Evaluación de relevancia de las entradas en redes neuronales para la predicción de demanda de energía eléctrica en Colombia con aprendizaje interpretativo
dc.contributor.advisor | Castellanos Dominguez, Cesar German | |
dc.contributor.advisor | Alvarez-Meza, Andres | |
dc.contributor.author | Correa Aristizabal, Andres Felipe | |
dc.contributor.orcid | Correa Aristizabal Andres Felipe [0009000478528988] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2023-10-31T16:37:10Z | |
dc.date.available | 2023-10-31T16:37:10Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Al desarrollar políticas para la generación de energía eléctrica y los mercados de energía, modelos precisos deben abordar el pronostico de la demanda de energía a corto, mediano y largo plazo. Todas estas estacionalidades pueden variar significativamente dependiendo de factores demograficos y el desarrollo económico de las regiones. En este sentido, el modelado predictivo de la demanda de energía utilizando modelos de Aprendizaje Profundo (Deep Learning DL) tiene un uso creciente debido a su capacidad para manejar entradas suficientemente complejas al ser comparado con modelos de aprendizaje automático clásico. Sin embargo, el rendimiento del DL está fuertemente influenciado por factores como la arquitectura de la red neuronal, el tipo de recurrencia, la calidad y cantidad de los datos de entrenamiento disponibles, entre otros. Un factor clave a considerar es la estrategia empleada para alimentar los modelos DL para implementar diferentes supuestos de interacción entre los predictores. Este trabajo compara varios esquemas de entrenamiento y evalúa su impacto en el rendimiento del pronostico, midiendo la relevancia de cada serie de tiempo de entrada y generando aprendizaje interpretativo en sus resultados. Se presentan valores experimentales para modelos lineales en series de tiempo y redes neuronales recurrentes obtenidas de la base de datos de demanda de electricidad de Colombia desde enero de 2000 hasta diciembre de 2022 (Texto tomado de la fuente) | spa |
dc.description.abstract | When developing policies for electricity generation and energy markets, accurate models must address short-, medium-, and long-term energy demand forecasting. All of these seasonalities can vary significantly depending on demographic factors and the economic development of the regions. In this regard, predictive modeling of energy demand using Deep Learning (DL) models is increasingly used due to their ability to handle sufficiently complex inputs compared to classical machine learning models. However, DL performance is strongly influenced by factors such as neural network architecture, recurrence type, the quality and quantity of available training data, among others. A key factor to consider is the strategy used to feed DL models to implement different interaction assumptions among predictors. This work compares various training schemes and evaluates their impact on forecast performance, measuring the relevance of each input time series and generating interpretive learning in its results. Experimental values for linear time series models and recurrent neural networks are presented, obtained from the Colombia electricity demand database from January 2000 to December 2022 | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Ciencia de Datos | spa |
dc.format.extent | xxiii, 123 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84855 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Mohammad Fazle Rabbi, Energy Security and Energy Transition to Achieve Carbon Neutrality. 2022 | spa |
dc.relation.references | Zhaosu Meng, FThe Place of Energy Security in the National Security Framework: An Assessment Approach. 2022 | spa |
dc.relation.references | Andrea Podestá, Políticas de atracción de inversiones para el financiamiento de la energía limpia en América Latina. 2022 | spa |
dc.relation.references | Le, Thai-Ha, and Canh Phuc Nguyen. "Is energy security a driver for economic growth? Evidence from a global sample." Energy policy 129 (2019): 436-451. | spa |
dc.relation.references | Zhaosu Meng, Forecasting Energy Consumption Based on SVR and Markov Model: A Case Study of China. 2022 | spa |
dc.relation.references | Ayde Catalina Figueroa Castro, Informe Sectorial Sector Electrico Actualidad del Sector Energetico Colombiano, Corficolombiana. 2023 | spa |
dc.relation.references | Jorge Barrientos Marín, Analyzing Electricity Demand in Colombia: A Functional Time Series Approach. 2023 | spa |
dc.relation.references | Pham, Anh-Duc, et al. "Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability." Journal of Cleaner Production 260 (2020): 121082. | spa |
dc.relation.references | Aurélien Géron, Hands On Machine Learning with Scikit Learn Keras and TensorFlo. 2023. | spa |
dc.relation.references | Roman V. Klyuev, Methods of Forecasting Electric Energy Consumption: A Literature Review. 2022 | spa |
dc.relation.references | Chafak Tarmanini, Short term load forecasting based on ARIMA and ANN approaches. 2023 | spa |
dc.relation.references | Congjun Rao, Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. 2023 | spa |
dc.relation.references | Elumalaivasan Poongavanam, Optimal Energy Forecasting Using Hybrid Recurrent Neural Networks. 2022 | spa |
dc.relation.references | 'XM Administradores del Mercado Eléctrico en Colombia' \href{https://www.xm.com.co/}{https://www.xm.com.co/} (Accessed on 18/07/2023). | spa |
dc.relation.references | Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021. | spa |
dc.relation.references | Saboia, Joao Luiz Maurity. "Autoregressive integrated moving average (ARIMA) models for birth forecasting." Journal of the American Statistical Association 72.358 (1977): 264-270. | spa |
dc.relation.references | hang, Ning, Yunlong Zhang, and Haiting Lu. "Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways." Transportation Research Record 2215.1 (2011): 85-92. | spa |
dc.relation.references | Hoerl, Arthur E., and Robert W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems." Technometrics 12.1 (1970): 55-67. | spa |
dc.relation.references | James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013. | spa |
dc.relation.references | Heaton, Jeff. "Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618." Genetic programming and evolvable machines 19.1-2 (2018): 305-307. | spa |
dc.relation.references | ou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society Series B: Statistical Methodology 67.2 (2005): 301-320. | spa |
dc.relation.references | Smola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector regression." Statistics and computing 14 (2004): 199-222. | spa |
dc.relation.references | CM, Bishop. "Pattern Recognition and Machine Learning,‖ Springer." (2006): 663-666. | spa |
dc.relation.references | Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014. | spa |
dc.relation.references | Castillo, Ismaël, Johannes Schmidt-Hieber, and Aad Van der Vaart. "Bayesian linear regression with sparse priors." (2015): 1986-2018. | spa |
dc.relation.references | lpaydin, Ethem. Introduction to machine learning. MIT press, 2020. | spa |
dc.relation.references | Duvenaud, David. Automatic model construction with Gaussian processes. Diss. University of Cambridge, 2014. | spa |
dc.relation.references | Hastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009. | spa |
dc.relation.references | Wu, Yu-chen, and Jun-wen Feng. "Development and application of artificial neural network." Wireless Personal Communications 102 (2018): 1645-1656. | spa |
dc.relation.references | Kanal, Laveen N. "Perceptron." Encyclopedia of Computer Science. 2003. 1383-1385. | spa |
dc.relation.references | Taud, Hind, and J. F. Mas. "Multilayer perceptron (MLP)." Geomatic approaches for modeling land change scenarios (2018): 451-455. | spa |
dc.relation.references | Grossberg, Stephen. "Recurrent neural networks." Scholarpedia 8.2 (2013): 1888. | spa |
dc.relation.references | Van Houdt, Greg, Carlos Mosquera, and Gonzalo Nápoles. "A review on the long short-term memory model." Artificial Intelligence Review 53 (2020): 5929-5955. | spa |
dc.relation.references | Li, Zewen, et al. "A survey of convolutional neural networks: analysis, applications, and prospects." IEEE transactions on neural networks and learning systems (2021). | spa |
dc.relation.references | Ali, Peshawa Jamal Muhammad, et al. "Data normalization and standardization: a technical report." Mach Learn Tech Rep 1.1 (2014): 1-6. | spa |
dc.relation.references | Brownlee, Jason. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery, 2020. | spa |
dc.relation.references | Hyndman, Rob J., and George Athanasopoulos. "Forecasting: principles and practice, OTexts: Melbourne, Australia; 2018." Google Scholar (2021). | spa |
dc.relation.references | Poldrack, Russell A., Grace Huckins, and Gael Varoquaux. "Establishment of best practices for evidence for prediction: a review." JAMA psychiatry 77.5 (2020): 534-540. | spa |
dc.relation.references | Chai, Tianfeng, and Roland R. Draxler. "Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature." Geoscientific model development 7.3 (2014): 1247-1250. | spa |
dc.relation.references | Brassington, Gary. "Mean absolute error and root mean square error: which is the better metric for assessing model performance?." EGU General Assembly Conference Abstracts. 2017. | spa |
dc.relation.references | Kim, Sungil, and Heeyoung Kim. "A new metric of absolute percentage error for intermittent demand forecasts." International Journal of Forecasting 32.3 (2016): 669-679. | spa |
dc.relation.references | Chicco, Davide, Matthijs J. Warrens, and Giuseppe Jurman. "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation." PeerJ Computer Science 7 (2021): e623. | spa |
dc.relation.references | Jöreskog, Karl G. "Interpretation of R2 revisited." Interpretation (2000). | spa |
dc.relation.references | Cohen, Israel, et al. "Pearson correlation coefficient." Noise reduction in speech processing (2009): 1-4. | spa |
dc.relation.references | Flores, Joao Henrique F., Paulo Martins Engel, and Rafael C. Pinto. "Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting." The 2012 International joint conference on neural networks (IJCNN). IEEE, 2012. | spa |
dc.relation.references | Tagaris, Thanos, Maria Sdraka, and Andreas Stafylopatis. "High-resolution class activation mapping." 2019 IEEE international conference on image processing (ICIP). IEEE, 2019. | spa |
dc.relation.references | Dror, Rotem, Segev Shlomov, and Roi Reichart. "Deep dominance-how to properly compare deep neural models." Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. | spa |
dc.relation.references | Fontana, Matteo, Gianluca Zeni, and Simone Vantini. "Conformal prediction: a unified review of theory and new challenges." Bernoulli 29.1 (2023): 1-23. | spa |
dc.relation.references | Castellanos G. Stochastic Modeling. (2023) | spa |
dc.relation.references | Dey, Rahul, and Fathi M. Salem. "Gate-variants of gated recurrent unit (GRU) neural networks." 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, 2017. | spa |
dc.relation.references | Repositorio Publico en gihub del Equipo de Anlitica XM. \href{https://github.com/EquipoAnaliticaXM}. {https://github.com/EquipoAnaliticaXM}. 2023. | spa |
dc.relation.references | Repositorio Publico en gihub Andres Felipe Correa, Demand Forecasting. \href{https://github.com/AFelipeCorrea/DemandForecasting}. {https://github.com/AFelipeCorrea/DemandForecasting}. 2023. | spa |
dc.relation.references | Cavanaugh, Joseph E., and Andrew A. Neath. "The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements." Wiley Interdisciplinary Reviews: Computational Statistics 11.3 (2019): e1460. | spa |
dc.relation.references | Thiese, Matthew S., Brenden Ronna, and Ulrike Ott. "P value interpretations and considerations." Journal of thoracic disease 8.9 (2016): E928. | spa |
dc.relation.references | Kim, Tae Kyun. "T test as a parametric statistic." Korean journal of anesthesiology 68.6 (2015): 540-546. | spa |
dc.relation.references | Arsham, Hossein, and Miodrag Lovric. "Bartlett's Test." International encyclopedia of statistical science 2 (2011): 20-23. | spa |
dc.relation.references | Pereira, Dulce G., Anabela Afonso, and Fátima Melo Medeiros. "Overview of Friedman’s test and post-hoc analysis." Communications in Statistics-Simulation and Computation 44.10 (2015): 2636-2653. | spa |
dc.relation.references | Abbasi, Hareem, et al. "Calibration Estimation of Cumulative Distribution Function Using Robust Measures." Symmetry 15.6 (2023): 1157. | spa |
dc.relation.references | Ulmer, Dennis and Hardmeier, Christian and Frellsen, Jes. deep-significance: Easy and Better Significance Testing for Deep Neural Networks, arXiv preprint arXiv:2204 (2022) 06815 | spa |
dc.relation.references | Shahzad, Umer, et al. "Does Export product diversification help to reduce energy demand: Exploring the contextual evidences from the newly industrialized countries." Energy 214 (2021): 118881. | spa |
dc.relation.references | ong, Tao, et al. "Energy forecasting: A review and outlook." IEEE Open Access Journal of Power and Energy 7 (2020): 376-388. | spa |
dc.relation.references | Chen, Cheng, et al. "Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies." Sustainable Energy Technologies and Assessments 47 (2021): 101358. | spa |
dc.relation.references | Zheng, Jianqin, et al. "A hybrid framework for forecasting power generation of multiple renewable energy sources." Renewable and Sustainable Energy Reviews 172 (2023): 113046. | spa |
dc.relation.references | Khan, Samee Ullah, et al. "Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting." Energy and Buildings 279 (2023): 112705. | spa |
dc.relation.references | Bacanin, Nebojsa, et al. "On the benefits of using metaheuristics in the hyperparameter tuning of deep learning models for energy load forecasting." Energies 16.3 (2023): 1434. | spa |
dc.relation.references | Phyo, Pyae-Pyae, Yung-Cheol Byun, and Namje Park. "Short-term energy forecasting using machine-learning-based ensemble voting regression." Symmetry 14.1 (2022): 160. | spa |
dc.relation.references | Singh, Shailendra, and Abdulsalam Yassine. "Big data mining of energy time series for behavioral analytics and energy consumption forecasting." Energies 11.2 (2018): 452. | spa |
dc.relation.references | Zhang, Aston, et al. "Dive into deep learning." arXiv preprint arXiv:2106.11342 (2021). | spa |
dc.relation.references | Foley, A. M., et al. "A strategic review of electricity systems models." Energy 35.12 (2010): 4522-4530. | spa |
dc.relation.references | ayram, Firas, Bestoun S. Ahmed, and Andreas Kassler. "From concept drift to model degradation: An overview on performance-aware drift detectors ." Knowledge-Based Systems 245 (2022): 108632. | spa |
dc.relation.references | D. Cárdenas-Peña, D. Collazos-Huertas, and G. Castellanos-Dominguez, “Enhanced data representation by kernel metric learning for dementia diagnosis,” Frontiers in neuroscience, vol. 11, p. 413, 2017. | spa |
dc.relation.references | D. Collazos-Huertas, D. Cárdenas-Peña, and G. Castellanos-Dominguez, “Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease,” International journal of neural systems, vol. 29, no. 02, p. 1850042, 2019. | spa |
dc.relation.references | J. V. Hurtado-Rincón, J. D. Martínez-Vargas, S. Rojas-Jaramillo, E. Giraldo, and G. Castellanos-Dominguez, “Identification of relevant inter-channel eeg connectivity patterns: a kernel-based supervised approach,” in International Conference on Brain Informatics, pp. 14–23, Springer, 2016. | spa |
dc.relation.references | J. D. Pulgarin-Giraldo, A. Ruales-Torres, A. M. Álvarez-Meza, and G. Castellanos-Dominguez, “Relevant kinematic feature selection to support human action recognition in mocap data,” in International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 501–509, Springer, 2017. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Interpretive Learning | eng |
dc.subject.proposal | Aprendizaje Interpretativo | spa |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Aprendizaje de Maquina | spa |
dc.subject.proposal | Colombia | spa |
dc.subject.proposal | Energy | eng |
dc.subject.proposal | Energia | spa |
dc.subject.proposal | Demand | eng |
dc.subject.proposal | Demanda | spa |
dc.subject.proposal | Forecasting | eng |
dc.subject.proposal | Prediccion | spa |
dc.subject.proposal | Relevance | eng |
dc.subject.proposal | Relevancia | spa |
dc.subject.proposal | Analysis | eng |
dc.subject.proposal | Analisis | spa |
dc.title | Evaluación de relevancia de las entradas en redes neuronales para la predicción de demanda de energía eléctrica en Colombia con aprendizaje interpretativo | spa |
dc.title.translated | Assessment of entry relevance in neural networks for the prediction of electricity demand in Colombia with interpretative learning | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TG_Andres_Felipe_Correa_Aristizabal_1053798212 (1).pdf
- Tamaño:
- 7.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: