Diseño de las trabéculas de un scaffold para ingeniería de tejidos óseos considerando cargas mecánicas en dos dimensiones
dc.contributor.advisor | Garzón Alvarado, Diego Alexander | |
dc.contributor.advisor | Velasco Peña, Marco Antonio | |
dc.contributor.author | Cortés Sierra, Fabián Guillermo | |
dc.contributor.researchgroup | Grupo de Modelado y Métodos Numéricos en Ingeniería | |
dc.date.accessioned | 2025-09-03T15:33:21Z | |
dc.date.available | 2025-09-03T15:33:21Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | |
dc.description.abstract | En este trabajo se presenta una metodología de diseño para la obtención de trabéculas orientadas en un scaffold para ingeniería de tejidos óseos, enfocándose especialmente en condiciones de carga mecánica en dos dimensiones. Se propone un modelo basado en el método de los elementos finitos que permite orientar y distribuir las trabéculas en función de la dirección del esfuerzo principal máximo dentro de una geometría definida. Para validar la metodología, se analizan diferentes configuraciones geométricas mediante la generación de modelos CAD. El estudio abarca desde el diseño de una cuña con trabéculas orientadas para una osteotomía de tibia proximal de cuña abierta, hasta la evaluación de dos secciones geométricas de la mandíbula. Adicionalmente, se evalúa el comportamiento mecánico de los scaffolds mediante ensayos de compresión, cuyos resultados confirman que las trabéculas se alinean predominantemente con la dirección de los esfuerzos principales máximos. Finalmente, los hallazgos demuestran que la metodología de orientación trabecular propuesta contribuye a mejorar la resistencia mecánica y la eficiencia estructural de los scaffolds diseñados para aplicaciones en regeneración ósea. (Texto tomado de la fuente) | spa |
dc.description.abstract | This paper presents a design methodology to generate oriented trabeculae within a scaffold intended for bone tissue engineering, with a specific focus on two-dimensional mechanical loading conditions. A finite element method-based model is proposed to guide the orientation and distribution of trabeculae according to the direction of the maximum principal stress within a defined geometry. To validate the methodology, various geometric configurations are analyzed through the generation of CAD models. The study ranges from the design of an oriented trabecular wedge for a medial open-wedge proximal tibial osteotomy to the evaluation of two different cross-sections of the mandible. Additionally, the mechanical performance of the scaffolds is assessed through compression tests, with results confirming that the trabeculae predominantly align with the direction of the maximum principal stresses. Finally, the results show that the proposed trabecular orientation strategy improves the mechanical strength and structural efficiency of scaffolds designed for bone regeneration applications. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Maestría en Ingeniería - Ingeniería Mecánica | |
dc.description.researcharea | Ingeniería de Diseño y Biomecánica | |
dc.format.extent | xix, 179 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88576 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.relation.references | T. Kress and D. J. Porta, “CHARACTERIZATION OF LEG INJURIES FROM MOTOR VEHICLE IMPACTS,” Injury Prevention, pp. 1–14, 1982. | |
dc.relation.references | T. Kress and D. J. Porta, “CHARACTERIZATION OF LEG INJURIES FROM MOTOR VEHICLE IMPACTS,” Injury Prevention, pp. 1–14, 1982. | |
dc.relation.references | Eurostat, “Accident and injuries statistics.,” Further Eurostat Information, Main tables and Database, 2016. | |
dc.relation.references | Agencia Nacional de Seguridad Vial, “Observatorio de Estadísticas ANSV,” https://ansv.gov.co/es/observatorio/estad%C3%ADsticas/cifras-ano-en-curso. | |
dc.relation.references | J. F. Marín Arias and Escobar Vallejo William, “Comportamiento de muertes y lesiones por eventos de transporte. Colombia, año 2020,” Forensis, pp. 358–398, Apr. 2022. | |
dc.relation.references | F. J. Fernández-Villacorta et al., “Reporte de un caso: Fractura expuesta del mediopie por accidente de tránsito en paciente VIH/SIDA,” Revista de la Facultad de Medicina Humana, vol. 20, no. 2, pp. 150–155, Mar. 2020, doi: 10.25176/RFMH.v20i2.2928. | |
dc.relation.references | C. E. Jiménez, C. Abril, L. Randial, and C. Arias, “Lesiones vasculares asociadas con accidentes de motocicleta. Serie de casos,” Revista Colombiana de Ortopedia y Traumatología, vol. 32, no. 3, pp. 167–177, Sep. 2018, doi: 10.1016/j.rccot.2017.11.006. | |
dc.relation.references | D. A. Dávalos-Herrera, L. A. Satizabal-Bernal, and J. A. Amador-Gutierrez, “Fractura triplanar del extremo distal del radio: Reporte de caso,” Revista Colombiana de Ortopedia y Traumatología, vol. 36, no. 4, pp. 241–244, Oct. 2022, doi: 10.1016/j.rccot.2022.08.003. | |
dc.relation.references | G. A. Riascos Bernal, “Descripción epidemiológica de las fracturas de tibia y peroné en el hospital de la misericordia en los últimos 5 años,” p. 55, 2012, [Online]. Available: http://www.bdigital.unal.edu.co/9809/ | |
dc.relation.references | A. Orozco Montoya, N. Morales Brenes, and J. Serrano Calvo, “Fracturas expuestas: clasificación y abordaje.,” Revista Ciencia y Salud Integrando Conocimientos, vol. 5, no. 4, Sep. 2021, doi: 10.34192/cienciaysalud.v5i4.237. | |
dc.relation.references | P. J. Delgado-Serrano, I. Jiménez-Jiménez, M. Nikolaev, F. A. Figueredo-Ojeda, and M. G. de Rozas-López, “Reconstrucción artroscópica de la seudoartrosis inestable del escafoides carpiano,” Rev Esp Cir Ortop Traumatol, vol. 61, no. 4, pp. 216–223, Jul. 2017, doi: 10.1016/j.recot.2017.03.002. | |
dc.relation.references | S. Blanco Guzmán et al., Pacientes con retardo de consolidación, infiltrados con lisado plaquetario autólogo, vol. 32, no. 2. Editorial Ciencias Médicas, 2018. Accessed: Mar. 12, 2024. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-215X2018000200001&lng=es&nrm=iso&tlng=pt | |
dc.relation.references | S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat Mater, vol. 4, no. 7, pp. 518–524, Jul. 2005, doi: 10.1038/nmat1421. | |
dc.relation.references | CEPAL, “Seguridad vial y salud pública: Costos de atención y rehabilitación de heridos en Chile, Colombia y Perú,” Boletín FAL, vol. 311, 2012. | |
dc.relation.references | C. Hartmann, “Transcriptional networks controlling skeletal development,” Curr Opin Genet Dev, vol. 19, pp. 437–443, 2009. | |
dc.relation.references | G. Karsenty, H. Kronenberg, and C. Settembre, “Genetic control of bone formation,” Ann Rev Cell Dev Biol, vol. 25, pp. 629–648, 2009. | |
dc.relation.references | I. Takada, A. Kouzmenko, and S. Kato, “Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis,” Nat Rev Rheumatol, vol. 5, pp. 442–447, 2009. | |
dc.relation.references | L. Bonewald, “The amazing osteocyte,” J Bone Miner Res, vol. 26, pp. 229–238, 2011. | |
dc.relation.references | S. Teitelbaum and F. Ross, “Genetic regulation of osteoclast development and function,” Nat Rev Genet, vol. 4, pp. 638–649, 2003. | |
dc.relation.references | G. Schett, “Biology, Physiology, and Morphology of Bone,” in Textbook of Rheumatology, Elsevier, 2017, ch. 4, pp. 89–94. | |
dc.relation.references | J. S, R. Squire, DonahueL-R, and R. C., “Genetically Based Influences on the Site-Specific Regulation of Trabecular and Cortical Bone Morphology,” J. of Bone and Mineral Research, vol. 19, pp. 600–606, 2004. | |
dc.relation.references | M. A. Peña Velasco and D. A. Garzón-Alvarado, “Desarrollo de los modelos computacionales de remodelación ósea Development of computer models of bone remodeling,” vol. 30, no. 1, pp. 163–173, 2011. | |
dc.relation.references | J. Sela and B. Itai, Principles of bone regeneration. Springer, 2012. | |
dc.relation.references | K. Choi and S. Goldstein, “A comparison of fatigue behavior of human trabecular and cortical bone tissue,” Journal Biomech. Eng., vol. 25, pp. 1371–1381, 1992. | |
dc.relation.references | T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “Biomechanics of trabecular bone,” Annu Rev Biomed Eng, vol. 3, 2001, pp. 307–333, 2001. | |
dc.relation.references | L. Gibson, M. Ashby, and S. Hollister, “Cellular solids: Structure and properties,” Pergamon, p. 510, 1997. | |
dc.relation.references | P. Zysset, R. Goulet, and H. SJ, “A global relationship between trabecular bone morphology and homogenized elastic properties,” Journal Biomech. Eng., vol. 120, pp. 640–646, 1998. | |
dc.relation.references | S. F. Hulbert, F. a Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling, “Potential of ceramic materials as permanently implantable skeletal prostheses.,” J Biomed Mater Res, vol. 4, pp. 433–456, 1970, doi: 10.1002/jbm.820040309. | |
dc.relation.references | L. Ghasemi-Mobarakeh, D. Kolahreez, S. Ramakrishna, and D. Williams, “Key terminology in biomaterials and biocompatibility,” Curr Opin Biomed Eng, vol. 10, pp. 45–50, Jun. 2019, doi: 10.1016/j.cobme.2019.02.004. | |
dc.relation.references | H. Qu, H. Fu, Z. Han, and Y. Sun, “Biomaterials for bone tissue engineering scaffolds: a review,” RSC Adv, vol. 9, no. 45, pp. 26252–26262, 2019, doi: 10.1039/C9RA05214C. | |
dc.relation.references | S. Gomez, M. D. Vlad, J. Lopez, and E. Fernandez, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater, vol. 42, pp. 341–350, 2016, doi: 10.1016/j.actbio.2016.06.032. | |
dc.relation.references | C. Montoya, Y. Du, A. L. Gianforcaro, S. Orrego, M. Yang, and P. I. Lelkes, “On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook,” Bone Res, vol. 9, no. 1, p. 12, Feb. 2021, doi: 10.1038/s41413-020-00131-z. | |
dc.relation.references | G. Marchiori et al., “Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA,” Med Eng Phys, vol. 69, pp. 92–99, 2019, doi: 10.1016/j.medengphy.2019.04.009. | |
dc.relation.references | R. C. Dutta, M. Dey, A. K. Dutta, and B. Basu, “Competent processing techniques for scaffolds in tissue engineering,” Biotechnol Adv, vol. 35, no. 2, pp. 240–250, 2017, doi: 10.1016/j.biotechadv.2017.01.001. | |
dc.relation.references | D. F. Williams, “Definitions in Biomaterials,” in “Consensus Conference” European Society for Biomaterials, Elsevier, Ed., Amsterdam, 1987, p. 72. doi: 10.1521/bumc.2013.77.2.185. | |
dc.relation.references | S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024. | |
dc.relation.references | V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002. | |
dc.relation.references | D. Dado and S. Levenberg, “Cell-scaffold mechanical interplay within engineered tissue,” 2009. doi: 10.1016/j.semcdb.2009.02.001. | |
dc.relation.references | R. C. Dutta and A. K. Dutta, “Comprehension of ECM-Cell dynamics: A prerequisite for tissue regeneration,” 2010. doi: 10.1016/j.biotechadv.2010.06.002. | |
dc.relation.references | R. Gabbrielli, I. G. Turner, and C. R. Bowen, “Development of modelling methods for materials to be used as bone substitutes,” Key Eng Mater, vol. 361-363 II, pp. 901–906, 2008, doi: 10.4028/www.scientific.net/KEM.361-363.903. | |
dc.relation.references | A. C. Bean and J. Huan, “Tissue Engineering Applications in Orthopedic Surgery,” in Fundamentals of Tissue Engineering and Regenerative Medicine, Springer., U. Meyer, T. Meyer, J. Handschel, and H. P. Wiesmann, Eds., 2009, pp. 913–921. | |
dc.relation.references | V. Agrawal, B. N. Brown, A. J. Beattie, T. W. Gilbert, and S. F. Badylak, “Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues,” J Tissue Eng Regen Med, vol. 3, no. 8, pp. 590–600, Dec. 2009, doi: 10.1002/term.200. | |
dc.relation.references | H. R. Cattermole, “The footballer’s fracture.,” British Journal of Sports Medicine 30, pp. 171–175, 1996. | |
dc.relation.references | S. P. Bruder, “Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells,” Journal Orthop Res, vol. 16, pp. 155–162, 1998. | |
dc.relation.references | L. Ahrengart, “Periarticular heterotopic ossification after total hip arthroplasty: Risk factors and consequences,” Clinical Orthopedics and Related Research, pp. 49–58, 1991. | |
dc.relation.references | D. Hannallah, “Retroviral Delivery of Noggin Inhibits the Formation of Heterotopic Ossification Induced by BMP-4, Demineralized Bone Matrix, and Trauma in an Animal Model,” Journal of Bone and Joint Surgery, vol. Serie A 86, pp. 80–91, 2004. | |
dc.relation.references | M. Brittberg, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” New England Journal of Medicine, vol. 331, pp. 889–895, 1994. | |
dc.relation.references | F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials Today, vol. 14, no. 3, pp. 88–95, Mar. 2011, doi: 10.1016/S1369-7021(11)70058-X. | |
dc.relation.references | D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials 21 (24), vol. 24, pp. 2529–2543, 2000. | |
dc.relation.references | A. Boccaccini, “Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications,” Compos Sci Technol, vol. 63, no. 16, pp. 2417–2429, Dec. 2003, doi: 10.1016/S0266-3538(03)00275-6. | |
dc.relation.references | C. Mota, D. Puppi, F. Chiellini, and E. Chiellini, “Additive manufacturing techniques for the production of tissue engineering constructs,” J Tissue Eng Regen Med, vol. 9, no. 3, pp. 174–190, Mar. 2015, doi: 10.1002/term.1635. | |
dc.relation.references | K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, Jun. 2006, doi: 10.1016/j.biomaterials.2006.01.039. | |
dc.relation.references | M. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, vol. 11, no. 5, pp. 18–25, May 2008, doi: 10.1016/S1369-7021(08)70086-5. | |
dc.relation.references | D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” J Biomater Sci Polym, vol. 12, pp. 107–124, 2001. | |
dc.relation.references | K. Stoffel, G. Stachowiak, and M. Kuster, “Open wedge high tibial osteotomy: biomechanical investigation of the modified Arthrex Osteotomy Plate (Puddu Plate) and the TomoFix Plate,” Clinical Biomechanics, vol. 19, pp. 944–950, 2004. | |
dc.relation.references | Arthrex, “OSferion.” [Online]. Available: https://www.arthrex.com/es/rodilla/trapezoide-osferion | |
dc.relation.references | Y. Kuboki et al., “BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis,” J Biomed Mater Res, vol. 39, no. 2, pp. 190–199, 1998, doi: 10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K. | |
dc.relation.references | B. J. Story, W. R. Wagner, D. M. Gaisser, S. D. Cook, and a M. Rust-Dawicki, “In vivo performance of a modified CSTi dental implant coating.,” Int J Oral Maxillofac Implants, vol. 13, no. 6, pp. 749–757, 1998. | |
dc.relation.references | V. Liu Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv Drug Deliv, vol. 56, 2004. | |
dc.relation.references | S. J. Kew et al., “Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials,” Acta Biomater, vol. 7, no. 9, pp. 3237–3247, Sep. 2011, doi: 10.1016/j.actbio.2011.06.002. | |
dc.relation.references | S. Loerakker, G. Argento, C. W. J. Oomens, and F. P. T. Baaijens, “Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves,” J Biomech, vol. 46, no. 11, pp. 1792–1800, Jul. 2013, doi: 10.1016/j.jbiomech.2013.05.015. | |
dc.relation.references | J. I. Kim and C. S. Kim, “Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering,” ACS Appl Mater Interfaces, vol. 10, no. 15, pp. 12390–12405, Apr. 2018, doi: 10.1021/acsami.7b19182. | |
dc.relation.references | V. Ruprecht et al., “How cells respond to environmental cues – insights from bio-functionalized substrates,” J Cell Sci, Jan. 2016, doi: 10.1242/jcs.196162. | |
dc.relation.references | A. T. Nguyen, S. R. Sathe, and E. K. F. Yim, “From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance,” Journal of Physics: Condensed Matter, vol. 28, no. 18, p. 183001, May 2016, doi: 10.1088/0953-8984/28/18/183001. | |
dc.relation.references | A. Chmielewska and D. Dean, “The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure,” Acta Biomater, vol. 173, pp. 51–65, Jan. 2024, doi: 10.1016/j.actbio.2023.11.011. | |
dc.relation.references | R. Ramaglia Amadasi, G. Rogati, E. Liverani, A. Leardini, and P. Caravaggi, “An integrated experimental and analytical approach for the analysis of the mechanical interaction between metal porous scaffolds and bone: implications for stress shielding in orthopedic implants,” Front Bioeng Biotechnol, vol. 13, Apr. 2025, doi: 10.3389/fbioe.2025.1562367. | |
dc.relation.references | L. Liu et al., “Design and performance analysis of 3D-printed stiffness gradient femoral scaffold,” J Orthop Surg Res, vol. 18, no. 1, p. 120, Feb. 2023, doi: 10.1186/s13018-023-03612-z. | |
dc.relation.references | J.-H. Chen, C. Liu, L. You, and C. A. Simmons, “Boning up on Wolff’s Law: Mechanical regulation of the cells that make and maintain bone,” J Biomech, vol. 43, no. 1, pp. 108–118, Jan. 2010, doi: 10.1016/j.jbiomech.2009.09.016. | |
dc.relation.references | C. Perier-Metz, L. Corté, R. Allena, and S. Checa, “A 3D in Silico Multi-Tissue Evolution Model Highlights the Relevance of Local Strain Accumulation in Bone Fracture Remodeling,” Front Bioeng Biotechnol, vol. 10, Mar. 2022, doi: 10.3389/fbioe.2022.835094. | |
dc.relation.references | R. Ramaglia Amadasi, G. Rogati, E. Liverani, A. Leardini, and P. Caravaggi, “An integrated experimental and analytical approach for the analysis of the mechanical interaction between metal porous scaffolds and bone: implications for stress shielding in orthopedic implants,” Front Bioeng Biotechnol, vol. 13, Apr. 2025, doi: 10.3389/fbioe.2025.1562367. | |
dc.relation.references | L. Liu et al., “Design and performance analysis of 3D-printed stiffness gradient femoral scaffold,” J Orthop Surg Res, vol. 18, no. 1, p. 120, Feb. 2023, doi: 10.1186/s13018-023-03612-z. | |
dc.relation.references | I. G. Jang and I. Y. Kim, “Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization,” J Biomech, vol. 41, no. 11, pp. 2353–2361, 2008, doi: 10.1016/j.jbiomech.2008.05.037. | |
dc.relation.references | A. M. McDermott, D. E. Mason, A. S. P. Lin, R. E. Guldberg, and J. D. Boerckel, “Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration,” J Mech Behav Biomed Mater, vol. 62, pp. 169–181, Sep. 2016, doi: 10.1016/j.jmbbm.2016.05.010. | |
dc.relation.references | U. Meyer, U. Joos, and H. P. Wiesmann, “Biological and biophysical principles in extracorporal bone tissue engineering,” Int J Oral Maxillofac Surg, vol. 33, pp. 325–332, 2004. | |
dc.relation.references | U. Meyer et al., “Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants,” Biomaterials, vol. 25, pp. 1959–1967, 2004. | |
dc.relation.references | K. Athanasiou, A. Shah, R. Hernandez, and L. RG, “Basic science of articular cartilage repair,” Clin Sports Med, vol. 20, pp. 223–247, 2001. | |
dc.relation.references | H. Elema et al., “Use of biodegradable polymer implants in meniscus reconstruction,” Colloid Polym Sci, vol. 268, pp. 1082–1088, 1990. | |
dc.relation.references | J. Hubbell, “Materials as morphogenetic guides in tissue engineering,” Curr Opin Biotechnol, vol. 14, pp. 551–558, 2003. | |
dc.relation.references | J. Nichol and A. Khademhosseini, “Modular tissue engineering: engineering biological tissues from the bottom up,” Soft Matter, vol. 5, p. 1312, 2009. | |
dc.relation.references | I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications,” Biomaterials, vol. 23, no. 4, pp. 1169–1185, 2002, doi: 10.1016/S0142-9612(01)00232-0. | |
dc.relation.references | R. Kumar, M. Kumar, and J. Chohan, “The role of additive manufacturing for biomedical applications: A critical review,” J Manuf Process, vol. 64, pp. 828–850, 2021. | |
dc.relation.references | J. Wu, X. Xu, Z. Zhao, M. Wang, and J. Zhang, “Study in performance and morphology of polyamide 12 produced by selective laser sintering technology,” Rapid Prototyp J, vol. 24, no. 5, pp. 813–820, Sep. 2018, doi: 10.1108/RPJ-01-2017-0010. | |
dc.relation.references | J. N. DiNoro et al., “Laser Sintering Approaches for Bone Tissue Engineering,” Polymers (Basel), vol. 14, no. 12, p. 2336, Jun. 2022, doi: 10.3390/polym14122336. | |
dc.relation.references | S. M. Peltola, F. P. W. Melchels, D. W. Grijpma, and M. Kellomäki, “A review of rapid prototyping techniques for tissue engineering purposes,” Ann Med, vol. 40, no. 4, pp. 268–280, Jan. 2008, doi: 10.1080/07853890701881788. | |
dc.relation.references | J. ZHU, H. ZHOU, C. WANG, L. ZHOU, S. YUAN, and W. ZHANG, “A review of topology optimization for additive manufacturing: Status and challenges,” Chinese Journal of Aeronautics, vol. 34, no. 1, pp. 91–110, Jan. 2021, doi: 10.1016/j.cja.2020.09.020. | |
dc.relation.references | X. Guo and G.-D. Cheng, “Recent development in structural design and optimization,” Acta Mechanica Sinica, vol. 26, no. 6, pp. 807–823, Dec. 2010, doi: 10.1007/s10409-010-0395-7. | |
dc.relation.references | Y. Zheng et al., “Tissue transformation mold design and stereolithography fabrication,” Rapid Prototyp J, vol. 23, no. 1, pp. 162–168, Jan. 2017, doi: 10.1108/RPJ-10-2015-0133. | |
dc.relation.references | P. Zhou, J. Du, and Z. Lü, “A generalized DCT compression based density method for topology optimization of 2D and 3D continua,” Comput Methods Appl Mech Eng, vol. 334, pp. 1–21, Jun. 2018, doi: 10.1016/j.cma.2018.01.051. | |
dc.relation.references | R. Picelli, S. Townsend, C. Brampton, J. Norato, and H. A. Kim, “Stress-based shape and topology optimization with the level set method,” Comput Methods Appl Mech Eng, vol. 329, pp. 1–23, Feb. 2018, doi: 10.1016/j.cma.2017.09.001. | |
dc.relation.references | L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary structural optimization method,” Comput Methods Appl Mech Eng, vol. 333, pp. 356–370, May 2018, doi: 10.1016/j.cma.2018.01.035. | |
dc.relation.references | F. Cucinotta, E. Guglielmino, G. Longo, G. Risitano, D. Santonocito, and F. Sfravara, “Topology Optimization Additive Manufacturing-Oriented for a Biomedical Application,” 2019, pp. 184–193. doi: 10.1007/978-3-030-12346-8_18. | |
dc.relation.references | M. E. Lynch, S. Sarkar, and K. Maute, “Machine Learning to Aid Tuning of Numerical Parameters in Topology Optimization,” Journal of Mechanical Design, vol. 141, no. 11, Nov. 2019, doi: 10.1115/1.4044228. | |
dc.relation.references | S. L. Vatanabe, T. N. Lippi, C. R. de Lima, G. H. Paulino, and E. C. N. Silva, “Topology optimization with manufacturing constraints: A unified projection-based approach,” Advances in Engineering Software, vol. 100, pp. 97–112, Oct. 2016, doi: 10.1016/j.advengsoft.2016.07.002. | |
dc.relation.references | O. Sigmund, “Topology optimization: a tool for the tailoring of structures and materials,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1765, pp. 211–227, Jan. 2000, doi: 10.1098/rsta.2000.0528. | |
dc.relation.references | M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications, vol. 2nd Editio, no. 724. 2003. doi: 10.1063/1.3278595. | |
dc.relation.references | M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comput Methods Appl Mech Eng, vol. 71, no. 2, pp. 197–224, Nov. 1988, doi: 10.1016/0045-7825(88)90086-2. | |
dc.relation.references | J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int J Numer Methods Eng, vol. 61, no. 2, pp. 238–254, Sep. 2004, doi: 10.1002/nme.1064. | |
dc.relation.references | O. Sigmund, “Morphology-based black and white filters for topology optimization,” Structural and Multidisciplinary Optimization, vol. 33, no. 4–5, pp. 401–424, Feb. 2007, doi: 10.1007/s00158-006-0087-x. | |
dc.relation.references | M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput Methods Appl Mech Eng, vol. 192, no. 1–2, pp. 227–246, Jan. 2003, doi: 10.1016/S0045-7825(02)00559-5. | |
dc.relation.references | G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J Comput Phys, vol. 194, no. 1, pp. 363–393, Feb. 2004, doi: 10.1016/j.jcp.2003.09.032. | |
dc.relation.references | Y. M. Xie and G. P. Steven, “A simple evolutionary procedure for structural optimization,” Comput Struct, vol. 49, no. 5, pp. 885–896, Dec. 1993, doi: 10.1016/0045-7949(93)90035-C. | |
dc.relation.references | X. Huang and Y. M. Xie, “Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method,” Finite Elements in Analysis and Design, vol. 43, no. 14, pp. 1039–1049, Oct. 2007, doi: 10.1016/j.finel.2007.06.006. | |
dc.relation.references | M. Gilbert and A. Tyas, “Layout optimization of large-scale pin-jointed frames,” Eng Comput (Swansea), vol. 20, no. 8, pp. 1044–1064, Dec. 2003, doi: 10.1108/02644400310503017. | |
dc.relation.references | A. Takezawa, S. Nishiwaki, and M. Kitamura, “Shape and topology optimization based on the phase field method and sensitivity analysis,” J Comput Phys, vol. 229, no. 7, pp. 2697–2718, Apr. 2010, doi: 10.1016/j.jcp.2009.12.017. | |
dc.relation.references | T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput Methods Appl Mech Eng, vol. 199, no. 45–48, pp. 2876–2891, Nov. 2010, doi: 10.1016/j.cma.2010.05.013. | |
dc.relation.references | J. Sokolowski and A. Zochowski, “On the Topological Derivative in Shape Optimization,” SIAM J Control Optim, vol. 37, no. 4, pp. 1251–1272, Jan. 1999, doi: 10.1137/S0363012997323230. | |
dc.relation.references | Karamba3D, “3.6.9: BESO for Beams,” v3 Manual. | |
dc.relation.references | Karamba 3D, “3.6.10: BESO for Shells,” v3 Manual. | |
dc.relation.references | Karamba 3D, “3.6.8: Optimize Cross Section,” v3 Manual. | |
dc.relation.references | Y. Wang, Z. Luo, N. Zhang, and Q. Qin, “Topological shape optimization of multifunctional tissue engineering scaffolds with level set method,” Structural and Multidisciplinary Optimization, vol. 54, no. 2, pp. 333–347, Aug. 2016, doi: 10.1007/s00158-016-1409-2. | |
dc.relation.references | H. A. Almeida and P. J. Bártolo, “Topological Optimization of Scaffolds for Tissue Engineering,” Procedia Eng, vol. 59, pp. 298–306, 2013, doi: 10.1016/j.proeng.2013.05.125. | |
dc.relation.references | S. J. Hollister and C. Y. Lin, “Computational design of tissue engineering scaffolds,” Comput Methods Appl Mech Eng, vol. 196, no. 31–32, pp. 2991–2998, Jun. 2007, doi: 10.1016/j.cma.2006.09.023. | |
dc.relation.references | H. Kang, C.-Y. Lin, and S. J. Hollister, “Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity,” Structural and Multidisciplinary Optimization, vol. 42, no. 4, pp. 633–644, Oct. 2010, doi: 10.1007/s00158-010-0508-8. | |
dc.relation.references | Y. Han et al., “3D printing customized design of human bone tissue implant and its application,” Nanotechnol Rev, vol. 11, no. 1, pp. 1792–1801, Apr. 2022, doi: 10.1515/ntrev-2022-0049. | |
dc.relation.references | I. G. Jang, I. Y. Kim, and B. B. Kwak, “Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.,” J Biomech Eng, vol. 131, no. January 2009, p. 011012, 2009, doi: 10.1115/1.3005202. | |
dc.relation.references | I. G. Jang and I. Y. Kim, “Computational simulation of trabecular adaptation progress in human proximal femur during growth,” J Biomech, vol. 42, no. 5, pp. 573–580, 2009, doi: 10.1016/j.jbiomech.2008.12.009. | |
dc.relation.references | J. J. Kim and I. G. Jang, “Image resolution enhancement for healthy weight-bearing bones based on topology optimization,” J Biomech, vol. 49, no. 13, pp. 3035–3040, 2016, doi: 10.1016/j.jbiomech.2016.06.012. | |
dc.relation.references | G.H: von Meyer, “Die Architectur der Spongiosa,” Reichert und Du Bois-Reymond’s Archiv, vol. 8, pp. 615–628, 1867. | |
dc.relation.references | J. Wolff, “Das Gesetz der Transformation der Knochen (The law of bone remodeling),” 1892. | |
dc.relation.references | M. R. Moalli, N. J. Caldwell, P. V Patil, and S. A. Goldstein, “An in vivo model for investigations of mechanical signal transduction in trabecular bone.,” J Bone Miner Res, vol. 15, no. 7, pp. 1346–53, 2000, doi: 10.1359/jbmr.2000.15.7.1346. | |
dc.relation.references | F. A. Schulte, F. M. Lambers, D. J. Webster, G. Kuhn, and R. Müller, “In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography,” Bone, vol. 49, no. 6, pp. 1166–1172, 2011, doi: 10.1016/j.bone.2011.08.018. | |
dc.relation.references | X. Wang et al., “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials, vol. 83, pp. 127–141, 2016, doi: 10.1016/j.biomaterials.2016.01.012. | |
dc.relation.references | S. T. Becker et al., “Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction,” Oral Oncol, vol. 45, no. 11, 2009, doi: 10.1016/j.oraloncology.2009.07.004. | |
dc.relation.references | A. Clausen, N. Aage, and O. Sigmund, “Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load,” Engineering, vol. 2, no. 2, pp. 250–257, 2016, doi: 10.1016/J.ENG.2016.02.006. | |
dc.relation.references | A. Eltom, G. Zhong, and A. Muhammad, “Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review,” Advances in Materials Science and Engineering, vol. 2019, pp. 1–13, Mar. 2019, doi: 10.1155/2019/3429527. | |
dc.relation.references | A. Cappozzo, F. Catani, U. Della Croce, and A. Leardini, “Position and orientation in space of bones during movement: anatomical frame definition and determination,” Clinical Biomechanics, vol. 10, no. 4, pp. 171–178, Jun. 1995, doi: 10.1016/0268-0033(95)91394-T. | |
dc.relation.references | K. Kaufman and K. An, “Biomechanics,” in Kelley and Firestein’s Textbook of Rheumatology, Elsevier, 2017, pp. 78–89. doi: 10.1016/B978-0-323-31696-5.00006-1. | |
dc.relation.references | R. D. Crowninshield and R. A. Brand, “A physiologically based criterion of muscle force prediction in locomotion,” J Biomech, vol. 14, no. 11, pp. 793–801, Jan. 1981, doi: 10.1016/0021-9290(81)90035-X. | |
dc.relation.references | M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee, “Analysis of musculoskeletal systems in the AnyBody Modeling System,” Simul Model Pract Theory, vol. 14, no. 8, pp. 1100–1111, Nov. 2006, doi: 10.1016/j.simpat.2006.09.001. | |
dc.relation.references | T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “Biomechanics of Trabecular Bone,” Annu Rev Biomed Eng, vol. 3, no. 1, pp. 307–333, Aug. 2001, doi: 10.1146/annurev.bioeng.3.1.307. | |
dc.relation.references | A. Kemper and et al., “The material properties of human tibia cortical bone in tension and compression: Implications for th tibia index,” Winston-Salem, NC, 07–0470, 2007. | |
dc.relation.references | W. T. Dempster and R. T. Liddicoat, “Compact bone as a non-isotropic material,” American Journal of Anatomy, vol. 91, no. 3, pp. 331–362, Nov. 1952, doi: 10.1002/aja.1000910302. | |
dc.relation.references | F. G. Evans and R. Vincentelli, “Relations of the compressive properties of human cortical bone to histological structure and calcification,” J Biomech, vol. 7, no. 1, pp. 1–10, Jan. 1974, doi: 10.1016/0021-9290(74)90064-5. | |
dc.relation.references | G. N. Duda et al., “Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing,” J Biomech, vol. 34, no. 5, pp. 639–650, May 2001, doi: 10.1016/S0021-9290(00)00237-2. | |
dc.relation.references | W. C. Hayes, L. W. Swenson, and D. J. Schurman, “Axisymmetric finite element analysis of the lateral tibial plateau,” J Biomech, vol. 11, no. 1–2, pp. 21–33, Jan. 1978, doi: 10.1016/0021-9290(78)90040-4. | |
dc.relation.references | Z. Wu, T. C. Ovaert, and G. L. Niebur, “Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus,” Journal of Orthopaedic Research, vol. 30, no. 5, pp. 693–699, May 2012, doi: 10.1002/jor.22001. | |
dc.relation.references | D. T. Reilly and A. H. Burstein, “The elastic and ultimate properties of compact bone tissue,” J Biomech, vol. 8, no. 6, pp. 393–405, Jan. 1975, doi: 10.1016/0021-9290(75)90075-5. | |
dc.relation.references | M. S. Costanza‐Robinson, B. D. Estabrook, and D. F. Fouhey, “Representative elementary volume estimation for porosity, moisture saturation, and air‐water interfacial areas in unsaturated porous media: Data quality implications,” Water Resour Res, vol. 47, no. 7, Jul. 2011, doi: 10.1029/2010WR009655 | |
dc.relation.references | C. Sandino, D. D. McErlain, J. Schipilow, and S. K. Boyd, “The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study,” J Mech Behav Biomed Mater, vol. 44, pp. 1–9, Apr. 2015, doi: 10.1016/j.jmbbm.2014.12.018. | |
dc.relation.references | L. Cardoso and M. B. Schaffler, “Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound.,” J Biomech Eng, vol. 137, no. 1, pp. 0110081–9, Jan. 2015, doi: 10.1115/1.4029179. | |
dc.relation.references | T. Gross, D. H. Pahr, and P. K. Zysset, “Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations,” Biomech Model Mechanobiol, vol. 12, no. 4, pp. 793–800, Aug. 2013, doi: 10.1007/s10237-012-0443-2. | |
dc.relation.references | L. J. Gibson, “The mechanical behaviour of cancellous bone,” J Biomech, vol. 18, no. 5, pp. 317–328, Jan. 1985, doi: 10.1016/0021-9290(85)90287-8. | |
dc.relation.references | S. C. Cowin, “Bone poroelasticity,” J Biomech, vol. 32, no. 3, pp. 217–238, Mar. 1999, doi: 10.1016/S0021-9290(98)00161-4. | |
dc.relation.references | L. J. Gibson, “Biomechanics of cellular solids,” J Biomech, vol. 38, no. 3, pp. 377–399, Mar. 2005, doi: 10.1016/j.jbiomech.2004.09.027. | |
dc.relation.references | N. H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, and R. U. Newton, “Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.,” J Musculoskelet Neuronal Interact, vol. 17, no. 3, pp. 114–139, Sep. 2017. | |
dc.relation.references | R. Oftadeh, M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian, “Biomechanics and mechanobiology of trabecular bone: a review.,” J Biomech Eng, vol. 137, no. 1, pp. 0108021–01080215, Jan. 2015, doi: 10.1115/1.4029176. | |
dc.relation.references | G. U. Unnikrishnan, J. A. Gallagher, A. I. Hussein, G. D. Barest, and E. F. Morgan, “Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra.,” J Biomech Eng, vol. 137, no. 11, p. 114503, Nov. 2015, doi: 10.1115/1.4031415. | |
dc.relation.references | J. H. Argyris, M. Papadrakakis, C. Apostolopoulou, and S. Koutsourelakis, “The TRIC shell element: theoretical and numerical investigation,” Comput Methods Appl Mech Eng, vol. 182, no. 1–2, pp. 217–245, Feb. 2000, doi: 10.1016/S0045-7825(99)00094-8. | |
dc.relation.references | A. Eltom, G. Zhong, and A. Muhammad, “Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review,” Advances in Materials Science and Engineering, vol. 2019, pp. 1–13, Mar. 2019, doi: 10.1155/2019/3429527. | |
dc.relation.references | R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed. Wiley, 2002. | |
dc.relation.references | B. T. Goh, S. Lee, H. Tideman, and P. J. W. Stoelinga, “Mandibular reconstruction in adults: a review,” Int J Oral Maxillofac Surg, vol. 37, no. 7, pp. 597–605, Jul. 2008, doi: 10.1016/j.ijom.2008.03.002. | |
dc.relation.references | D. Luo, Q. Rong, and Q. Chen, “Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects,” Med Eng Phys, vol. 47, pp. 176–183, Sep. 2017, doi: 10.1016/j.medengphy.2017.06.015. | |
dc.relation.references | Ministerio de Salud de Colombia, “Obesidad, un factor de riesgo en el covid-19.” | |
dc.relation.references | E. García Pérez, L. Mena Aymé, Y. Ferrer Lozano, and P. Oquendo Vázquez, “Osteotomía valguizante de tibia proximal en el tratamiento del genu varo artrósico,” Medisur, vol. 11, pp. 27–36, 2013. | |
dc.relation.references | H. Long et al., “Prevalence Trends of Site‐Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019,” Arthritis & Rheumatology, vol. 74, no. 7, pp. 1172–1183, Jul. 2022, doi: 10.1002/art.42089. | |
dc.relation.references | M. B. Coventry, D. M. Ilstrup, and S. L. Wallrichs, “Proximal tibial osteotomy. A critical long-term study of eighty-seven cases.,” J Bone Joint Surg, vol. 75, no. 2, pp. 196–201, Feb. 1993, doi: 10.2106/00004623-199302000-00006. | |
dc.relation.references | T. Kanamiya, M. Naito, M. Hara, and I. Yoshimura, “The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis,” Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 18, no. 7, pp. 725–729, Sep. 2002, doi: 10.1053/jars.2002.35258. | |
dc.relation.references | H. Gary, L. Hamish, B. James, S. Rowan, and B. Ili, “Osteotomía tibial alta oblicua de apertura para tratamiento de un genu varo,” Técnicas Quirúrgicas en Ortopedia y Traumatología, vol. 16, pp. 58–72, Jan. 2007. | |
dc.relation.references | A. De Los Rios, A. Saavedra, and J. Palacios, “Osteotomía tibial valguizante de apertura,” Revista Colombiana de Ortopedia y Traumatología, vol. 19, pp. 35–42, Mar. 2005. | |
dc.relation.references | Arthrex INC, “Osteotomía tibial proximal con cuña abierta utilizando el sistema de placas ContourLock Técnica quirúrgica.” | |
dc.relation.references | M. V. AMEZQUITA G and M. I. HODGSON B, “Estimación de la talla en la evaluación nutricional de niños con parálisis cerebral,” Rev Chil Pediatr, vol. 85, no. 1, pp. 22–30, Feb. 2014, doi: 10.4067/S0370-41062014000100003. | |
dc.relation.references | A. V. Lesso and I. G. Madrigal, “CORRECCIÓN DE MODELOS BIOLÓGICOS STL CON HERRAMIENTAS CAD,” Revista Jóvenes en la Ciencia - Universidad de Guanajuato, 2018. | |
dc.relation.references | Wolf Strecker, “Análisis para la corrección de las deformidades óseas adyacentes a la rodilla. Deformidades en el plano frontal (I),” Técnicas Quirúrgicas en Ortopedia y Traumatología, vol. 16, no. 4, pp. 227–236, Oct. 2007. | |
dc.relation.references | ANSYS INC.©, “ANSYS® Mechanical APDL Documentation Release 2022 R2 ,” 2021, Canonsburg, PA 15317. | |
dc.relation.references | D. A. Mansegosa, P. S. Giannotti, H. Chiavazza, and G. Barrientos, “Funciones discriminantes para estimar sexo a partir de huesos largos en poblaciones coloniales del centro oeste de Argentina,” Chungará (Arica), no. ahead, pp. 0–0, 2017, doi: 10.4067/S0717-73562017005000113. | |
dc.relation.references | S. Correa, “Determinación del sexo a partir de una muestra de tibias en la población local de Bogotá,” Pontificia Universidad Javeriana, Bogotá D.C., 2002. | |
dc.relation.references | A. T. Bachmeier, E. Euler, R. Bader, W. Böcker, and P. H. Thaller, “Novel method for determining bone dimensions relevant for longitudinal and transverse distraction osteogenesis and application in the human tibia and fibula,” Annals of Anatomy - Anatomischer Anzeiger, vol. 234, p. 151656, Mar. 2021, doi: 10.1016/j.aanat.2020.151656. | |
dc.relation.references | H. A. Gray, F. Taddei, A. B. Zavatsky, L. Cristofolini, and H. S. Gill, “Experimental Validation of a Finite Element Model of a Human Cadaveric Tibia,” J Biomech Eng, vol. 130, no. 3, Jun. 2008, doi: 10.1115/1.2913335. | |
dc.relation.references | L. Zambrano and C. Müller-Karger, “Estudio del efecto de placas de fijación en fracturas de tibia proximal utilizando el método de elementos finitos,” 2008. | |
dc.relation.references | Universidad D Cordoba Departamento de Ciencias Morfológicas y Sociosanitarias, “Área de anatomía y embriología humana,” https://anatomiauco.wordpress.com/piezas-oseas/miembro-inferior/tibia/informacion-general/. | |
dc.relation.references | D. B. Kettlekcamp and A. W. Jacobs, “Tibiofemoral Contact Area-Determination and Implantations.,” Journal of Bone and Joint Surgery, vol. 54A, no. 167–172, 1972. | |
dc.relation.references | M. M. Barak, D. E. Lieberman, and J.-J. Hublin, “A Wolff in sheep’s clothing: Trabecular bone adaptation in response to changes in joint loading orientation,” Bone, vol. 49, no. 6, pp. 1141–1151, Dec. 2011, doi: 10.1016/j.bone.2011.08.020. | |
dc.relation.references | R. Huiskes, R. Ruimerman, G. van Lenthe, and J. Janssen, “ Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, pp. 704–706, 2000. | |
dc.relation.references | M. W. Creaby et al., “Dynamic knee loading is related to cartilage defects and tibial plateau bone area in medial knee osteoarthritis,” Osteoarthritis Cartilage, vol. 18, no. 11, pp. 1380–1385, Nov. 2010, doi: 10.1016/j.joca.2010.08.013. | |
dc.relation.references | M. Iscan and P. Miller-Shaivitz, “Discriminant function sexing of the tibia,” Forensic Sci, no. 4, pp. 1087–1093, Oct. 1984. | |
dc.relation.references | L. Bao, S. Rong, Z. Shi, J. Wang, and Y. Zhang, “Measurement of femoral posterior condylar offset and posterior tibial slope in normal knees based on 3D reconstruction,” BMC Musculoskelet Disord, vol. 22, no. 1, p. 486, Dec. 2021, doi: 10.1186/s12891-021-04367-6. | |
dc.relation.references | D. Carter, T. Orr, and D. Fyhrie, “ Relationships between loading history and femoral cancellous bone architecture,” Biomech, vol. 22, pp. 231–244, 1989. | |
dc.relation.references | A. Gefen and R. Seliktar, “Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus,” Med Eng Phys, vol. 2004, pp. 119–129, 2004. | |
dc.relation.references | S. M. Nazemi et al., “Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia,” J Biomech, vol. 59, pp. 101–108, Jul. 2017, doi: 10.1016/j.jbiomech.2017.05.018. | |
dc.relation.references | R. Ambu and A. E. Morabito, “Modeling, Assessment, and Design of Porous Cells Based on Schwartz Primitive Surface for Bone Scaffolds,” The Scientific World Journal, vol. 2019, pp. 1–16, Jun. 2019, doi: 10.1155/2019/7060847. | |
dc.relation.references | Kasios INC., “Kasios DuoWedge.” | |
dc.relation.references | M. Aretxabaleta, A. Roehler, C. F. Poets, A. B. Xepapadeas, B. Koos, and C. Weise, “Automation of Measurements for Personalized Medical Appliances by Means of CAD Software—Application in Robin Sequence Orthodontic Appliances,” Bioengineering, vol. 9, no. 12, p. 773, Dec. 2022, doi: 10.3390/bioengineering9120773. | |
dc.relation.references | E. Nakamura, H. Mizuta, S. Kudo, K. Takagi, and K. Sakamoto, “Open-wedge osteotomy of the proximal tibia with hemicallotasis,” J Bone Joint Surg Br, vol. 83-B, no. 8, pp. 1111–1115, Nov. 2001, doi: 10.1302/0301-620X.83B8.0831111. | |
dc.relation.references | J. Hu, J. H. Wang, R. Wang, X. B. Yu, Y. Liu, and D. A. Baur, “Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization,” 3D Print Med, vol. 5, no. 1, p. 5, Dec. 2019, doi: 10.1186/s41205-019-0042-2. | |
dc.relation.references | BCN3D Technologies, “Technical Data sheet PLA,” chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.bcn3d.com/wp-content/uploads/2019/09/BCN3D_FILAMENTS_TechnicalDataSheet_PLA_EN.pdf. | |
dc.relation.references | F. H. Netter, Atlas de Anatomía Humana, 2nd ed. Icon Learning System, 2001. | |
dc.relation.references | Y. Quijano Blanco, “Anatomía clínica de la articulación temporomandibular (ATM),” Morfolia, vol. 3, no. 4, 2011. | |
dc.relation.references | I. Sandoval, N. Ibarra, G. Flores, K. Marinkovic, W. Díaz, and F. Romo, “Prevalencia de Trastornos Temporomandibulares según los CDI/TTM, en un Grupo de Adultos Mayores de Santiago, Chile,” International journal of odontostomatology, vol. 9, no. 1, pp. 73–78, Apr. 2015, doi: 10.4067/S0718-381X2015000100011. | |
dc.relation.references | T. A. Larheim and D. B. Svanaes, “Reproducibility of rotational panoramic radiography: Mandibular linear dimensions and angles,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 90, no. 1, pp. 45–51, Jul. 1986, doi: 10.1016/0889-5406(86)90026-0. | |
dc.relation.references | T. W. Korioth and A. G. Hannam, “Mandibular forces during simulated tooth clenching.,” J Orofac Pain, vol. 8, no. 2, pp. 178–89, 1994. | |
dc.relation.references | Nelson GJ, “Three dimensional computeder modelling of human mandibular biomechanics,” The University of British Columbia, Vancouver, 1986. | |
dc.relation.references | Koolstra JH, van Eijden TM, Weijs WA, and Naeije MA, “A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces,” Biomechanics, vol. 21, pp. 563–576, 1988. | |
dc.relation.references | J. W. Osborn and F. A. Baragar, “Predicted pattern of human muscle activity during clenching derived from a computer assisted model: Symmetric vertical bite forces,” J Biomech, vol. 18, no. 8, pp. 599–612, Jan. 1985, doi: 10.1016/0021-9290(85)90014-4. | |
dc.relation.references | M. Liebschner, B. Bucklen, and M. Wettergreen, “Mechanical Aspects of Tissue Engineering,” Semin Plast Surg, vol. 19, no. 03, pp. 217–228, Aug. 2005, doi: 10.1055/s-2005-919717. | |
dc.relation.references | G. I. N. Rozvany, “Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics,” Structural and Multidisciplinary Optimization, vol. 21, no. 2, pp. 90–108, Apr. 2001, doi: 10.1007/s001580050174. | |
dc.relation.references | R. Huiskes, R. Ruimerman, G. H. van Lenthe, and J. D. Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, no. 6787, pp. 704–706, Jun. 2000, doi: 10.1038/35015116. | |
dc.relation.references | H. M. Frost, “Bone ‘mass’ and the ‘mechanostat’: A proposal,” Anat Rec, vol. 219, no. 1, pp. 1–9, Sep. 1987, doi: 10.1002/ar.1092190104. | |
dc.relation.references | J. Zhang, H. Li, Y. Zhou, S. Chen, and Q. Rong, “An Analysis of Trabecular Bone Structure Based on Principal Stress Trajectory,” Bioengineering, vol. 10, no. 10, p. 1224, Oct. 2023, doi: 10.3390/bioengineering10101224. | |
dc.relation.references | S. J. Hollister, J. M. Brennan, and N. Kikuchi, “A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress,” J Biomech, vol. 27, no. 4, pp. 433–444, Apr. 1994, doi: 10.1016/0021-9290(94)90019-1. | |
dc.relation.references | C. Wang, L. Feng, and I. Jasiuk, “Scale and Boundary Conditions Effects on the Apparent Elastic Moduli of Trabecular Bone Modeled as a Periodic Cellular Solid,” J Biomech Eng, vol. 131, no. 12, Dec. 2009, doi: 10.1115/1.4000192. | |
dc.relation.references | K. Maute and E. Ramm, “Adaptive Topology Optimization of Shell Structures,” AIAA Journal, vol. 35, no. 11, pp. 1767–1773, Nov. 1997, doi: 10.2514/2.25. | |
dc.relation.references | P. Kang and S.-K. Youn, “Isogeometric topology optimization of shell structures using trimmed NURBS surfaces,” Finite Elements in Analysis and Design, vol. 120, pp. 18–40, Nov. 2016, doi: 10.1016/j.finel.2016.06.003. | |
dc.relation.references | K.-M. M. Tam and C. T. Mueller, “Additive Manufacturing Along Principal Stress Lines,” 3D Print Addit Manuf, vol. 4, no. 2, pp. 63–81, Jun. 2017, doi: 10.1089/3dp.2017.0001. | |
dc.relation.references | J. Wang, C. Neuhauser, J. Wu, X. Gao, and R. Westermann, “3D-TSV: The 3D trajectory-based stress visualizer,” Advances in Engineering Software, vol. 170, p. 103144, Aug. 2022, doi: 10.1016/j.advengsoft.2022.103144. | |
dc.relation.references | D. R. Bukenberger, J. Wang, J. Wu, and R. Westermann, “Stress‐Aligned Hexahedral Lattice Structures,” Computer Graphics Forum, vol. 44, no. 1, Feb. 2025, doi: 10.1111/cgf.15265. | |
dc.relation.references | O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, Dec. 2013, doi: 10.1007/s00158-013-0978-6. | |
dc.relation.references | X. Huang and Y. M. Xie, “Evolutionary topology optimization of continuum structures with an additional displacement constraint,” Structural and Multidisciplinary Optimization, vol. 40, no. 1–6, pp. 409–416, Jan. 2010, doi: 10.1007/s00158-009-0382-4. | |
dc.relation.references | L. Chao et al., “Design of porous structure based on the Voronoi diagram and stress line for better stress shielding relief and permeability,” Journal of Materials Research and Technology, vol. 25, pp. 1719–1734, Jul. 2023, doi: 10.1016/j.jmrt.2023.05.282. | |
dc.relation.references | W. Cao, W. Pan, B. Liu, P. Lu, H. Lin, and J. Huang, “Gradient anisotropic design of Voronoi porous structures,” Int J Mech Sci, vol. 278, p. 109484, Sep. 2024, doi: 10.1016/j.ijmecsci.2024.109484. | |
dc.relation.references | J. Klein-Nulend, A. D. Bakker, R. G. Bacabac, A. Vatsa, and S. Weinbaum, “Mechanosensation and transduction in osteocytes,” Bone, vol. 54, no. 2, pp. 182–190, Jun. 2013, doi: 10.1016/j.bone.2012.10.013. | |
dc.relation.references | S. Safavi, Y. Yu, D. L. Robinson, H. A. Gray, D. C. Ackland, and P. V. S. Lee, “Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review,” J Orthop Surg Res, vol. 18, no. 1, p. 42, Jan. 2023, doi: 10.1186/s13018-022-03492-9. | |
dc.relation.references | C. Sandino, D. D. McErlain, J. Schipilow, and S. K. Boyd, “The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study,” J Mech Behav Biomed Mater, vol. 44, pp. 1–9, Apr. 2015, doi: 10.1016/j.jmbbm.2014.12.018. | |
dc.relation.references | H. Qu et al., “Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds,” Research, vol. 2021, Jan. 2021, doi: 10.34133/2021/9892689. | |
dc.relation.references | Y. Du, J. L. Guo, J. Wang, A. G. Mikos, and S. Zhang, “Hierarchically designed bone scaffolds: From internal cues to external stimuli,” Biomaterials, vol. 218, p. 119334, Oct. 2019, doi: 10.1016/j.biomaterials.2019.119334. | |
dc.relation.references | T. M. Koushik, C. M. Miller, and E. Antunes, “Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds,” Adv Healthc Mater, vol. 12, no. 9, Apr. 2023, doi: 10.1002/adhm.202202766. | |
dc.relation.references | B. Lei, B. Guo, K. J. Rambhia, and P. X. Ma, “Hybrid polymer biomaterials for bone tissue regeneration,” Front Med, vol. 13, no. 2, pp. 189–201, Apr. 2019, doi: 10.1007/s11684-018-0664-6. | |
dc.relation.references | A. Longoni et al., “Strategies for inclusion of growth factors into 3D printed bone grafts,” Essays Biochem, vol. 65, no. 3, pp. 569–585, Aug. 2021, doi: 10.1042/EBC20200130. | |
dc.relation.references | F. E. Freeman et al., “3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration,” Sci Adv, vol. 6, no. 33, Aug. 2020, doi: 10.1126/sciadv.abb5093. | |
dc.relation.references | B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard, “A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models,” J Biomech, vol. 28, no. 1, pp. 69–81, Jan. 1995, doi: 10.1016/0021-9290(95)80008-5. | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | |
dc.subject.lemb | Huesos | spa |
dc.subject.lemb | Bones | eng |
dc.subject.lemb | Materiales biomédicos | spa |
dc.subject.lemb | Biomedical materials | eng |
dc.subject.other | Ingeniería de tejidos | spa |
dc.subject.other | Tissue engineering | eng |
dc.subject.proposal | Ingeniería de Tejidos | spa |
dc.subject.proposal | Análisis por elementos finitos | spa |
dc.subject.proposal | Andamio Óseo | spa |
dc.subject.proposal | Diseño Asistido por Computador | spa |
dc.subject.proposal | Tissue engineering | eng |
dc.subject.proposal | Bone regeneration | eng |
dc.subject.proposal | Regeneración ósea | spa |
dc.subject.proposal | Finite element analysis | eng |
dc.subject.proposal | Scaffold | eng |
dc.subject.proposal | Computer Aided Design | eng |
dc.subject.wikidata | Método de los elementos finitos | spa |
dc.subject.wikidata | Finite element method | eng |
dc.title | Diseño de las trabéculas de un scaffold para ingeniería de tejidos óseos considerando cargas mecánicas en dos dimensiones | spa |
dc.title.translated | Design of scaffold trabeculae for bone tissue engineering considering mechanical loads in two dimensions | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros |