Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo

dc.contributor.advisorPiamba Tulcán, Oscar Edwin
dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.authorPrieto Novoa, Gina Milena
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)spa
dc.date.accessioned2021-06-23T17:56:09Z
dc.date.available2021-06-23T17:56:09Z
dc.date.issued2021
dc.descriptionilustracionesspa
dc.description.abstractEn la presente investigación se estudiaron las propiedades eléctricas y ópticas de recubrimientos de TiAlCrN con diferentes concentraciones de Cr y espesores aproximados de 222±25 nm y 1040±40 nm. Los recubrimientos se depositaron sobre sustratos de vidrio mediante la técnica de “co-sputtering” reactivo empleando blancos de TiAl y Cr, variando la potencia aplicada al blanco de Cr entre 0-170W. La composición química elemental, microestructura, morfología superficial y rugosidad fueron evaluadas mediante espectrofotometría electrónica Auger (AES, por sus siglas en inglés), difracción de rayos X (XRD, por sus siglas en inglés), microscopía electrónica de barrido (SEM, por sus siglas en inglés) y perfilometría mecánica. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectrofotometría UV- Vis-NIR. De acuerdo con los resultados obtenidos, se observó que la concentración de Cr en el recubrimiento influye sobre la composición química, microestructura y morfología, incidiendo en las propiedades eléctricas y ópticas de los recubrimientos de TiAlCrN. Con una variación de Cr entre el 0 at% y 12 at% se presentó una transición de fases desde una estructura monofásica hexagonal tipo wurtzita hasta una estructura monofásica cúbica tipo NaCl, pasando por una estructura bifásica hexagonal/cúbica. Igualmente, la adición de Cr aumentó el tamaño de cristalito y con este la rugosidad de los recubrimientos. Los recubrimientos presentaron un comportamiento óhmico a temperatura ambiente y exhibieron resistividades eléctricas superficiales dentro del rango de los semiconductores. La adición de Cr permitió disminuir esta resistividad de 490,1±43,4 Ωcm a 1,5±0,1 Ωcm. Respecto a las propiedades ópticas, estos se caracterizaron por exhibir una baja reflectancia, la cual no superó el 1,5 % en todo el rango del espectro estudiado y una alta absorción en la región UV, la cual disminuye para longitudes de ondas mayores. El aumento de la concentración de cromo disminuyó la energía de la brecha prohibida óptica (Gap óptico) de 2,9 eV a 2,3 eV, disminuyó la transmitancia, aumentó la absorción y no afectó la reflectancia de los recubrimientos en el rango de longitudes de onda evaluado. Mediante el método de Bhattacharyya calculó el índice de refracción (n) y coeficiente extinción (k) a partir del espectro de transmitancia. (Texto tomado de la fuente)spa
dc.description.abstractThis research work develops a study of the electrical and optical properties of TiAlCrN coatings with different Cr concentrations and thicknesses of 222±25 nm and 1040±40 nm. The coatings were deposited on glass substrates by reactive co-sputtering technique using TiAl and Cr targets, varying the power applied to the Cr target between 0W to 170W. Elemental chemical composition, microstructure, surface morphology and roughness were evaluated by Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical profilometry, respectively. The electrical resistivity was measured by the four-prong method and their optical properties were characterized by UV-Vis-NIR spectrophotometry. According to the results obtained, it was observed that the Cr concentration in the coating influences the chemical composition, microstructure, and morphology, affecting the electrical and optical properties of the TiAlCrN coatings. With a Cr variation between 0 at% and 21 at%, a phase transition from a single-phase hexagonal wurtzite-type structure to a single-phase cubic NaCl-type structure, passing through a two-phase hexagonal/cubic structure was presented. Likewise, the addition of Cr increased the crystallite size and with it the roughness of the coatings, the crystallite size varied between 30nm-46nm and 27nm- 66nm for the thinner and thicker coatings, respectively. The coatings showed an ohmic behavior at room temperature and exhibited surface electrical resistivities within the semiconductor range. The addition of Cr allowed decreasing this resistivity from 490.1±43.4 Ωcm to 1.5±0.1 Ωcm. Regarding the optical properties, the coatings exhibited low reflectance, which did not exceed 1.5 % in the whole range of the spectrum studied, and showed a high absorption in the UV region, which decreases for longer wavelengths. The addition of chromium decreased the optical Gap from 2.9 eV to 2.3 eV, decreased the transmittance, increased the absorption, and did not affect the reflectance of the coatings in the wavelength range evaluated. The refractive index (n) and extinction coefficient (k) were calculated using the Bhattacharyya method from the transmittance spectrum. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMateriales nanoestructuradosspa
dc.description.researchareaIngeniería de Superficiesspa
dc.format.extent126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79689
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesH. A. Jehn, “Multicomponent and multiphase hard coatings for tribological applications,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 433–440, Sep. 2000.spa
dc.relation.referencesJ. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 322–330, Mar. 2000.spa
dc.relation.referencesS. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: A review,” Surf. Coatings Technol., vol. 167, no. 2–3, pp. 113–119, 2003.spa
dc.relation.referencesJ. Musil, “Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering,” in Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Dordrecht: Kluwer Academic Publishers, 2004, pp. 43–56.spa
dc.relation.referencesS. Hofmann, “Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and X-ray photoelectron spectroscopy,” Thin Solid Films, vol. 193–194, pp. 648–664, Dec. 1990.spa
dc.relation.referencesR. Hauert and J. Patscheider, “From Alloying to Nanocomposites— Improved Performance of Hard Coatings,” Adv. Eng. Mater., vol. 2, no. 5, pp. 247–259, 2000.spa
dc.relation.referencesG. S. Fox-Rabinovich et al., “Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials,” Surf. Coatings Technol., vol. 204, no. 4, pp. 489–496, 2009.spa
dc.relation.referencesK. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri, “Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode,” Surf. Coatings Technol., vol. 174–175, pp. 620– 626, 2003.spa
dc.relation.referencesJ. Zhang, H. Lv, G. Cui, Z. Jing, and C. Wang, “Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions,” Thin Solid Films, vol. 519, no. 15, pp. 4818–4823, 2011.spa
dc.relation.referencesG. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, and G. K. Dosbaeva, “Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions,” Surf. Coatings Technol., vol. 200, no. 5–6, pp. 1804–1813, 2005.spa
dc.relation.referencesY. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, 2017.spa
dc.relation.referencesP. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, 2008.spa
dc.relation.referencesF. Fernandes, M. Danek, T. Polcar, and A. Cavaleiro, “Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure,” Tribol. Int., vol. 119, no. November 2017, pp. 345–353, 2018.spa
dc.relation.referencesF. Huang, G. Wei, J. a Barnard, and M. L. Weaver, “Microstructure and stress development in magnetron sputtered TiAlCr ( N ) films,” Surf. Coatings Technol., vol. 147, pp. 391–397, 2001.spa
dc.relation.referencesC. Zou, J. Zhang, W. Xie, L. Shao, and D. J. Fu, “Characterization and mechanical properties of Ti-Al-Cr-N nanocomposite coatings deposited by closed field unbalanced middle frequency magnetron sputtering,” Jpn. J. Appl. Phys., vol. 50, no. 12, pp. 1–5, 2011.spa
dc.relation.referencesY. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, 2015.spa
dc.relation.referencesY. X. Xu et al., “Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating,” Surf. Coatings Technol., vol. 235, pp. 506–512, 2013.spa
dc.relation.referencesMusil J. ; Vlčekb J., “Magnetron sputtering of films with controlled texture and grain size,” Mater. Chem. Phys., vol. 54, no. 1–3, pp. 116–122, Jul. 1998.spa
dc.relation.referencesP. Sigmund, “Recollections of fifty years with sputtering,” Thin Solid Films, vol. 520, no. 19. Elsevier, pp. 6031–6049, 31-Jul-2012.spa
dc.relation.referencesC. W. Zou, J. Zhang, W. Xie, L. X. Shao, and D. J. Fu, “Structure and mechanical properties of Ti-Al-N coatings deposited by combined cathodic arc middle frequency magnetron sputtering,” J. Alloys Compd., vol. 509, no. 5, pp. 1989–1993, 2011.spa
dc.relation.referencesK. Valleti, D. Murali Krishna, and S. V. Joshi, “Functional multi-layer nitride coatings for high temperature solar selective applications,” Sol. Energy Mater. Sol. Cells, vol. 121, pp. 14–21, 2014.spa
dc.relation.referencesK. Valleti, D. M. Krishna, P. M. Reddy, and S. V Joshi, “Solar Energy Materials & Solar Cells High temperature stable solar selective coatings by cathodic arc PVD for heat collecting elements,” Sol. Energy Mater. Sol. Cells, vol. 145, pp. 447–453, 2016.spa
dc.relation.referencesN. Selvakumar and H. C. Barshilia, “Solar Energy Materials & Solar Cells Review of physical vapor deposited ( PVD ) spectrally selective coatings for mid- and high-temperature solar thermal applications,” vol. 98, pp. 1–23, 2012.spa
dc.relation.referencesU. Beck, G. Reiners, U. Kopacz, and H. A. Jehn, “Decorative hard coatings: interdependence of optical, stoichiometric and structural properties,” Surf. Coatings Technol., vol. 60, no. 1–3, pp. 389–395, 1993.spa
dc.relation.referencesK.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, and R. M’Saoubi, “Cutting with coated tools: Coating technologies, characterization methods and performance optimization,” CIRP Ann., vol. 61, no. 2, pp. 703–723, Jan. 2012.spa
dc.relation.referencesJ. P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, “A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools,” Surf. Coatings Technol., vol. 202, no.2, pp. 222–231, Nov. 2007.spa
dc.relation.referencesC. A. Dimitriadis et al., “Characteristics of TiNx/n-Si Schottky diodes deposited by reactive magnetron sputtering,” J. Appl. Phys., vol. 85, no. 8, pp. 4238–4242, Apr. 1999.spa
dc.relation.referencesV. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D. Appl. Phys., vol. 40, no. 20, pp. 6386–6434, Oct. 2007.spa
dc.relation.referencesG. M. Matenoglou, L. E. Koutsokeras, and P. Patsalas, “Plasma energy and work function of conducting transition metal nitrides for electronic applications,” Appl. Phys. Lett., vol. 94, no. 15, p. 152108, Apr. 2009. [30] L. Koutsokeras, “Growth, structure and electronic properties of ternary transition metal nitrides thin films,” 2010.spa
dc.relation.referencesP. Patsalas et al., “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. R Reports, vol. 123, pp. 1–55, 2018.spa
dc.relation.referencesR. Jalali, M. Parhizkar, H. Bidadi, and H. Naghshara, “The effect of Al content , substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” 2016.spa
dc.relation.referencesX. Feng, H. Zhou, Z. Wan, and K. Zhang, “Effect of Ti content on structure and mechanical properties of Cr–Ti–N films,” Surf. Eng., vol. 33, no. 8, pp. 619–625, Aug. 2017.spa
dc.relation.referencesJ. Xu, H. Umehara, and I. Kojima, “Effect of deposition parameters on composition, structures, density and topography of CrN films deposited by r.f. magnetron sputtering,” Appl. Surf. Sci., vol. 201, no. 1–4, pp. 208–218, Nov. 2002.spa
dc.relation.referencesC. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, and P. Termsuksawad, “Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN Film,” J. Met. Mater. Miner., vol. 21, no. 1, Jun. 2011.spa
dc.relation.referencesH. J. Goldschmidt, Interstitial Alloys. Elsevier Science, 2013.spa
dc.relation.referencesP. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel)., vol. 8, no. 6, pp. 3128–3154, May 2015.spa
dc.relation.referencesJ.-E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films, vol. 128, no. 1–2, pp. 21–44, Jun. 1985.spa
dc.relation.referencesS. Yu, Q. Zeng, A. R. Oganov, G. Frapper, and L. Zhang, “Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first- principles study,” Phys. Chem. Chem. Phys, vol. 17, p. 11763, 2015.spa
dc.relation.referencesV. Poulek, J. Musil, V. Valvoda, and R. Cerny, “Microhardness of Ti-N films containing the epsilon -Ti 2 N phase,” J. Phys. D. Appl. Phys., vol. 21, no. 11, pp. 1657–1658, Nov. 1988.spa
dc.relation.referencesM. Xu et al., “Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4,” Appl. Phys. Lett., vol. 89, no. 15, p. 151908, Oct. 2006.spa
dc.relation.referencesM. S. R. N. Kiran, M. G. Krishna, and K. A. Padmanabhan, “Growth, surface morphology, optical properties and electrical resistivity of ε-TiN x (0.4 < x ≤ 0.5) films,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 1934–1941, 2008.spa
dc.relation.referencesS. Yang, D. . Lewis, I. Wadsworth, J. Cawley, J. . Brooks, and W. . Münz, “Investigation of substoichiometric titanium nitride grown by unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 228– 233, Sep. 2000.spa
dc.relation.referencesE. Restrepo, P. J. Arango, and S. Casanova, “ALGUNOS CONCEPTOS SOBRE NITRURO DE TITANIO Y EL CARBURO DE TITANIO,” Año, vol. 76, pp. 213–224, 2008.spa
dc.relation.referencesP. J. Clarke, “Magnetron dc reactive sputtering of titanium nitride and indium–tin oxide,” J. Vac. Sci. Technol., vol. 14, no. 1, pp. 141–142, Jan. 1977.spa
dc.relation.referencesP. . Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films, vol. 415, no. 1–2, pp. 151–159, Aug. 2002.spa
dc.relation.referencesH. Yu, T. Tan, W. Wu, C. Tian, Y. An, and F. Sun, “Thermal stability of titanium nitride coatings prepared by the mixing technology with laser and plasma,” Curr. Appl. Phys., vol. 12, no. 1, pp. 152–154, Jan. 2012.spa
dc.relation.referencesC. Wei, J. F. Lin, T.-H. Jiang, and C.-F. Ai, “Tribological characteristics of titanium nitride and titanium carbonitride multilayer films: Part II. The effect of coating sequence on tribological properties,” Thin Solid Films, vol. 381, no. 1, pp. 104–118, Jan. 2001.spa
dc.relation.referencesH. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear- resistant applications: deposition processes, properties and performance,” Surf. Coatings Technol., vol. 63, no. 1–2, pp. 1–13, Jan. 1994.spa
dc.relation.referencesN. Heide and J. W. Schultze, “Corrosion stability of TiN prepared by ion implantation and PVD,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 80–81, pp. 467–471, Jun. 1993.spa
dc.relation.referencesS. Piscanec, “Bioactivity of TiN-coated titanium implants,” Acta Mater., vol. 52, no. 5, pp. 1237–1245, Mar. 2004.spa
dc.relation.referencesD. A. Glocker and S. V. Ranade, Medical coatings and deposition technologies. 2016.spa
dc.relation.referencesA. Mumtaz and W. H. Class, “Color of titanium nitride prepared by reactive dc magnetron sputtering,” J. Vac. Sci. Technol., vol. 20, no. 3, pp. 345–348, Mar. 1982.spa
dc.relation.referencesS. M. Borah, H. Bailung, and J. Chutia, Decorative titanium nitride colored coatings on bell-metal by reactive cylindrical magnetron sputtering, progress in color., vol. 3, no. 2. 三省堂, 2010.spa
dc.relation.referencesS. Kanamori, “Investigation of reactively sputtered TiN films for diffusion barriers,” Thin Solid Films, vol. 136, no. 2, pp. 195–214, Feb. 1986.spa
dc.relation.referencesP. Ruterana et al., “The Microstructure of Ti/Al and TiN Ohmic Contacts to Gallium Nitride,” Phys. status solidi, vol. 176, no. 1, pp. 767–771, Nov. 1999.spa
dc.relation.referencesM. Birkholz et al., “Ultrathin TiN Membranes as a Technology Platform for CMOS-Integrated MEMS and BioMEMS Devices,” Adv. Funct. Mater., vol. 21, no. 9, pp. 1652–1656, May 2011.spa
dc.relation.referencesN. Savvides and B. Window, “Electrical transport, optical properties, and structure of TiN films synthesized by low‐energy ion assisted deposition,” J. Appl. Phys., vol. 64, no. 1, pp. 225–234, Jul. 1988.spa
dc.relation.referencesJ. Martan and P. Beneš, “Thermal properties of cutting tool coatings at high temperatures,” Thermochim. Acta, vol. 539, pp. 51–55, Jul. 2012.spa
dc.relation.referencesJ. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett., vol. 108, no. 5, p. 51110, Feb. 2016.spa
dc.relation.referencesK. E. Andersson, M. K. Wahlström, and A. Roos, “High stability titanium nitride based solar control films,” Thin Solid Films, vol. 214, no. 2, pp. 213– 218, Jul. 1992.spa
dc.relation.referencesH. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of Substrate Temperature and Bias Voltage on the Optical Properties of Sputter Coated TiN Films,” Vacuum, vol. 70, pp. 1–4, 2002.spa
dc.relation.referencesLanzhou Inst Chemical Physics Cas, “Titanium-nitride-based solar selective absorbing coating and preparing method thereof,” CN 106091446 A, 15- Jun-2016.spa
dc.relation.referencesH. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride- based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photonics Res., vol. 3, no. 6, p. 329, Dec. 2015.spa
dc.relation.referencesL. Roux, J. Hanus, J. C. Francois, and M. Sigrist, “The optical properties of titanium nitrides and carbides: Spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater., vol. 7, no. 3, pp. 299–312, Dec. 1982.spa
dc.relation.referencesA. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure , optical and electrical properties of amorphous titanium nitride thin films,” pp. 93–100, 1997.spa
dc.relation.referencesH. Hamamura, H. Komiyama, and Y. Shimogaki, “TiN Films Prepared by Flow Modulation Chemical Vapor Deposition using TiCl 4 and NH 3,” Jpn. J. Appl. Phys., vol. 40, no. Part 1, No. 3A, pp. 1517–1521, Mar. 2001.spa
dc.relation.referencesG. Zhao, T. Zhang, T. Zhang, J. Wang, and G. Han, “Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition,” J. Non. Cryst. Solids, vol. 354, no. 12–13, pp. 1272–1275, 2008.spa
dc.relation.referencesB. . Tay, X. Shi, H. . Yang, H. . Tan, D. Chua, and S. . Teo, “The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique,” Surf. Coatings Technol., vol. 111, no. 2–3, pp. 229–233, Jan. 1999.spa
dc.relation.referencesL. E. Koutsokeras et al., “Electronic properties of binary and ternary, hard and refractory transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 12–13, pp. 2038–2041, 2010.spa
dc.relation.referencesP. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 335–340, Mar. 2000.spa
dc.relation.referencesS. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys., vol. 87, no. 3, pp. 1264– 1269, 2000.spa
dc.relation.referencesP. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys., vol. 90, no. 9, pp. 4725–4734, Nov. 2001.spa
dc.relation.referencesM. N. Solovan, V. V. Brus, E. V. Maistruk, and P. D. Maryanchuk, “Electrical and optical properties of TiN thin films,” Inorg. Mater., vol. 50, no. 1, pp. 40– 45, 2014.spa
dc.relation.referencesJ. Paulitsch, M. Schenkel, T. Zufraß, P. H. Mayrhofer, and W.-D. Münz, “Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit,” Thin Solid Films, vol. 518, no. 19, pp. 5558–5564, Jul. 2010.spa
dc.relation.referencesT. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, “Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 3, pp. 583–588, May 2002.spa
dc.relation.referencesY. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. A, vol. 445–446, pp. 223–236, Feb. 2007.spa
dc.relation.referencesN. K. Ponon et al., “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, vol. 578, pp. 31–37, Mar. 2015.spa
dc.relation.referencesT.-S. Yeh, J.-M. Wu, and L.-J. Hu, “The properties of TiN thin films deposited by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 516, no. 21, pp. 7294–7298, Sep. 2008.spa
dc.relation.referencesL. Cunha, M. Andritschky, L. Rebouta, and R. Silva, “Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering,” Thin Solid Films, vol. 317, no. 1–2, pp. 351–355, Apr. 1998.spa
dc.relation.referencesH. Liang, J. Xu, D. Zhou, X. Sun, S. Chu, and Y. Bai, “Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering,” Ceram. Int., vol. 42, no. 2, pp. 2642–2647, Feb. 2016.spa
dc.relation.referencesH. Era, Y. Ide, A. Nino, and K. Kishitake, “TEM study on chromium nitride coatings deposited by reactive sputter method,” Surf. Coatings Technol., vol. 194, no. 2–3, pp. 265–270, May 2005.spa
dc.relation.referencesI. Milošev, H.-H. Strehblow, and B. Navinšek, “XPS in the study of high- temperature oxidation of CrN and TiN hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 897–902, Oct. 1995.spa
dc.relation.referencesJ. A. Sue and T. P. Chang, “Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures,” Surf. Coatings Technol., vol. 76–77, pp. 61–69, Nov. 1995.spa
dc.relation.referencesE. Broszeit, C. Friedrich, and G. Berg, “Deposition, properties and applications of PVD CrxN coatings,” Surf. Coatings Technol., vol. 115, no. 1, pp. 9–16, Jun. 1999.spa
dc.relation.referencesM. A. Djouadi, C. Nouveau, P. Beer, and M. Lambertin, “CrxNy hard coatings deposited with PVD method on tools for wood machining,” Surf. Coatings Technol., vol. 133–134, pp. 478–483, Nov. 2000.spa
dc.relation.referencesS. K. Pradhan, C. Nouveau, A. Vasin, and M.-A. Djouadi, “Deposition of CrN coatings by PVD methods for mechanical application,” Surf. Coatings Technol., vol. 200, no. 1–4, pp. 141–145, Oct. 2005.spa
dc.relation.referencesB. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,” Surf. Coatings Technol., vol. 97, no. 1–3, pp. 182–191, Dec. 1997.spa
dc.relation.referencesM. G. Brik and C.-G. Ma, “First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb),” Comput. Mater. Sci., vol. 51, no. 1, pp. 380–388, Jan. 2012.spa
dc.relation.referencesD. Gall, C.-S. Shin, R. T. Haasch, I. Petrov, and J. E. Greene, “Band gap in epitaxial NaCl-structure CrN(001) layers,” J. Appl. Phys., vol. 91, no. 9, pp. 5882–5886, May 2002.spa
dc.relation.referencesA. Filippetti, W. E. Pickett, and B. M. Klein, “Competition between magnetic and structural transitions in CrN,” Phys. Rev. B, vol. 59, no. 10, pp. 7043– 7050, Mar. 1999.spa
dc.relation.referencesA. Filippetti and N. A. Hill, “Magnetic Stress as a Driving Force of Structural Distortions: The Case of CrN,” Phys. Rev. Lett., vol. 85, no. 24, pp. 5166– 5169, Dec. 2000.spa
dc.relation.referencesC. Constantin, M. B. Haider, D. Ingram, and A. R. Smith, “Metal/semiconductor phase transition in chromium nitride(001) grown by rf- plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 85, no. 26, pp. 6371–6373, Dec. 2004.spa
dc.relation.referencesK. Kashiwagi, K. Kobayashi, A. Masuyama, and Y. Murayama, “Chromium nitride films synthesized by radio‐frequency reactive ion plating,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 2, pp. 210–214, Mar. 1986.spa
dc.relation.referencesL. Shen, S. Xu, N. Sun, T. Cheng, and Q. Cui, “Synthesis of nanocrystalline CrN by arc discharge,” Mater. Lett., vol. 62, no. 10–11, pp. 1469–1471, Apr. 2008.spa
dc.relation.referencesJ. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coatings Technol., vol. 204, no. 14, pp. 2230–2239, Apr. 2010.spa
dc.relation.referencesM. Novakovi, M. Popovi, and N. Bibi, “Structural , optical and electrical properties of reactively sputtered CrxNy films : Nitrogen influence on the phase formation,” pp. 45–51, 2017.spa
dc.relation.referencesG. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films,” Mater. Sci. Eng. A, vol. 460–461, pp. 301–305, Jul. 2007.spa
dc.relation.referencesG. Wei, A. Rar, and J. . Barnard, “Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≤x≤1) thin films,” Thin Solid Films, vol. 398–399, pp. 460–464, Nov. 2001.spa
dc.relation.referencesA. Barata, L. Cunha, and C. Moura, “Characterisation of chromium nitride films produced by PVD techniques,” Thin Solid Films, vol. 398–399, pp. 501–506, Nov. 2001.spa
dc.relation.referencesE. Martinez, R. Sanjines, O. Banakh, and F. Levy, “Electrical, optical and mechanical properties of sputtered CrN and CrSiN thin films,” vol. 448, pp. 332–336, 2004.spa
dc.relation.referencesB. Subramanian, K. Prabakaran, and M. Jayachandran, “Influence of nitrogen flow rates on materials properties of CrNx films grown by reactive magnetron sputtering,” Bull. Mater. Sci., vol. 35, pp. 505–511, 2012.spa
dc.relation.referencesS. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, and C. Metaxa, “The effect of crystal structure and morphology on the optical properties of chromium nitride thin films,” Surf. Coatings Technol., vol. 180–181, pp. 637– 641, 2004.spa
dc.relation.referencesI. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III– V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, Jun. 2001.spa
dc.relation.referencesM. Ueno, A. Onodera, O. Shimomura, and K. Takemura, “X-ray observation of the structural phase transition of aluminum nitride under high pressure,” Phys. Rev. B, vol. 45, no. 17, pp. 10123–10126, May 1992.spa
dc.relation.referencesZ. Li et al., “Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN,” Mater. Res. Lett., vol. 5, no. 6, pp. 426– 432, Nov. 2017.spa
dc.relation.referencesA. Siegel, K. Parlinski, and U. D. Wdowik, “Ab initio calculation of structural phase transitions in AlN crystal,” Phys. Rev. B, vol. 74, no. 10, p. 104116, Sep. 2006.spa
dc.relation.referencesS. K. Yadav, J. Wang, and X.-Y. Liu, “First-principles modeling of zincblende AlN layer in Al-AlN-TiN multilayers,” Apr. 2016.spa
dc.relation.referencesA. Brudnik, A. Czapla, and E. Kusior, “AlN thin films prepared by optical emission spectroscopy-controlled reactive sputtering,” Thin Solid Films, vol. 478, no. 1–2, pp. 67–71, May 2005.spa
dc.relation.referencesY. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, no. 7091, pp. 325–328, May 2006.spa
dc.relation.referencesC. R. Miskys et al., “AlN/diamond heterojunction diodes,” Appl. Phys. Lett., vol. 82, no. 2, pp. 290–292, Jan. 2003.spa
dc.relation.referencesM.-A. Dubois and P. Muralt, “Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications,” Appl. Phys. Lett., vol. 74, no. 20, pp. 3032–3034, May 1999.spa
dc.relation.referencesF. Engelmark, G. F. Iriarte, I. V. Katardjiev, M. Ottosson, P. Muralt, and S. Berg, “Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 5, pp. 2664–2669, Sep. 2001.spa
dc.relation.referencesD. Liufu and K. C. Kao, “Piezoelectric, dielectric, and interfacial properties of aluminum nitride films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 16, no. 4, pp. 2360–2366, Jul. 1998.spa
dc.relation.referencesP. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, 2017, pp. 3–37.spa
dc.relation.referencesJ. P. Kar, G. Bose, and S. Tuli, “Influence of nitrogen concentration on grain growth, structural and electrical properties of sputtered aluminum nitride films,” Scr. Mater., vol. 54, no. 10, pp. 1755–1759, May 2006.spa
dc.relation.referencesM.-A. Dubois, P. Muralt, and V. Plessky, “BAW resonators based on aluminum nitride thin films,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), 1999, vol. 2, pp. 907–910.spa
dc.relation.referencesV. Yantchev and I. Katardjiev, “Thin film Lamb wave resonators in frequency control and sensing applications: a review,” J. Micromechanics Microengineering, vol. 23, no. 4, p. 43001, Apr. 2013.spa
dc.relation.referencesC. Duquenne, M.-P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, “Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering,” J. Phys. D. Appl. Phys., vol. 45, no. 1, p. 15301, Jan. 2012.spa
dc.relation.referencesT. Aubert, M. B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, “Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 2, p. 21010, Mar. 2011.spa
dc.relation.referencesL. La Spina, E. Iborra, H. Schellevis, M. Clement, J. Olivares, and L. K. Nanver, “Aluminum nitride for heatspreading in RF IC’s,” Solid. State. Electron., vol. 52, no. 9, pp. 1359–1363, Sep. 2008.spa
dc.relation.referencesM.-J. Lai, L.-B. Chang, T.-T. Yuan, and R.-M. Lin, “Improvement of crystal quality of AlN grown on sapphire substrate by MOCVD,” Cryst. Res. Technol., vol. 45, no. 7, pp. 703–706, May 2010.spa
dc.relation.referencesN. Azéma, J. Durand, R. Berjoan, C. Dupuy, J. L. Balladore, and L. Cot, “Plasma-enhanced chemical vapour deposition of A1N (1010) on Si (100): Microstructural study of the interlayers,” J. Cryst. Growth, vol. 129, no. 3–4, pp. 621–628, Apr. 1993.spa
dc.relation.referencesB. Liu, J. Gao, K. M. Wu, and C. Liu, “Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy,” Solid State Commun., vol. 149, no. 17–18, pp. 715–717, May 2009.spa
dc.relation.referencesC.-S. Oh and C.-S. Han, “A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3,” Korean J. Met. Mater., vol. 50, no. 1, pp. 78–85, Jan. 2012.spa
dc.relation.referencesR. D. Vispute, J. Narayan, and J. D. Budai, “High quality optoelectronic grade epitaxial AlN films on α-Al2O3, Si and 6H-SiC by pulsed laser deposition,” Thin Solid Films, vol. 299, no. 1–2, pp. 94–103, May 1997.spa
dc.relation.referencesJ. A. Perez Taborda, H. R. Landazuri, and L. P. V. Londono, “Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition,” IEEE Sens. J., vol. 16, no. 2, pp. 359–364, Jan. 2016.spa
dc.relation.referencesQ. X. Guo, M. Yoshitugu, T. Tanaka, M. Nishio, and H. Ogawa, “Microscopic investigations of aluminum nitride thin films grown by low-temperature reactive sputtering,” Thin Solid Films, vol. 483, no. 1–2, pp. 16–20, Jul. 2005.spa
dc.relation.referencesV. Dumitru, C. Morosanu, V. Sandu, and A. Stoica, “Optical and structural differences between RF and DC AlxNy magnetron sputtered films,” Thin Solid Films, vol. 359, no. 1, pp. 17–20, Jan. 2000.spa
dc.relation.referencesH. Cheng, Y. Sun, J. . Zhang, Y. . Zhang, S. Yuan, and P. Hing, “AlN films deposited under various nitrogen concentrations by RF reactive sputtering,” J. Cryst. Growth, vol. 254, no. 1–2, pp. 46–54, Jun. 2003.spa
dc.relation.referencesL. Vergara Herrero, “Películas delgadas de nitruro de aluminio depositadas por pulverización y su aplicación a dispositivos de ondas acústicas,” UNIVERSIDAD POLITÉCNICA DE MADRID E. T. S. I. DE TELECOMUNICACIÓN, 2005.spa
dc.relation.referencesC.-T. Chang, Y.-C. Yang, J.-W. Lee, and B.-S. Lou, “The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering,” Thin Solid Films, vol. 572, pp. 161–168, Dec. 2014.spa
dc.relation.referencesX.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, vol. 388, no. 1–2, pp. 62–67, Jun. 2001.spa
dc.relation.referencesP. Patsalas, G. Abadias, G. M. Matenoglou, L. E. Koutsokeras, and C. E. Lekka, “Electronic and crystal structure and bonding in Ti-based ternary solid solution nitrides and Ti–Cu–N nanocomposite films,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1324–1330, Nov. 2010.spa
dc.relation.referencesG. M. Matenoglou et al., “Structure, stability and bonding of ternary transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 6–7, pp. 911–914, Dec. 2009.spa
dc.relation.referencesJ. Y. Rauch, C. Rousselot, and N. Martin, “Structure and composition of TixAl1−xN thin films sputter deposited using a composite metallic target,” Surf. Coatings Technol., vol. 157, no. 2–3, pp. 138–143, Aug. 2002.spa
dc.relation.referencesA. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films,” Surf. Coatings Technol., vol. 120–121, pp. 438–441, Nov. 1999.spa
dc.relation.referencesK. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer, “Structure, mechanical and tribological properties of sputtered Ti1– xAlxN coatings with 0.5≤x≤0.75,” Surf. Coatings Technol., vol. 200, no. 7, pp. 2358–2365, Dec. 2005.spa
dc.relation.referencesP. H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, and J. M. Schneider, “Protective Transition Metal Nitride Coatings,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 355–388.spa
dc.relation.referencesS. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review,” Mater. Sci. Eng. A, vol. 342, no. 1–2, pp. 58– 79, 2003.spa
dc.relation.referencesR. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, pp. 339– 342, Dec. 1996.spa
dc.relation.referencesD. McIntyre, J. E. Greene, G. Håkansson, J. ‐E. Sundgren, and W. ‐D. Münz, “Oxidation of metastable single‐phase polycrystalline Ti 0.5 Al 0.5 N films: Kinetics and mechanisms,” J. Appl. Phys., vol. 67, no. 3, pp. 1542– 1553, Feb. 1990.spa
dc.relation.referencesA. S. Bhansali, R. Sinclair, and A. E. Morgan, “A thermodynamic approach for interpreting metallization layer stability and thin‐film reactions involving four elements: Application to integrated circuit contact metallurgy,” J. Appl. Phys., vol. 68, no. 3, pp. 1043–1049, Aug. 1990.spa
dc.relation.referencesS. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, 2015.spa
dc.relation.referencesS. Kassavetis, D. V. Bellas, G. Abadias, E. Lidorikis, and P. Patsalas, “Plasmonic spectral tunability of conductive ternary nitrides,” Appl. Phys. Lett., vol. 108, no. 26, p. 263110, Jun. 2016.spa
dc.relation.referencesL. Rebouta et al., “Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications,” Surf. Coatings Technol., vol. 211, pp. 41– 44, Oct. 2012.spa
dc.relation.referencesB. Subramanian, R. Ananthakumar, and M. Jayachandran, “Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium- aluminum-nitride films for bio-implants,” Vacuum, vol. 85, no. 5, pp. 601– 609, 2010.spa
dc.relation.referencesY. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, “Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc,” Thin Solid Films, vol. 517, no. 17, pp. 4845–4849, Jul. 2009.spa
dc.relation.referencesC. W. Kim and K. H. Kim, “Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al,” Thin Solid Films, vol. 307, no. 1–2, pp. 113–119, Oct. 1997.spa
dc.relation.referencesH. Ichimura and A. Kawana, “High-temperature oxidation of ion-plated TiN and TiAlN films,” J. Mater. Res., vol. 8, no. 5, pp. 1093–1100, May 1993.spa
dc.relation.referencesJ. M. Lackner, W. Waldhauser, R. Ebner, J. Keckés, and T. Schöberl, “Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications,” Surf. Coatings Technol., vol. 177–178, pp. 447–452, Jan. 2004.spa
dc.relation.referencesN. Pliatsikas, A. Siozios, S. Kassavetis, G. Vourlias, and P. Patsalas, “Optical properties of nanostructured Al-rich Al1 − xTixN films,” Surf. Coatings Technol., vol. 257, pp. 63–69, Oct. 2014.spa
dc.relation.referencesA. Schüler et al., “Structural and optical properties of titanium aluminum nitride films (Ti1−xAlxN),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 3, pp. 922–929, 2001.spa
dc.relation.referencesS. Chen, D. Luo, and G. Zhao, “Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition,” Phys. Procedia, vol. 50, pp. 163–168, 2013.spa
dc.relation.referencesN. Witit-Anun and A. Teekhaboot, “Effect of Ti Sputtering Current on Structure of TiCrN Thin Films Prepared by Reactive DC Magnetron Co- Sputtering,” Key Eng. Mater., vol. 675–676, pp. 181–184, Jan. 2016.spa
dc.relation.referencesJ. . Nainaparampil, J. . Zabinski, and A. Korenyi-Both, “Formation and characterization of multiphase film properties of (Ti–Cr)N formed by cathodic arc deposition,” Thin Solid Films, vol. 333, no. 1–2, pp. 88–94, Nov. 1998.spa
dc.relation.referencesB. Navinšek, P. Panjan, and A. Cvelbar, “Characterization of low temperature CrN and TiN (PVD) hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 155–161, Sep. 1995.spa
dc.relation.referencesY. Otani and S. Hofmann, “High temperature oxidation behaviour of (Ti1−xCrx)N coatings,” Thin Solid Films, vol. 287, no. 1–2, pp. 188–192, Oct. 1996.spa
dc.relation.referencesQ. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf. Coatings Technol., vol. 285, pp. 203–213, Jan. 2016.spa
dc.relation.referencesS. . Aouadi et al., “Characterization of titanium chromium nitride nanocomposite protective coatings,” Appl. Surf. Sci., vol. 229, no. 1–4, pp. 387–394, May 2004.spa
dc.relation.referencesC. H. Hsu, C. K. Lin, K. H. Huang, and K. L. Ou, “Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings,” Surf. Coatings Technol., vol. 231, pp. 380–384, Sep. 2013.spa
dc.relation.referencesV. V. A. Thampi, A. Bendavid, and B. Subramanian, “Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications,” Ceram. Int., vol. 42, no. 8, pp. 9940–9948, Jun. 2016.spa
dc.relation.referencesH. S. Choi, D. H. Han, W. H. Hong, and J. J. Lee, “(Titanium, chromium) nitride coatings for bipolar plate of polymer electrolyte membrane fuel cell,” J. Power Sources, vol. 189, no. 2, pp. 966–971, Apr. 2009.spa
dc.relation.referencesC. Paksunchai, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Growth and characterization of nanostructured TiCrN films prepared by DC magnetron cosputtering,” J. Nanomater., vol. 2014, 2014.spa
dc.relation.referencesC. Paksunchai, C. Chantharangsi, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Structure and morphology study of very thin TiCrN films deposited by unbalanced magnetron co-sputtering,” in Key Engineering Materials, 2019, vol. 798 KEM, pp. 152–157.spa
dc.relation.referencesN. Witit-anun, A. Buranawong, and S. Chaikhun, “Effect of nitrogen flow rate on structure of TiCrN thin films prepared from mosaic target by rective dc unbalanced magnetron sputtering,” Phranakhon Rajabhat Res. J. (Science Technol., vol. 13, pp. 38–49, 2018.spa
dc.relation.referencesL. Zhou, “Dissertation First-principles studies of CrN-based materials,” Technische Universität Wien, 2015.spa
dc.relation.referencesH. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf. Coatings Technol., vol. 201, no. 6, pp. 2193–2201, Dec. 2006.spa
dc.relation.referencesO. Banakh, P. E. Schmid, R. Sanjinés, and F. Lévy, “High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering,” Surf. Coatings Technol., vol. 163–164, pp. 57–61, Jan. 2003.spa
dc.relation.referencesW. Kalss, A. Reiter, V. Derflinger, C. Gey, and J. L. Endrino, “Modern coatings in high performance cutting applications,” Int. J. Refract. Met. Hard Mater., vol. 24, no. 5, pp. 399–404, Sep. 2006.spa
dc.relation.referencesM. Kawate, A. K. Hashimoto, and T. Suzuki, “Oxidation resistance of Cr1- xAlxN and Ti1-xAlxN films,” Surf. Coatings Technol., vol. 165, no. 2, pp. 163–167, Feb. 2003.spa
dc.relation.referencesJ. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surf. Coatings Technol., vol. 202, no. 14, pp. 3272–3283, Apr. 2008.spa
dc.relation.referencesL. Wang, G. Zhang, R. J. K. Wood, S. C. Wang, and Q. Xue, “Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application,” Surf. Coatings Technol., vol. 204, no. 21– 22, pp. 3517–3524, Aug. 2010.spa
dc.relation.referencesK. Bobzin, E. Lugscheider, M. Maes, P. W. Gold, J. Loos, and M. Kuhn, “High-performance chromium aluminium nitride PVD coatings on roller bearings,” Surf. Coatings Technol., vol. 188–189, no. 1–3 SPEC.ISS., pp. 649–654, Nov. 2004.spa
dc.relation.referencesE. Lugscheider, K. Bobzin, S. Bärwulf, and T. Hornig, “Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools,” Surf. Coatings Technol., vol. 133–134, pp. 540– 547, Nov. 2000.spa
dc.relation.referencesE. Lugscheider, K. Bobzin, T. Hornig, and M. Maes, “Investigation of the residual stresses and mechanical properties of (Cr,Al)N arc PVD coatings used for semi-solid metal (SSM) forming dies,” in Thin Solid Films, 2002, vol. 420–421, pp. 318–323.spa
dc.relation.referencesJ. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, “Microstructure, optical and electrical properties of CrAlN film as a novel material for high temperature solar selective absorber applications,” Mater. Lett., vol. 133, pp. 71–74, Oct. 2014.spa
dc.relation.referencesC. Zou, L. Huang, J. Wang, and S. Xue, “Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN- CrAlON based tandem absorber,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 243–252, Jun. 2015.spa
dc.relation.referencesK. Dejun, G. Haoyuan, W. Wenchang, F. Guizhong, Y. Cundong, and W. Jinchun, “A kind of apparatus and method preparing TiAlCrN multi-element coating,” CN103981496B, 2014.spa
dc.relation.referencesH. Zhou, J. Zheng, and Q. Wang, “A kind of AlTiCrN high-temperature wear resistant coating and preparation method thereof,” CN106086806B, 2016.spa
dc.relation.referencesW. Ruijun, X. Tianyang, W. Yiqi, L. Zhendong, Z. Hua, and M. Xiaobin, “A kind of titanium fire flame retardant coating and preparation method thereof,” CN109518139A, 2018.spa
dc.relation.referencesL. Min and L. Sheng, “A kind of composite Nano coating on saw blade surface,” CN107354438B, 2017.spa
dc.relation.referencesZ. Haibo, X. Guang, L. Hongzuo, L. Yating, D. Hao, and W. Hui, “AlTiCrN/MoN nano laminated coating being firmly combined with tool surfaces and preparation method thereof ,” CN103789726B, 2014.spa
dc.relation.referencesH. Hasegawa, T. Yamamoto, T. Suzuki, and K. Yamamoto, “The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2864–2869, 2006.spa
dc.relation.referencesH. Lind et al., “Improving thermal stability of hard coating films via a concept of multicomponent alloying,” Appl. Phys. Lett., vol. 99, no. 9, pp. 2011–2014, 2011.spa
dc.relation.referencesS. Yang and D. G. Teer, “Properties and Performance Crtialn of Multilayer Hard Coatings Deposited Using Magnetron Sputter Ion Plating,” Surf. Eng., vol. 18, no. 5, pp. 391–396, Oct. 2002.spa
dc.relation.referencesP. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Progress in Materials Science, vol. 51, no. 8. Pergamon, pp. 1032–1114, 01-Nov-2006.spa
dc.relation.referencesD. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Film Formation, Adhesion, Surface Preparation and Contamination Control. 1998.spa
dc.relation.referencesK. Seshan, Handbook of Thin Film Deposition Processes and Techniques Principles, Methods, Equipment and Applicatios, Segunda. 2001.spa
dc.relation.referencesD. Satas and A. A. Tracton, Coatings Technology Handbook. 2001.spa
dc.relation.referencesASM International, ASM Handbook Volume 5: Surface Engineering , vol. 5. .spa
dc.relation.referencesJ. M. Albella M., Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.spa
dc.relation.referencesE. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, “Wear resistance investigation of titanium nitride- based coatings,” Ceramics International, vol. 41, no. 9. Elsevier Ltd, pp. 10349–10379, Nov-2015.spa
dc.relation.referencesO. L. Depablos Rivera, “Propiedades ópticas y eléctricas de películas delgadas de óxidos ternarios de bismuto y niobio,” Universidad Nacional Autónoma de México, México, 2017.spa
dc.relation.referencesR. F. Bunshah, Handbook of Hard Coatings. Deposition Technologies, Properties and Applications, First. 2000.spa
dc.relation.referencesJ. Musil, “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness,” Surf. Coatings Technol., vol. 207, pp. 50–65, 2012.spa
dc.relation.referencesJ. D. La Fuente, J. Santiago, A. Román, C. Dumitrache, and D. Casasanto, Sculptured Thin Films: Nanoengineered Morphology and Optics, vol. 25, no. 9. 2014.spa
dc.relation.referencesJ. A. Thornton, “The microstructure of sputter‐deposited coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, pp. 3059–3065, 1986.spa
dc.relation.referencesC. G. Granqvist, “Preparation of thin films and nanostructured coatings for clean tech applications: A primer,” Solar Energy Materials and Solar Cells, vol. 99. North-Holland, pp. 166–172, 01-Apr-2012.spa
dc.relation.referencesBarna P. B. and Adamik M., “Growth mechanisms of polycrystalline thin films,” Sci. Technol. Thin Film., pp. 1–28, 1995.spa
dc.relation.referencesJ. Musil et al., “Morphology and microstructure of hard and superhard Zr-Cu- N nanocomposite coatings,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 41, no. 11, pp. 6529–6533, 2002.spa
dc.relation.referencesM. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, Oct. 1998.spa
dc.relation.referencesN. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt., vol. 41, no. 16, p. 3053, 2002.spa
dc.relation.referencesS. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, vol. 49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.spa
dc.relation.referencesJ. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Chichester, UK: John Wiley & Sons, Ltd, 2003.spa
dc.relation.referencesG. E. McGuire, Auger Electron Spectroscopy Reference Manual. Springer US, 1979.spa
dc.relation.referencesY. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography - Introduction, Examples and Solved Problems. Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesV. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact., vol. 58, no. 10, pp. 883–891, Oct. 2007.spa
dc.relation.referencesI. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems,” Journal of Physics Condensed Matter, vol. 27, no. 22. Institute of Physics Publishing, p. 223201, 10-Jun-2015.spa
dc.relation.referencesE. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente,” Quim. Nova, vol. 25, no. 4, pp. 639–647, 2002.spa
dc.relation.referencesM. Fox, Optical Properties of Solids. WORLD SCIENTIFIC, 2002.spa
dc.relation.referencesE. Hasani and D. Raoufi, “Influence of temperature and pressure on CdTe:Ag thin film,” Surf. Eng., vol. 34, no. 12, pp. 915–925, Dec. 2018.spa
dc.relation.referencesD. Raoufi and A. Taherniya, “The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films,” EPJ Appl. Phys., vol. 70, no. 3, Jun. 2015.spa
dc.relation.referencesJ. Tauc, R. Grigorovici, A. Vancu, J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” PSSBR, vol. 15, no. 2, pp. 627–637, 1966.spa
dc.relation.referencesS. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009.spa
dc.relation.referencesS. W. Xue, X. T. Zu, W. G. Zheng, H. X. Deng, and X. Xiang, “Effects of Al doping concentration on optical parameters of ZnO:Al thin films by sol-gel technique,” Phys. B Condens. Matter, vol. 381, no. 1–2, pp. 209–213, 2006.spa
dc.relation.referencesE. A. Brandes and G. B. Brook, Smithells Metals Reference Book: Seventh Edition. Elsevier Inc., 2013.spa
dc.relation.referencesM. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, “Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films,” Surf. Coatings Technol., vol. 313, pp. 158–167, Mar. 2017.spa
dc.relation.referencesW. Eckstein, “Sputtering Yields,” in Sputtering by Particle Bombardment, Springer Berlin Heidelberg, 2007, pp. 33–187.spa
dc.relation.referencesR. Forsén, M. Johansson, M. Odén, and N. Ghafoor, “Decomposition and phase transformation in TiCrAlN thin coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 6, p. 61506, 2012.spa
dc.relation.referencesS. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, Jun. 2016.spa
dc.relation.referencesY. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, Sep. 2017.spa
dc.relation.referencesT. Li, J. Xiong, Z. Guo, T. Yang, M. Yang, and H. Du, “Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents,” Int. J. Refract. Met. Hard Mater., vol. 69, pp. 247– 253, Dec. 2017.spa
dc.relation.referencesK. Thomas, A. A. Taylor, R. Raghavan, V. Chawla, R. Spolenak, and J. Michler, “Microstructure and mechanical properties of metastable solid solution copper’tungsten films,” Thin Solid Films, 2017.spa
dc.relation.referencesP. Panjan, M. Čekada, M. Panjan, and D. Kek-Merl, “Growth defects in PVD hard coatings,” Vacuum, vol. 84, no. 1, pp. 209–214, 2009.spa
dc.relation.referencesY. Wang et al., “Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films,” Appl. Surf. Sci., vol. 335, pp. 85–91, Apr. 2015.spa
dc.relation.referencesJ. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” J. Alloys Compd., vol. 472, no. 1–2, pp. 91–96, Mar. 2009.spa
dc.relation.referencesZ. F. Zhou, P. L. Tam, P. W. Shum, and K. Y. Li, “High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering,” Thin Solid Films, vol. 517, no. 17, pp. 5243–5247, Jul. 2009.spa
dc.relation.referencesY. Shi, S. Long, S. Yang, and F. Pan, “Deposition of nano-scaled CrTiAlN multilayer coatings with different negative bias voltage on Mg alloy by unbalanced magnetron sputtering,” Vacuum, vol. 84, no. 7, pp. 962–968, Mar. 2010.spa
dc.relation.referencesL. Lu et al., “Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 6, pp. 1800–1806, Jun. 2014.spa
dc.relation.referencesH. Zhou, J. Zheng, B. Gui, D. Geng, and Q. Wang, “AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering,” Vacuum, vol. 136, pp. 129–136, Feb. 2017.spa
dc.relation.referencesB. Schumacher, H.-G. Bach, P. Spitzer, and J. Obrzut, “Electrical Properties,” in Springer Handbook of Materials Measurement Methods, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 431–484.spa
dc.relation.referencesV. Chawla, R. Chandra, and R. Jayaganthan, “Effect of phase transformation on structural, electrical and hydrophobic properties of nanocomposite Ti1-xAlxN films,” Journal of Alloys and Compounds, vol. 507, no. 2. Elsevier Ltd, pp. L47–L53, 08-Oct-2010.spa
dc.relation.referencesM. Zhou, Y. Makino, M. Nose, and K. Nogi, “Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering,” Thin Solid Films, vol. 339, no. 1–2, pp. 203–208, Feb. 1999.spa
dc.relation.referencesH. Marom, M. Ritterband, and M. Eizenberg, “The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films,” Thin Solid Films, vol. 510, no. 1–2, pp. 62–67, 2006.spa
dc.relation.referencesG. M. Prieto-Novoa, E. N. Borja-Goyeneche, and J. J. Olaya-Florez, “Efecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputtering,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 43, no. 168, pp. 366–374, Sep. 2019.spa
dc.relation.referencesH. Luo et al., “A chemical solution approach to epitaxial metal nitride thin films,” Adv. Mater., vol. 21, no. 2, pp. 193–197, Jan. 2009.spa
dc.relation.referencesR. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S. R. Hosseini, and M. Jafari, “The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 11, p. 978, Nov. 2016.spa
dc.relation.referencesR. Apetz and M. P. B. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc., vol. 86, no. 3, pp. 480–486, Mar. 2003.spa
dc.relation.referencesN. M. S, S. S, and M. D, “Structural and Optical Properties of Chromium Doped Aluminum Nitride Thin Films Prepared by Stacking of Cr Layer on AlN Thin Film,” Int. J. Eng. Trends Technol., vol. 9, no. 13, pp. 667–670, Mar. 2014.spa
dc.relation.referencesM. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 470–475, Jul. 2018.spa
dc.relation.referencesG. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, IntechOpen, 2020.spa
dc.relation.referencesH. C. Barshilia, N. Selvakumar, K. S. Rajam, and A. Biswas, “Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1425–1433, 2008.spa
dc.rightsDerechos Reservados al Autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.otherPropiedades ópticas
dc.subject.otherOptical properties
dc.subject.proposalTiAlCrNspa
dc.subject.proposalResistividad eléctricaspa
dc.subject.proposalPropiedades ópticasspa
dc.subject.proposalElectrical resistivityeng
dc.subject.proposalOptical propertieseng
dc.subject.proposalTiAlCrNeng
dc.subject.proposal"Co-sputtering"spa
dc.subject.proposal"Co-sputtering"eng
dc.subject.unescoPropiedad eléctrica
dc.subject.unescoElectrical properties
dc.titleEstudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivospa
dc.title.translatedStudy of the optical and electrical properties of TiAlCrN thin films deposited by reactive “co-sputtering”.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020756588-2021.pdf
Tamaño:
2.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: