Evaluación de relevancia de las entradas en redes neuronales para la predicción de demanda de energía eléctrica en Colombia con aprendizaje interpretativo

dc.contributor.advisorCastellanos Dominguez, Cesar German
dc.contributor.advisorAlvarez-Meza, Andres
dc.contributor.authorCorrea Aristizabal, Andres Felipe
dc.contributor.orcidCorrea Aristizabal Andres Felipe [0009000478528988]spa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2023-10-31T16:37:10Z
dc.date.available2023-10-31T16:37:10Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractAl desarrollar políticas para la generación de energía eléctrica y los mercados de energía, modelos precisos deben abordar el pronostico de la demanda de energía a corto, mediano y largo plazo. Todas estas estacionalidades pueden variar significativamente dependiendo de factores demograficos y el desarrollo económico de las regiones. En este sentido, el modelado predictivo de la demanda de energía utilizando modelos de Aprendizaje Profundo (Deep Learning DL) tiene un uso creciente debido a su capacidad para manejar entradas suficientemente complejas al ser comparado con modelos de aprendizaje automático clásico. Sin embargo, el rendimiento del DL está fuertemente influenciado por factores como la arquitectura de la red neuronal, el tipo de recurrencia, la calidad y cantidad de los datos de entrenamiento disponibles, entre otros. Un factor clave a considerar es la estrategia empleada para alimentar los modelos DL para implementar diferentes supuestos de interacción entre los predictores. Este trabajo compara varios esquemas de entrenamiento y evalúa su impacto en el rendimiento del pronostico, midiendo la relevancia de cada serie de tiempo de entrada y generando aprendizaje interpretativo en sus resultados. Se presentan valores experimentales para modelos lineales en series de tiempo y redes neuronales recurrentes obtenidas de la base de datos de demanda de electricidad de Colombia desde enero de 2000 hasta diciembre de 2022 (Texto tomado de la fuente)spa
dc.description.abstractWhen developing policies for electricity generation and energy markets, accurate models must address short-, medium-, and long-term energy demand forecasting. All of these seasonalities can vary significantly depending on demographic factors and the economic development of the regions. In this regard, predictive modeling of energy demand using Deep Learning (DL) models is increasingly used due to their ability to handle sufficiently complex inputs compared to classical machine learning models. However, DL performance is strongly influenced by factors such as neural network architecture, recurrence type, the quality and quantity of available training data, among others. A key factor to consider is the strategy used to feed DL models to implement different interaction assumptions among predictors. This work compares various training schemes and evaluates their impact on forecast performance, measuring the relevance of each input time series and generating interpretive learning in its results. Experimental values for linear time series models and recurrent neural networks are presented, obtained from the Colombia electricity demand database from January 2000 to December 2022eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaCiencia de Datosspa
dc.format.extentxxiii, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84855
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesMohammad Fazle Rabbi, Energy Security and Energy Transition to Achieve Carbon Neutrality. 2022spa
dc.relation.referencesZhaosu Meng, FThe Place of Energy Security in the National Security Framework: An Assessment Approach. 2022spa
dc.relation.referencesAndrea Podestá, Políticas de atracción de inversiones para el financiamiento de la energía limpia en América Latina. 2022spa
dc.relation.referencesLe, Thai-Ha, and Canh Phuc Nguyen. "Is energy security a driver for economic growth? Evidence from a global sample." Energy policy 129 (2019): 436-451.spa
dc.relation.referencesZhaosu Meng, Forecasting Energy Consumption Based on SVR and Markov Model: A Case Study of China. 2022spa
dc.relation.referencesAyde Catalina Figueroa Castro, Informe Sectorial Sector Electrico Actualidad del Sector Energetico Colombiano, Corficolombiana. 2023spa
dc.relation.referencesJorge Barrientos Marín, Analyzing Electricity Demand in Colombia: A Functional Time Series Approach. 2023spa
dc.relation.referencesPham, Anh-Duc, et al. "Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability." Journal of Cleaner Production 260 (2020): 121082.spa
dc.relation.referencesAurélien Géron, Hands On Machine Learning with Scikit Learn Keras and TensorFlo. 2023.spa
dc.relation.referencesRoman V. Klyuev, Methods of Forecasting Electric Energy Consumption: A Literature Review. 2022spa
dc.relation.referencesChafak Tarmanini, Short term load forecasting based on ARIMA and ANN approaches. 2023spa
dc.relation.referencesCongjun Rao, Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. 2023spa
dc.relation.referencesElumalaivasan Poongavanam, Optimal Energy Forecasting Using Hybrid Recurrent Neural Networks. 2022spa
dc.relation.references'XM Administradores del Mercado Eléctrico en Colombia' \href{https://www.xm.com.co/}{https://www.xm.com.co/} (Accessed on 18/07/2023).spa
dc.relation.referencesMontgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021.spa
dc.relation.referencesSaboia, Joao Luiz Maurity. "Autoregressive integrated moving average (ARIMA) models for birth forecasting." Journal of the American Statistical Association 72.358 (1977): 264-270.spa
dc.relation.referenceshang, Ning, Yunlong Zhang, and Haiting Lu. "Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways." Transportation Research Record 2215.1 (2011): 85-92.spa
dc.relation.referencesHoerl, Arthur E., and Robert W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems." Technometrics 12.1 (1970): 55-67.spa
dc.relation.referencesJames, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013.spa
dc.relation.referencesHeaton, Jeff. "Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618." Genetic programming and evolvable machines 19.1-2 (2018): 305-307.spa
dc.relation.referencesou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society Series B: Statistical Methodology 67.2 (2005): 301-320.spa
dc.relation.referencesSmola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector regression." Statistics and computing 14 (2004): 199-222.spa
dc.relation.referencesCM, Bishop. "Pattern Recognition and Machine Learning,‖ Springer." (2006): 663-666.spa
dc.relation.referencesShalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.spa
dc.relation.referencesCastillo, Ismaël, Johannes Schmidt-Hieber, and Aad Van der Vaart. "Bayesian linear regression with sparse priors." (2015): 1986-2018.spa
dc.relation.referenceslpaydin, Ethem. Introduction to machine learning. MIT press, 2020.spa
dc.relation.referencesDuvenaud, David. Automatic model construction with Gaussian processes. Diss. University of Cambridge, 2014.spa
dc.relation.referencesHastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009.spa
dc.relation.referencesWu, Yu-chen, and Jun-wen Feng. "Development and application of artificial neural network." Wireless Personal Communications 102 (2018): 1645-1656.spa
dc.relation.referencesKanal, Laveen N. "Perceptron." Encyclopedia of Computer Science. 2003. 1383-1385.spa
dc.relation.referencesTaud, Hind, and J. F. Mas. "Multilayer perceptron (MLP)." Geomatic approaches for modeling land change scenarios (2018): 451-455.spa
dc.relation.referencesGrossberg, Stephen. "Recurrent neural networks." Scholarpedia 8.2 (2013): 1888.spa
dc.relation.referencesVan Houdt, Greg, Carlos Mosquera, and Gonzalo Nápoles. "A review on the long short-term memory model." Artificial Intelligence Review 53 (2020): 5929-5955.spa
dc.relation.referencesLi, Zewen, et al. "A survey of convolutional neural networks: analysis, applications, and prospects." IEEE transactions on neural networks and learning systems (2021).spa
dc.relation.referencesAli, Peshawa Jamal Muhammad, et al. "Data normalization and standardization: a technical report." Mach Learn Tech Rep 1.1 (2014): 1-6.spa
dc.relation.referencesBrownlee, Jason. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery, 2020.spa
dc.relation.referencesHyndman, Rob J., and George Athanasopoulos. "Forecasting: principles and practice, OTexts: Melbourne, Australia; 2018." Google Scholar (2021).spa
dc.relation.referencesPoldrack, Russell A., Grace Huckins, and Gael Varoquaux. "Establishment of best practices for evidence for prediction: a review." JAMA psychiatry 77.5 (2020): 534-540.spa
dc.relation.referencesChai, Tianfeng, and Roland R. Draxler. "Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature." Geoscientific model development 7.3 (2014): 1247-1250.spa
dc.relation.referencesBrassington, Gary. "Mean absolute error and root mean square error: which is the better metric for assessing model performance?." EGU General Assembly Conference Abstracts. 2017.spa
dc.relation.referencesKim, Sungil, and Heeyoung Kim. "A new metric of absolute percentage error for intermittent demand forecasts." International Journal of Forecasting 32.3 (2016): 669-679.spa
dc.relation.referencesChicco, Davide, Matthijs J. Warrens, and Giuseppe Jurman. "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation." PeerJ Computer Science 7 (2021): e623.spa
dc.relation.referencesJöreskog, Karl G. "Interpretation of R2 revisited." Interpretation (2000).spa
dc.relation.referencesCohen, Israel, et al. "Pearson correlation coefficient." Noise reduction in speech processing (2009): 1-4.spa
dc.relation.referencesFlores, Joao Henrique F., Paulo Martins Engel, and Rafael C. Pinto. "Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting." The 2012 International joint conference on neural networks (IJCNN). IEEE, 2012.spa
dc.relation.referencesTagaris, Thanos, Maria Sdraka, and Andreas Stafylopatis. "High-resolution class activation mapping." 2019 IEEE international conference on image processing (ICIP). IEEE, 2019.spa
dc.relation.referencesDror, Rotem, Segev Shlomov, and Roi Reichart. "Deep dominance-how to properly compare deep neural models." Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.spa
dc.relation.referencesFontana, Matteo, Gianluca Zeni, and Simone Vantini. "Conformal prediction: a unified review of theory and new challenges." Bernoulli 29.1 (2023): 1-23.spa
dc.relation.referencesCastellanos G. Stochastic Modeling. (2023)spa
dc.relation.referencesDey, Rahul, and Fathi M. Salem. "Gate-variants of gated recurrent unit (GRU) neural networks." 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, 2017.spa
dc.relation.referencesRepositorio Publico en gihub del Equipo de Anlitica XM. \href{https://github.com/EquipoAnaliticaXM}. {https://github.com/EquipoAnaliticaXM}. 2023.spa
dc.relation.referencesRepositorio Publico en gihub Andres Felipe Correa, Demand Forecasting. \href{https://github.com/AFelipeCorrea/DemandForecasting}. {https://github.com/AFelipeCorrea/DemandForecasting}. 2023.spa
dc.relation.referencesCavanaugh, Joseph E., and Andrew A. Neath. "The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements." Wiley Interdisciplinary Reviews: Computational Statistics 11.3 (2019): e1460.spa
dc.relation.referencesThiese, Matthew S., Brenden Ronna, and Ulrike Ott. "P value interpretations and considerations." Journal of thoracic disease 8.9 (2016): E928.spa
dc.relation.referencesKim, Tae Kyun. "T test as a parametric statistic." Korean journal of anesthesiology 68.6 (2015): 540-546.spa
dc.relation.referencesArsham, Hossein, and Miodrag Lovric. "Bartlett's Test." International encyclopedia of statistical science 2 (2011): 20-23.spa
dc.relation.referencesPereira, Dulce G., Anabela Afonso, and Fátima Melo Medeiros. "Overview of Friedman’s test and post-hoc analysis." Communications in Statistics-Simulation and Computation 44.10 (2015): 2636-2653.spa
dc.relation.referencesAbbasi, Hareem, et al. "Calibration Estimation of Cumulative Distribution Function Using Robust Measures." Symmetry 15.6 (2023): 1157.spa
dc.relation.referencesUlmer, Dennis and Hardmeier, Christian and Frellsen, Jes. deep-significance: Easy and Better Significance Testing for Deep Neural Networks, arXiv preprint arXiv:2204 (2022) 06815spa
dc.relation.referencesShahzad, Umer, et al. "Does Export product diversification help to reduce energy demand: Exploring the contextual evidences from the newly industrialized countries." Energy 214 (2021): 118881.spa
dc.relation.referencesong, Tao, et al. "Energy forecasting: A review and outlook." IEEE Open Access Journal of Power and Energy 7 (2020): 376-388.spa
dc.relation.referencesChen, Cheng, et al. "Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies." Sustainable Energy Technologies and Assessments 47 (2021): 101358.spa
dc.relation.referencesZheng, Jianqin, et al. "A hybrid framework for forecasting power generation of multiple renewable energy sources." Renewable and Sustainable Energy Reviews 172 (2023): 113046.spa
dc.relation.referencesKhan, Samee Ullah, et al. "Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting." Energy and Buildings 279 (2023): 112705.spa
dc.relation.referencesBacanin, Nebojsa, et al. "On the benefits of using metaheuristics in the hyperparameter tuning of deep learning models for energy load forecasting." Energies 16.3 (2023): 1434.spa
dc.relation.referencesPhyo, Pyae-Pyae, Yung-Cheol Byun, and Namje Park. "Short-term energy forecasting using machine-learning-based ensemble voting regression." Symmetry 14.1 (2022): 160.spa
dc.relation.referencesSingh, Shailendra, and Abdulsalam Yassine. "Big data mining of energy time series for behavioral analytics and energy consumption forecasting." Energies 11.2 (2018): 452.spa
dc.relation.referencesZhang, Aston, et al. "Dive into deep learning." arXiv preprint arXiv:2106.11342 (2021).spa
dc.relation.referencesFoley, A. M., et al. "A strategic review of electricity systems models." Energy 35.12 (2010): 4522-4530.spa
dc.relation.referencesayram, Firas, Bestoun S. Ahmed, and Andreas Kassler. "From concept drift to model degradation: An overview on performance-aware drift detectors ." Knowledge-Based Systems 245 (2022): 108632.spa
dc.relation.referencesD. Cárdenas-Peña, D. Collazos-Huertas, and G. Castellanos-Dominguez, “Enhanced data representation by kernel metric learning for dementia diagnosis,” Frontiers in neuroscience, vol. 11, p. 413, 2017.spa
dc.relation.referencesD. Collazos-Huertas, D. Cárdenas-Peña, and G. Castellanos-Dominguez, “Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease,” International journal of neural systems, vol. 29, no. 02, p. 1850042, 2019.spa
dc.relation.referencesJ. V. Hurtado-Rincón, J. D. Martínez-Vargas, S. Rojas-Jaramillo, E. Giraldo, and G. Castellanos-Dominguez, “Identification of relevant inter-channel eeg connectivity patterns: a kernel-based supervised approach,” in International Conference on Brain Informatics, pp. 14–23, Springer, 2016.spa
dc.relation.referencesJ. D. Pulgarin-Giraldo, A. Ruales-Torres, A. M. Álvarez-Meza, and G. Castellanos-Dominguez, “Relevant kinematic feature selection to support human action recognition in mocap data,” in International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 501–509, Springer, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalInterpretive Learningeng
dc.subject.proposalAprendizaje Interpretativospa
dc.subject.proposalMachine Learningeng
dc.subject.proposalAprendizaje de Maquinaspa
dc.subject.proposalColombiaspa
dc.subject.proposalEnergyeng
dc.subject.proposalEnergiaspa
dc.subject.proposalDemandeng
dc.subject.proposalDemandaspa
dc.subject.proposalForecastingeng
dc.subject.proposalPrediccionspa
dc.subject.proposalRelevanceeng
dc.subject.proposalRelevanciaspa
dc.subject.proposalAnalysiseng
dc.subject.proposalAnalisisspa
dc.titleEvaluación de relevancia de las entradas en redes neuronales para la predicción de demanda de energía eléctrica en Colombia con aprendizaje interpretativospa
dc.title.translatedAssessment of entry relevance in neural networks for the prediction of electricity demand in Colombia with interpretative learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TG_Andres_Felipe_Correa_Aristizabal_1053798212 (1).pdf
Tamaño:
7.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: