-9429. doi: 10.1061/(asce) 0733-9429(1991)117:3(346). URL http://ascelibrary.org/doi/10.1061/%28ASCE% 290733-9429%281991%29117%3A3%28346%29.spa
dc.relation.referencesProgram for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report, (2008-1159):75, 2008. ISSN 2008–1159. doi: Open-FileReport20081159.spa
dc.relation.referencesR Perla, T T Creng, and D M Mcclung. A two-parameter model of snow-avalanche motion. Technical Report 94, 1980.spa
dc.relation.referencesRacha Elkadiri, Mohamed Sultan, Ahmed M. Youssef, Tamer Elbayoumi, Ronald Chase, Ali B. Bulkhi, and Mohamed M. Al-Katheeri. A Remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12):4818–4835, 12 2014. ISSN 21511535. doi: 10.1109/ JSTARS.2014.2337273. URL http://ieeexplore.ieee.org/document/6875897/.spa
dc.relation.referencesRex L. Baum, William Z. Savage, and Jonathan W. Godt. TRIGRS — A Fortranspa
dc.relation.referencesRichard Guthrie and Andrew Befus. DebrisFlow Predictor: An agent-based runout program for shallow landslides. Natural Hazards and Earth System Sciences, 21(3):1029–1049, 3 2021. ISSN 16849981. doi: 10.5194/nhess-21-1029-2021.spa
dc.relation.referencesRichard H. Guthrie, Peter J. Deadman, A. Raymond Cabrera, and Stephen G. Evans. Exploring the magnitude-frequency distribution: A cellular automata model for landslides. Landslides, 5(1):151–159, 2 2008. ISSN 1612510X. doi: 10.1007/s10346-007-0104-1. URL https://link.springer.com/article/10.1007/ s10346-007-0104-1.spa
dc.relation.referencesRichard M. Iverson. Landslide triggering by rain infiltration. Water Resources Research, 36(7):1897–1910, 7 2000. ISSN 00431397. doi: 10.1029/2000WR900090.spa
dc.relation.referencesRichard M. Iverson. The physics of debris flows. Reviews of Geophysics, 35(3):245–296, 1997. ISSN 87551209. doi: 10.1029/97RG00426.spa
dc.relation.referencesRobert F. Horton. Erosional development of streams and their drainage basins, hydrophysical approach to quantitive morphology. Nihon Ringakkai Shi/Journal of the Japanese Forestry Society, 37(2):79–82, 1955. ISSN 0021485X. doi: 10.11519/jjfs1953. 37.9{\ }417.spa
dc.relation.referencesRobert W. Kates. Natural Hazard in Human Ecological Perspective: Hypotheses and Models. Economic Geography, 47(3):438, 7 1971. ISSN 00130095. doi: 10.2307/142820.spa
dc.relation.referencesRoberta Pastorello, Vincenzo D’Agostino, and Marcel Hürlimann. Debris flow triggering characterization through a comparative analysis among different mountain catchments. CATENA, 186:104348, 3 2020. ISSN 0341-8162. doi: 10.1016/J.CATENA.2019. 104348.spa
dc.relation.referencesRoberto Arnaldo Trancoso Gomes, Renato Fontes Guimara˜es, Osmar Abílio de Carvalho Júnior, Nelson Ferreira Fernandes, and Eurípedes Vargas do Amaral Júnior. Combining spatial models for shallow landslides and debris-flows prediction. Remote Sensing, 5(5):2219–2237, 5 2013. ISSN 20724292. doi: 10.3390/rs5052219. URL http://www.mdpi.com/2072-4292/5/5/2219.spa
dc.relation.referencesSalvatore Ivo Giano, Eva Pescatore, and Vincenzo Siervo. Morphometry and Debris-Flow Susceptibility Map in Mountain Drainage Basins of the Vallo di Diano, Southern Italy. Remote Sensing 2021, Vol. 13, Page 3254, 13(16):3254, 8 2021. ISSN 2072-4292. doi: 10. 3390/RS13163254. URL https://www.mdpi.com/2072-4292/13/16/3254/htmhttps://www.mdpi.com/2072-4292/13/16/3254.spa
dc.relation.referencesSchraml Klaus, Thomschitz Barbara, McArdell Brian, Graf Christoph, Hungr Oldrich, and Kaitna Roland. Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models. In Engineering Geology for Society and Territory - Volume 2: Landslide Processes, pages 1673–1676. Springer International Publishing, 1 2015. ISBN 9783319090573. doi: 10.1007/978-3-319-09057-3{\ }297.URL https://link.springer.com/chapter/10.1007/978-3-319-09057-3_297.spa
dc.relation.referencesSergio A. Sepúlveda, Sofía Rebolledo, and Gabriel Vargas. Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quaternary International, 158(1):83–95, 2006. ISSN 10406182. doi: 10.1016/j.quaint.2006.05. 031.spa
dc.relation.referencesSergio Alejanddro Gómez Muñoz. Aplicabilidad del método del índice de Susceptibilidad Compuesto para la identificación de cuencas susceptibles a la ocurrencia de flujos torrenciales. pages 1–83, 2019. URL https://repositorio.unal.edu.co/handle/ unal/77219.spa
dc.relation.referencesShannon Sterling and Olav Slaymaker. Lithologic control of debris torrent occurrence. Geomorphology, 86(3-4):307–319, 2007. ISSN 0169555X. doi: 10.1016/j.geomorph. 2006.09.002.spa
dc.relation.referencesShiva P. Pudasaini and Martin Mergili. A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12):2920–2942, 12 2019. ISSN 21699011. doi: 10.1029/2019JF005204. URL https://doi.spa
dc.relation.referencesShiva P. Pudasaini. A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117(3):n/a–n/a, 9 2012. ISSN 21699011. doi: 10.1029/ 2011JF002186. URL http://doi.wiley.com/10.1029/2011JF002186.spa
dc.relation.referencesStanley A Schumm. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society Of America Bulletin, 67(5):597–646, 1956. ISSN 00167606. doi: 10.1130/0016-7606(1956)67. URL https://pubs.geoscienceworld. org/gsabulletin/article/67/5/597-646/4811.spa
dc.relation.referencesT. Takahashi. Debris flow. Annual review of fluid mechanics, volume 13, 13(1):57–77, 1 1981. ISSN 0066-4189. doi: 10.1146/annurev.fl.13.010181.000421. URL http://www.annualreviews.org/doi/10.1146/annurev.fl.13.010181.000421http: //www.annualreviews.org/doi/abs/10.1146/annurev.fl.13.010181.000421.spa
dc.relation.referencesTaiqiang Yang, Yong Li, Qishu Zhang, and Yu Jiang. Calculating debris flow density based on grain-size distribution. Landslides, 16(3):515–522, 3 2019. ISSN 16125118. doi: 10.1007/s10346-018-01130-2.spa
dc.relation.referencesTakashi Mino, Youichi Tanaka, Masami Sakamoto, and Tsutomu Fujita. Development of praline derived chiral aminophosphine ligands for palladium -catalyzed asymmetric allylic alkylation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 64(6):628–638, 2006. ISSN 00379980. doi: 10.5059/yukigoseikyokaishi.64.628.spa
dc.relation.referencesTamotsu Takahashi. Debris Flow : Mechanics, Prediction and Countermeasures. Debris Flow, 5 2007. doi: 10.1201/9780203946282. URL https://www.taylorfrancis.com/ books/mono/10.1201/9780203946282/debris-flow-tamotsu-takahashi.spa
dc.relation.referencesTerence Lai and Suzana Dragi´cevi´c. Development of an urban landslide cellular automata model: A case study of North Vancouver, Canada. Earth Science Informatics, 4(2):69– 80, 2011. ISSN 18650473. doi: 10.1007/s12145-011-0078-3.spa
dc.relation.referencesThomas C. Pierson and Johtt E. Costa. A rhéologie classification of subaerial sedimentwater flows. GSA Reviews in Engineering Geology, 7:1–12, 1987. ISSN 00802018. doi: 10.1130/REG7-p1. URL http://reg.gsapubs.org/lookup/doi/10.1130/REG7-p1.spa
dc.relation.referencesThomas C. Pierson. Hyperconcentrated flow — transitional process between water flow and debris flow. Debris-flow Hazards and Related Phenomena, pages 159–202, 12 8. URL https://link.springer.com/chapter/spa
dc.relation.referencesU. S. A.C.E. HEC-RAS River Analysis System. User’s Manual, Version 4.1, (November):1–790, 2010. ISSN 10701559. doi: CPD-68.spa
dc.relation.referencesUnidad Nacional para la Gestión del Riesgo de Desastres UNGRD. Consultoría de estudios y diseño para la implementación del sistema de alerta temprana por avenidas torrenciales en la microcuenca de la quebrada La Liboriana, quebrada La Clara y río Barroso del municipio de Salgar, en el marco de la declaratoria de calamidad pública, decreto 035 del 18 de mayo de 2015, modificado y prorrogado por los decretos 046 y 081 de 2015. Technical report, Unidad Nacional para la Gestión del Riesgo de Desastres,Bogotá, 2016.URL http://cedir-catalogo.gestiondelriesgo.gov.co/cgi-bin/ koha/opac-detail.pl?biblionumber=12958.spa
dc.relation.referencesUSACE Hydrologic Engineering Center. HEC-HMS User’s Manual, 2022. URL https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.9.spa
dc.relation.referencesUSDA. Urban Hydrology for Small Watersheds. (Technical Release 55 (TR-55)):164,1986. URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Urban+Hydrology+for+Small+watersheds#1.ADWardandSWTrimble.Environmentalhydrology.2003URL https://books.google.com/books?hl=en&lr=&id=yANwmTjf588C&oi=fnd&pg= IA5&dq=Ward,+Andy+D.%3B+Trimble,+Stanley+W.+(2004).+Environmental+ Hydrology.+Boca+Raton,+Florida+33431:+CRC+Press+LLC.+&ots=68l73gA0a_ &sig=NHqoEiBIHrYtS2ToT4Mng-ZREzM.spa
dc.relation.referencesValentina Nikolova, Asparuh Kamburov, and Radostina Rizova. Morphometric analysis of debris flows basins in the Eastern Rhodopes (Bulgaria) using geospatial technologies. Natural Hazards, 105(1):159–175, 1 2021. ISSN 15730840. doi: 10.1007/ s11069-020-04301-4.spa
dc.relation.referencesVictor Carvalho Cabral, Fábio Augusto Gomes Vieira Reis, Fernando Mazo D’Affonseca, Ana Lucía, Claudia Vanessa dos Santos Corrˆea, Vinicius Veloso, Marcelo Fischer Gramani, Agostinho Tadashi Ogura, Andrea Fregolente Lazaretti, Felipe Vemado, Augusto José Pereira Filho, Claudia Cristina dos Santos, Eymar Silva Sampaio Lopes, Lis Maria Reoni Rabaco, Lucilia do Carmo Giordano, and Christiane Zarfl. Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil. Natural Hazards, 108(3):3021–3043, 9 2021. ISSN 15730840. doi: 10.1007/ S11069-021-04811-9/FIGURES/10. URL https://link.springer.com/article/10.1007/s11069-021-04811-9.spa
dc.relation.referencesVolker Wichmann, Tobias Heckmann, Florian Haas, and Michael Becht. A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomorphology, 111(1-2):70–78, 10 2009. ISSN 0169555X. doi: 10.1016/j.geomorph.2008.04.028.spa
dc.relation.referencesWan jie Liang, Da fang Zhuang, Dong Jiang, Jian jun Pan, and Hong yan Ren. Assessment of debris flow hazards using a Bayesian Network. Geomorphology, 171-172: 94–100, 10 2012. ISSN 0169555X. doi: 10.1016/j.geomorph.2012.05.008.spa
dc.relation.referencesYing Hsin Wu, Ko Fei Liu, and Yi Chin Chen. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science, 10(2):293–304, 2013. ISSN 16726316. doi: 10. 1007/s11629-013-2511-1.spa
dc.relation.referencesYongchao Li, Jianping Chen, Chun Tan, Yang Li, Feifan Gu, Yiwei Zhang, and Qaiser Mehmood. Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China. Natural Hazards, 105 (3):2499–2522, 2 2021. ISSN 15730840. doi: 10.1007/s11069-020-04409-7. URL https://link.springer.com/article/10.1007/s11069-020-04409-7.spa
dc.relation.referencesYonghong Zhang, Taotao Ge, Wei Tian, and Yuei An Liou. Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sensing, 11(23), 2019. ISSN 20724292. doi: 10.3390/rs11232801. URL www.mdpi.com/journal/ remotesensing.spa
dc.relation.referencesYu-Charn Hsu and Ko-Fei Liu. Combining TRIGRS and DEBRIS-2D Models for the Simulation of a Rainfall Infiltration Induced Shallow Landslide and Subsequent Debris Flow. Water, 11(5):890, 4 2019. ISSN 2073-4441. doi: 10.3390/w11050890. URL https://www.mdpi.com/2073-4441/11/5/890.spa
dc.relation.referencesZheng Han, Yangfan Ma, Yange Li, Hong Zhang, Ningsheng Chen, Guisheng Hu, and Guangqi Chen. Hydrodynamic and topography based cellular automaton model for simulating debris flow run-out extent and entrainment behavior. Water Research, 193: 116872, 4 2021. ISSN 00431354. doi: 10.1016/j.watres.2021.116872.spa
dc.relation.referencesZhu Liang, Chang Ming Wang, Zhi Min Zhang, and Kaleem Ullah Jan Khan. A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stochastic Environmental Research and Risk Assessment, 34(11):1887–1907, 11 2020. ISSN 14363259. doi: 10.1007/s00477-020-01851-8. URL https://link. springer.com/article/10.1007/s00477-020-01851-8.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembDesastres naturalesspa
dc.subject.lembNatural disasterseng
dc.subject.proposalDebris Floweng
dc.subject.proposalHazardeng
dc.subject.proposalGeohazardeng
dc.subject.proposalSimulationeng
dc.subject.proposalAvenidas torrencialespa
dc.subject.proposalAmenazaspa
dc.subject.proposalGeoamenazaspa
dc.subject.proposalSimulaciónspa
dc.titleDebris-flow processes routing in mountain terrains and tropical environments for hazard assessmenteng
dc.title.translatedTránsito de avenidas torrenciales en terrenos montañosos y ambientes tropicales para la evaluación de la amenazaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017230948.2022.pdf
Tamaño:
10.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en ingeniería - recursos hidráulicos

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Federico Gomez cardona licenciacapitulo2.pdf
Tamaño:
3.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Licencia capitulo 2