Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO)

dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorRojo Ceballos, Clara Rosa
dc.date.accessioned2023-01-18T20:20:51Z
dc.date.available2023-01-18T20:20:51Z
dc.date.issued2021-01-17
dc.descriptionIlustracionesspa
dc.description.abstractCaracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) Este trabajo presenta la caracterización de un tipo de varistores de ZnO ante sobretensiones transitorias con tiempo de frente muy rápido (VFTO. Very Fast Transient Overvoltages), mediante un desarrollo teórico-experimental. Tradicionalmente, los varistores son analizados para transitorios un poco más lentos, del orden de los cientos de kHz, asociados principalmente a descargas eléctricas atmosféricas. Sin embargo, existen fenómenos de muy alta frecuencia, principalmente en estaciones encapsuladas o dispositivos aislados en gases, que podrían presentar transitorios muy rápidos, y este tipo de protección no está ampliamente estudiada frente a estos fenómenos. En la primera etapa, se realiza el estado del arte que comprende el estudio de los diferentes modelos de los descargadores de sobretensión ante sobretensiones con tiempos de frente muy rápido. Estos son el punto de partida para la caracterización de dichos dispositivos ante los pulsos de tensión VFTOs. Además, se presenta un análisis teórico sobre la estructura interna del varistor de ZnO, permitiendo establecer los efectos no lineales causados por los aditivos que contiene este material, del mismo modo, se estudian los mecanismos de conducción eléctrica que explican el porqué de la desviación de la ley de Ohm en estos dispositivos. Mas adelante, se planea y se lleva a cabo un diseño experimental con un solo factor, para un total de 5 unidades experimentales, a las cuales se le realizaron 20 réplicas. Este diseño experimental permitió seleccionar un solo varistor en representación de la población muestral, mediante el Análisis de Varianza (ANOVA. Analysis Of Variance). En la última parte, se presenta la forma de onda obtenida por el generador de pulsos de tensión diseñado, la cual se caracterizó por su nivel de voltaje, frecuencia y tiempo de frente (Rise Time); finalmente, se presentan las pruebas de laboratorio al varistor seleccionado, cuya respuesta en el voltaje residual y corriente de descarga permitió establecer el dominante efecto capacitivo en el comportamiento de varistor ante pulsos de tensión VFTOs. (Texto tomado de la fuente)spa
dc.description.abstractStudy of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO). This work performs the characterization of a type of ZnO varistor, used in low voltage aginst very fast transient overvoltages with front time (VFTO), using a means theoretical-experimental development. Traditionally, varistors are analyzed for transients slower, that is about hundreds of kHz, mainly associated with atmospheric electrical discharges. However, there are very high- frequency phenomena, essentially in encapsulated stations or devices insulated-gas, which could present very fast transients, and this type of protection, has not been widely studied in the face of these phenomena. In the first stage, the state of the art is carried out, which includes the study of the different models of surge arresters in the event of surges with fast front times. These are the starting point for the characterization of these devices in the face of voltage pulses. VFTOs. Furthermore, a theoretical analysis of the internal structure of the ZnO varistor is presented, establishing the non-linear effects caused by the additives contained in this material, as well as the electrical conduction mechanisms that explain the reason for the deviation of Ohm's law in these devices. Then an experimental design with a single factor is planned and carried out, for five experimental units, to which 20 replications were made. This experimental design allowed the selection of a single varistor in the sample population representation, using the Analysis of Variance (ANOVA). In the last part, the waveform obtained by the designed voltage pulse generator is presented, which was characterized by parameters such as voltage level, frequency, and rise time. Finally, the laboratory tests at the selected varistor are presented. Thus, the response in the residual voltage and discharge current allowed to establish the dominant capacitive effect in the behavior of the varistor before voltage pulses VFTOseng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaEnergíaspa
dc.format.extentxvii, 127 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83017
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesE. Kazuo, “Zinc Oxide Varistors,” IEEE Electr. Insul. Mag., vol. 5, no. 6, pp. 28–30, 1989.spa
dc.relation.referencesD. B. Pawelek et al., “Design of compact transmission line transformer for high voltage nanosecond pulses,” Conf. Rec. Int. Power Modul. Symp. High Volt. Work., pp. 522–525, 2006.spa
dc.relation.referencesH. Zhou, Advanced Topics in Science and Technology in China Ultra-high Voltage AC / DC Power Transmission.spa
dc.relation.referencesV. Vita, A. D. Mitropoulou, L. Ekonomou, S. Panetsos, and I. A. Stathopulos, “Comparison of metal-oxide surge arresters circuit models and implementation on high-voltage transmission lines of the Hellenic network,” IET Gener. Transm. Distrib., vol. 4, no. 7, p. 846, 2010.spa
dc.relation.referencesG. R. S. Lira, L. A. M. M. Nobrega, L. V Gomes, and E. G. Costa, “Performance Evaluation of Mosa Models Against Lightning Discharges,” pp. 154–159, 2011.spa
dc.relation.referencesG. D. Peppas, I. A. Naxakis, C. T. Vitsas, and E. C. Pyrgioti, “Surge arresters models for fast transients,” 2012 31st Int. Conf. Light. Prot. ICLP 2012, no. 2, 2012.spa
dc.relation.referencesM. Karbalaye Zadeh, H. Abniki, and A. A. Shayegani Akmal, “The modeling of metal-oxide surge arrester applied to improve surge protection,” PEITS 2009 - 2009 2nd Conf. Power Electron. Intell. Transp. Syst., vol. 1, pp. 238–243, 2009.spa
dc.relation.referencesM. C. Magro, M. Giannettoni, and P. Pinceti, “Validation of ZnO surge arresters model for overvoltage studies,” IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1692–1695, 2004.spa
dc.relation.referencesM. Matsuoka, “Related content Nonohmic Properties of Zinc Oxide Ceramics,” Jpn. J. Appl. Phys., vol. 10, no. 6, 1971.spa
dc.relation.referencesM. Reza, “Metal Oxide ZnO-Based Varistor Ceramics,” Intech open, vol. 2, p. 64, 2018.spa
dc.relation.referencesJ. He, Metal oxide varistors_ from microstructure to macro-characteristics. Chennai, India: Wiley-VCH, 2019.spa
dc.relation.referencesM. R. Meshkatoddini, “Metal Oxide ZnO-Based Varistor Ceramics,” Adv. Ceram. - Electr. Magn. Ceram. Bioceram. Ceram. Environ., pp. 329–356, 2011.spa
dc.relation.referencesS. C. Pillai, J. M. Kelly, R. Ramesh, and D. E. McCormack, “Advances in the synthesis of ZnO nanomaterials for varistor devices,” J. Mater. Chem. C, vol. 1, no. 20, pp. 3268–3281, 2013.spa
dc.relation.referencesG. E. Pike and C. H. Seager, “The dc voltage dependence of semiconductor grain-boundary resistance,” J. Appl. Phys., vol. 50, no. 5, pp. 3414–3422, 1979.spa
dc.relation.referencesV. S. Brito, G. R. S. Lira, E. G. Costa, and M. J. A. Maia, “A Wide-Range Model for Metal-Oxide Surge Arrester,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 102–109, 2018.spa
dc.relation.referencesF. Fernández and R. Díaz, “Metal-oxide surge arrester model for fast transient simulations,” pp. 0–4, 2001.spa
dc.relation.referencesX. Lin, J. Wang, and J. Xu, “High frequency model of metal-oxide surge arrester for researching on VFTO,” 2011 1st Int. Conf. Electr. Power Equip. - Switch. Technol. ICEPE2011 - Proc., no. 201102169, pp. 577–581, 2011.spa
dc.relation.referencesK. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” vol. 3, pp. 147–153, 2018.spa
dc.relation.referencesD. Povh et al., “Modeling and analysis guidelines for very fast transients,” IEEE Power Eng. Rev., vol. 16, no. 10, p. 71, 1996.spa
dc.relation.referencesJ. R. A.Hileman, “Metal oxide surge arrester in ac systems -part v: proteccion performance of metal oxide surge arrester,” Electra, vol. 133, pp. 132–143, 1990.spa
dc.relation.referencesS. Tominaga, K. Azumi, T. Nagai, M. Imataki, and H. Kuwahara, “Reliability and Application of Metal Oxide Surge Arresters for Power Systems,” IEEE Trans. Power Appar. Syst., vol. PAS-98, no. 3, pp. 805–816, 2007.spa
dc.relation.referencesEMTP Newsletter, “The Choice of EMTP Surge Arrester Models,” in EMTP Newsletter, 1987.spa
dc.relation.referencesR. A. Jones et al., “Modeling of Metal Oxide Surge Arresters,” IEEE Trans. Power Deliv., vol. 7, no. 1, pp. 302–309, 1992.spa
dc.relation.referencesM. Giannettoni and P. Pinceti, “A simplified model for zinc oxide surge arresters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 393–398, 1999.spa
dc.relation.referencesI. Kim, T. Funabashi, H. Sasaki, T. Hagiwara, and M. Kobayashi, “Study of ZnO arrester model for steep front wave,” IEEE Trans. Power Deliv., vol. 11, no. 2, pp. 834–839, 1996.spa
dc.relation.referencesR. Kannadasan, P. Valsalal, and R. Jayavel, “Performance improvement of metal-oxide arrester for VFTs,” IET Sci. Meas. Technol., vol. 11, no. 4, pp. 438–444, 2017.spa
dc.relation.referencesK. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” High Volt., vol. 3, no. 2, pp. 147–153, 2018.spa
dc.relation.referencesK. Aodsup and T. Kulworawanichpong, “Numerical modeling and very-fast transient simulation of MOV surge arresters,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 1000–1003, 2012.spa
dc.relation.referencesDonald. A. Neamen, Semiconductor physics and devices, vol. 9, no. 5. 2006.spa
dc.relation.referencesR. B. Adler, A. C. Smith, and R. L. Longini, Introduccion a la fisica de los semiconductores, 1st ed. Barcelona: Editorial Reverté S.A., 1981.spa
dc.relation.referencesJ. Woodworth, “Understanding Arrester Voltage-Current Characteristic Curves,” no. March, pp. 1–6, 2017.spa
dc.relation.referencesQ. He, Z. Hao, and J. Guo, “Research of VFTO in 110kV minimized GIS,” Proc. 5th IEEE Int. Conf. Electr. Util. Deregulation, Restruct. Power Technol. DRPT 2015, pp. 1786–1789, 2016.spa
dc.relation.referencesW. Yiru, C. Guang, and Z. Hao, “Study on VFTO in UHV GIS substation,” DRPT 2011 - 2011 4th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., pp. 1756–1759, 2011.spa
dc.relation.referencesL. Zhao, L. Ye, S. Wang, Y. Yang, P. Jiang, and X. Zou, “Research on Very Fast Transient Overvoltage during Switching of Disconnector in 550kV GIS,” 2018 IEEE 3rd Int. Conf. Integr. Circuits Microsystems, ICICM 2018, pp. 114–118, 2018.spa
dc.relation.referencesM. Stosur, M. Szewczyk, W. Piasecki, M. Florkowski, and M. Fulczyk, “GIS disconnector switching operation VFTO study,” Proc. - Int. Symp. Mod. Electr. Power Syst. MEPS’10, pp. 1–5, 2010.spa
dc.relation.referencesS. Rahmani and A. A. Razi-Kazemi, “Investigation of very fast transient over voltages in gas insulated substations,” Conf. Proc. 2015 2nd Int. Conf. Knowledge-Based Eng. Innov. KBEI 2015, pp. 428–435, 2016.spa
dc.relation.referencesIEC, “International standar IEC 71-1,” in Part 1: Definitions, principles and rules, 2006.spa
dc.relation.referencesJ. Wada, G. Ueta, and S. Okabe, “Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - Breakdown characteristics in the presence of bias voltages under non-uniform electric field,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 112–121, 2013.spa
dc.relation.referencesY. Li, Y. Shang, L. Zhang, R. Shi, and W. Shi, “Analysis of very fast transient overvoltages (VFTO) from onsite measurements on 800 kV GIS,” IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 6, pp. 2102–2110, 2012.spa
dc.relation.referencesJ. Lin, J. Zhang, and J. Yang, “HIGH-VOLTAGE PULSE GENERATOR BASED ON MAGNETIC PULSE COMPRESSION AND TRANSMISSION LINE TRANSFORMER,” pp. 3–6, 2013.spa
dc.relation.referencesR. A. Almenweer, S. Yixin, and W. Xixiu, “Research on the fitting method to describe the mathematical expression of VFTO in GIS,” J. Eng., vol. 2019, no. 16, pp. 2053–2057, 2019.spa
dc.relation.referencesD. Montgomery, Diseño y análisis de experimentos. 2004.spa
dc.relation.referencesO. Tumova, L. Kupka, and P. Netolicky, “Design of Experiments approach and its application in the evaluation of experiments,” 2018 Int. Conf. Diagnostics Electr. Eng. Diagnostika 2018, pp. 1–4, 2018.spa
dc.relation.referencesE. Ag, “SIOV metal oxide varistors Calculation examples,” Energy, no. December 2007, 2008.spa
dc.relation.referencesM. Fors, “Análisis de varianza,” Rev. Chil. Anest., vol. 43, no. 4, pp. 306–310, 2014.spa
dc.relation.referencesJ. y J. Bakieva, M., González Such, “Las medias poblacionales son iguales,” 2015.spa
dc.relation.referencesM. A. Abd-Allah, A. Said, and E. A. Badran, “New techniques for disconnector switching VFT mitigation in GIS,” Int. J. Electr. Comput. Eng., vol. 4, no. 2, pp. 179–192, 2014.spa
dc.relation.referencesK. Usha and M. Z. Ameena, “Suppression of VFTO and VFTC in GIS using Ferrite Rings,” vol. 4, no. 8, pp. 853–864, 2011spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembVaristores
dc.subject.lembConductividad eléctrica
dc.subject.proposalDescargadores de sobretensiónspa
dc.subject.proposalANOVAspa
dc.subject.proposalVaristorspa
dc.subject.proposalTiempo de frentespa
dc.subject.proposalVoltaje residualspa
dc.subject.proposalCorriente de descargaspa
dc.subject.proposalSurge arresterseng
dc.subject.proposalHead-on timeeng
dc.subject.proposalResidual voltageeng
dc.subject.proposalDischarge currenteng
dc.titleCaracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO)spa
dc.title.translatedStudy of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO).eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
32498499.2021.pdf
Tamaño:
4.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Sistemas e Informática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: