Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)

dc.contributor.advisorOcampo, Jhon Albeiro
dc.contributor.advisorÁlvarez Álvarez, Daniel
dc.contributor.authorJaramillo Valencia, Angélica María
dc.date.accessioned2021-07-28T15:19:47Z
dc.date.available2021-07-28T15:19:47Z
dc.date.issued2021
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEl desarrollo de nuevos cultivares de yuca con alto contenido de carotenoides hace parte de una estrategia para combatir la deficiencia de vitamina A gracias a su amplio consumo a nivel mundial. Orange (OR) y fitoeno sintasa (PSY) son proteínas reguladoras en la producción de carotenoides, pero la función de OR, así como su relación con PSY, no ha sido estudiada en yuca. El objetivo de este trabajo fue estudiar la función de la proteína OR en la producción de β-caroteno en raíces de yuca y su relación con PSY. Para esto se realizó un análisis bioinformático para identificar genes codificantes de OR en yuca, y posteriormente se llevó a cabo un estudio de expresión de los genes detectados en raíces de un genotipo de yuca blanca (60444) y dos genotipos de yuca amarilla (GM5309-57 y GM3736-37). Los datos se analizaron mediante un análisis univariado de varianza y se utilizó una prueba de comparación de medias Dunnett (p˂0.05) con el programa SAS (v9.3). Los resultados mostraron la presencia de cuatro genes hipotéticos OR con porcentajes de identidad con Arabidopsis thaliana entre 65,8 y 76,3%. El nivel de transcritos de los genes OR permanecieron constantes, mientras que se encontró una mayor acumulación de proteína OR en los genotipos amarillos. Asimismo, se observó una sobreexpresión de 3,7 veces del gen PSY1 y una disminución de 4,7 y 1,6 veces para NCED y BCH, respectivamente, lo cual podría relacionarse con un posible mecanismo de atenuación del catabolismo del β-caroteno promovido por OR. Mientras que se encontraron diferencias significativas (p˂0.05) en los genotipos amarillos en comparación con el blanco para el contenido de carotenos, proteína OR y expresión génica de PSY1 y NCED, el gen BCH presentó diferencias significativas solo en uno de los genotipos amarillos. Los resultados obtenidos invitan a futuras investigaciones enfocadas al mejoramiento del contenido de carotenoides en la yuca.spa
dc.description.abstractThe development of new cassava cultivars with high concentration of carotenoids is part of a strategy to combat vitamin A deficiency due to its wide consumption worldwide. Orange (OR) and phytoene synthase (PSY) are regulatory proteins in the production of carotenoids, but OR function, as well as its relationship with PSY, has not yet been studied in cassava. The aim of this work has been the study if the OR protein function upon the production of β-carotene in cassava roots, as well as its relationship with PSY protein. A bioinformatic analysis was carried out to identify cassava OR genes, and a subsequent expression study of the detected genes in roots of one white (60444) and two yellow (GM5309-57 and GM3736-37) cassava genotypes was conducted. Data was analyzed with a univariate analysis of variance and a Dunnett mean comparison test (p˂ 0.05) with the SAS program (v9.3). Results showed the presence of four hypothetical OR genes with identity percentages with Arabidopsis thaliana between 65.8 and 76.3%. The transcripts levels of the OR genes remained constant, while a higher accumulation of OR protein was found in the yellow genotypes. Likewise, a 3.7-fold overexpression of PSY1 and a 4.7- and 1.6-fold decrease for NCED and BCH were observed, respectively, which could be related to a possible mechanism of attenuation of the catabolism of β-carotene promoted by OR. Whereas significant differences (p˂ 0.05) were found in yellow genotypes compared to white for carotene content, protein OR and gene expression of PSY1 and NCED. the BCH gene presented only significant differences in one of the yellow genotypes. These results encourage further research aiming to carotenoids enhancement in cassava.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsLa secuencia de la región de codificación (CDS) del gen OR de Arabidopsis thaliana (AtOR) (AY117226.1) se utilizó como referencia para la búsqueda de los genes hipotéticos de OR en el genoma de la yuca en Phytozome. Se seleccionaron tres genotipos de yuca provenientes del programa de mejoramiento de yuca del CIAT (3° 30’N, 76° 21’O; 965 msnm, Palmira, Colombia). El material seleccionado correspondió a un genotipo con raíz de color blanco (60444) y dos genotipos con pulpa amarilla (GM 5309-57 y GM3736-37).spa
dc.format.extent87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79860
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira Valle del Caucaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAhrazem, O., López, A. J., Argandoña, J., Castillo, R., Rubio-Moraga, Á., & Gómez-Gómez, L. (2020). Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57480-2spa
dc.relation.referencesÁlvarez, D., Voß, B., Maass, D., Wüst, F., Schaub, P., Beyer, P., & Welsch, R. (2016). Carotenogenesis Is Regulated by 5′UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiology, 172(4), 2314–2326. https://doi.org/10.1104/pp.16.01262spa
dc.relation.referencesArango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251–1262. https://doi.org/10.1007/s00425-010-1250-6spa
dc.relation.referencesAwoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica, 76(3), 195–202. https://doi.org/10.1007/BF00022164spa
dc.relation.referencesBehnam, B., Bohorquez-Chaux, A., Fernando Castaneda-Mendez, O., Tsuji, H., Ishitani, M., & Becerra Lopez-Lavalle, L. A. (2019). An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio, 9, 814–825. https://doi.org/10.1002/2211-5463.12561spa
dc.relation.referencesBeyene, G., Solomon, F. R., Chauhan, R. D., Gaitán-Solis, E., Narayanan, N., Gehan, J., … Cahoon, E. B. (2017). Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1–15. https://doi.org/10.1111/pbi.12862spa
dc.relation.referencesBlack, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-Xspa
dc.relation.referencesBouis, H., Birol, E., Boy, E., Gannon, B., Hass, J., Mehta, S., … Welch, R. (2020). Food Biofortification—Reaping the Benefits of Science to Overcome Hidden Hunger. Council for Agricultural Science and Technology Issue Paper, (69). Retrieved from https://www.cast-science.org/publication/food-biofortification-reaping-the-benefits-of-science-to-overcome-hidden-hunger/spa
dc.relation.referencesBouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1), S31–S40. https://doi.org/10.1177/15648265110321S105spa
dc.relation.referencesCampos, K. M., Royo, C., Schulthess, A., Villegas, D., Matus, I., Ammar, K., & Schwember, A. R. (2016). Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 207(1), 109–117. https://doi.org/10.1007/s10681-015-1541-xspa
dc.relation.referencesCanene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability. In Carotenoids (pp. 115–148). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7501-0_7spa
dc.relation.referencesCarvalho, L.J.C.B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 120(1), 133–142. https://doi.org/https://doi.org/10.1023/A:1017548930235spa
dc.relation.referencesCarvalho, Luiz J.C.B., Agustini, M. A. V., Anderson, J. V., Vieira, E. A., de Souza, C. R. B., Chen, S., … Silva, J. P. (2016). Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. BMC Plant Biology, 16(1), 1–23. https://doi.org/10.1186/s12870-016-0826-0spa
dc.relation.referencesCarvalho, Luiz Joaquim Castelo Branco, Lippolis, J., Chen, S., de Souza, C. R. B., Vieira, E. A., & Anderson, J. V. (2012). Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot Esculenta Crantz) storage root. The Open Biochemistry Journal, 6, 116–130. https://doi.org/1874-091X/12spa
dc.relation.referencesCeballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., & Andersson, M. S. (2017). Carotenoids in Cassava Roots. In Carotenoids. InTech. https://doi.org/10.5772/intechopen.68279spa
dc.relation.referencesCeballos, H., & De la Cruz, G. A. (2002). Taxonomía y Morfología de la Yuca. In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 16–32). Centro Internacional de Agricultura Tropical (CIAT).spa
dc.relation.referencesCeballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics, 128(9), 1647–1667. https://doi.org/10.1007/s00122-015-2555-4spa
dc.relation.referencesCeballos, H., Morante, N., Sánchez, T., Ortiz, D., Aragón, I., Chávez, A. L., … Dufour, D. (2013). Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Science, 53(6), 2342–2351. https://doi.org/10.2135/cropsci2013.02.0123spa
dc.relation.referencesChavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava : a review. In Vitro Cellular & Developmental Biology - Plant, 52, 461–478. https://doi.org/10.1007/s11627-016-9776-3spa
dc.relation.referencesChavarriaga-Aguirre, P., Prías, M., López, D., Ortiz, D., Toro-Perea, N., & Tohme, J. (2017). Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Research, 26(5), 639–651. https://doi.org/10.1007/s11248-017-0037-yspa
dc.relation.referencesChayut, N., Yuan, H., Ohali, S., Meir, A., Sa’ar, U., Tzuri, G., … Tadmor, Y. (2017). Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173(1), 376–389. https://doi.org/10.1104/pp.16.01256spa
dc.relation.referencesChayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology. https://doi.org/10.1186/s12870-015-0661-8spa
dc.relation.referencesColombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers. Genetics and Molecular Biology, 23(2), 417–423. https://doi.org/10.1590/S1415-47572000000200030spa
dc.relation.referencesCrisp, P., Walkey, D. G. A., Bellman, E., & Roberts, E. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica, 24(1), 173–176. https://doi.org/10.1007/BF00147182spa
dc.relation.referencesDing, Z., Zhang, Y., Xiao, Y., Liu, F., Wang, M., Zhu, X., … Li, P. (2016). Transcriptome response of cassava leaves under natural shade. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep31673spa
dc.relation.referencesDiretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350. https://doi.org/10.1371/journal.pone.0000350spa
dc.relation.referencesDuputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043. https://doi.org/10.1111/j.1365-2699.2011.02474.xspa
dc.relation.referencesEllison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., … Dawson, J. C. (2018). Carotenoid presence is associated with the or gene in domesticated carrot. Genetics. https://doi.org/10.1534/genetics.118.301299spa
dc.relation.referencesEllison, S., Senalik, D., Bostan, H., Iorizzo, M., & Simon, P. (2017). Fine Mapping, Transcriptome Analysis, and Marker Development for Y 2 , the Gene That Conditions b-Carotene Accumulation in Carrot (Daucus carota L.). https://doi.org/10.1534/g3.117.043067spa
dc.relation.referencesEsuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., … Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110. https://doi.org/10.1007/s10681-016-1772-5spa
dc.relation.referencesFailla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., & Sayre, R. T. (2012). Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry, 60(15), 3861–3866. https://doi.org/10.1021/jf204958wspa
dc.relation.referencesFAO. (2013). Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesFAO, & IFAD. (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana,the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy, 2. Retrieved from http://www.fao.org/docrep/009/a0154e/A0154E00.HTM#TOCspa
dc.relation.referencesFAOSTAT. (2020). Food and Agriculture Organization of the United Nations. Retrieved November 3, 2020, from http://www.fao.org/faostat/es/#data/QCspa
dc.relation.referencesFinkelstein, J. L., Mehta, S., Udipi, S. A., Ghugre, P. S., Luna, S. V., Wenger, M. J., … Haas, J. D. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. Journal of Nutrition, 145(7), 1576–1581. https://doi.org/10.3945/jn.114.208009spa
dc.relation.referencesFraser, P., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265. https://doi.org/10.1016/j.plipres.2003.10.002spa
dc.relation.referencesFregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., … Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics, 89(6), 719–727. https://doi.org/10.1007/BF00223711spa
dc.relation.referencesFregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580spa
dc.relation.referencesGiuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180. https://doi.org/10.1016/j.copbio.2017.02.001spa
dc.relation.referencesHaas, J. D., Luna, S. V, Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., Beebe, S., … Egli, I. M. (2016). Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. The Journal of Nutrition, 146(8), 1586–1592. https://doi.org/10.3945/jn.115.224741spa
dc.relation.referencesHillocks, R. J., Thresh, J. M., & Bellotti, A. (2002). Cassava : biology, production and utilization. CABI Pub.spa
dc.relation.referencesHoweler, R. (2012). Recent trends in production and utilization of cassava in Asia. In R. Howeler (Ed.), The cassava handbook: A reference manual based on the asian regional cassava training course, held in Thailand (pp. 1–22). Bangkok: Centro Internacional de Agricultura Tropical (CIAT).spa
dc.relation.referencesHu, M., Hu, W., Xia, Z., Zhou, X., & Wang, W. (2016). Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Frontiers in Plant Science, 7(680), 1–12. https://doi.org/10.3389/fpls.2016.00680spa
dc.relation.referencesJaramillo, A., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLOS ONE, 13(12), e0209702. https://doi.org/10.1371/journal.pone.0209702spa
dc.relation.referencesJeong, H. B., Kang, M. Y., Jung, A., Han, K., Lee, J. H., Jo, J., … Kang, B. C. (2019). Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17(6), 1081–1093. https://doi.org/10.1111/pbi.13039spa
dc.relation.referencesKäll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432. https://doi.org/10.1093/nar/gkm256spa
dc.relation.referencesKim, H. S., Ji, C. Y., Lee, C., Kim, S., Park, S.-C., & Kwak, S. (2018). Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. Journal of Experimental Botany, 69(14), 3393–3400. https://doi.org/10.1093/jxb/ery023spa
dc.relation.referencesKim, S. E., Kim, H. S., Wang, Z., Ke, Q., Lee, C. J., Park, S. U., … Kwak, S. S. (2019). A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Reports, 38(11), 1393–1402. https://doi.org/10.1007/s00299-019-02448-4spa
dc.relation.referencesKim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S., & Kwak, S.-S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69–78. https://doi.org/10.1016/j.phytochem.2011.11.003spa
dc.relation.referencesLaemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0spa
dc.relation.referencesLatham, M. C. (2002). Nutricion Humana en el Mundo en Desarrollo. Colección FAO: Alimentación y nutrición N° 29. Ithaca: FAO. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesLi, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., & Garvin, D. F. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal, 26(1), 59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.xspa
dc.relation.referencesLi, S., Yu, X., Cheng, Z., Zeng, C., Li, W., Zhang, L., & Peng, M. (2020). Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany, 71(1), 422–434. https://doi.org/10.1093/jxb/erz444spa
dc.relation.referencesLindgren, L. O., Stålberg, K. G., & Höglund, A. S. (2003). Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779–785. https://doi.org/10.1104/pp.102.017053spa
dc.relation.referencesLivak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262spa
dc.relation.referencesLopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213–223. https://doi.org/10.1093/jxb/erm299spa
dc.relation.referencesLu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates highlevels of β-carotene accumulation. The Plant Cell Online, 18(12), 3594–3605. https://doi.org/10.1105/tpc.106.046417spa
dc.relation.referencesLuo, X., Tomlins, K. I., Carvalho, L. J. C. B., Li, K., & Chen, S. (2018). The analysis of candidate genes and loci involved with carotenoid metabolism in cassava (Manihot esculenta Crantz) using SLAF-seq. Acta Physiologiae Plantarum, 40(4), 1–11. https://doi.org/10.1007/s11738-018-2634-7spa
dc.relation.referencesMalik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Sholihin, Srean, P., … Ishitani, M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 70(2), 145–166. https://doi.org/10.1270/jsbbs.18180 Minagricultura. (2018). Agronet. Retrieved November 3, 2020, from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesNimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative Splicing and DNA Damage Response in Plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00091spa
dc.relation.referencesNweke, F. (2004). New challenges in the cassava transformation in Nigeria and Ghana. Intl Food Policy Res Inst., 118. Retrieved from http://ageconsearch.umn.edu/bitstream/16113/1/ep040118.pdfspa
dc.relation.referencesOkogbenin, E., Marin, J., & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica, 147(3), 433–440. https://doi.org/10.1007/s10681-005-9042-yspa
dc.relation.referencesOlsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88(1), 131–142. https://doi.org/10.2307/2657133spa
dc.relation.referencesPalmer, A. C., Healy, K., Barffour, M. A., Siamusantu, W., Chileshe, J., Schulze, K. J., … Labrique, A. B. (2016). Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. The Journal of Nutrition, 146(12), 2551–2558. https://doi.org/10.3945/jn.116.239202spa
dc.relation.referencesPark, S., Kim, H. S., Jung, Y. J., Kim, S. H., Ji, C. Y., Wang, Z., … Kwak, S. (2016). Orange protein has a role in phytoene synthase stabilization in sweetpotato. Nature Publishing Group, 1–12. https://doi.org/10.1038/srep33563spa
dc.relation.referencesProchnik, S., Reddy Marri, P., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., … Danforth, D. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biol, 5, 88–94. https://doi.org/10.1007/s12042-011-9088-zspa
dc.relation.referencesPulido, P., & Leister, D. (2017). Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827spa
dc.relation.referencesRabbi, I. Y., Hamblin, M. T., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/J.VIRUSRES.2013.12.028spa
dc.relation.referencesRabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., … Kulakow, P. (2017). Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(0), 0. https://doi.org/10.3835/plantgenome2016.09.0094spa
dc.relation.referencesRaila, J., Enjalbert, F., Mothes, R., Hurtienne, A., & Schweigert, F. J. (2012). Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma. Veterinary Clinical Pathology, 41(1), 119–122. https://doi.org/10.1111/j.1939-165X.2012.00400.xspa
dc.relation.referencesRoa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., & Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87(11), 1647–1655. https://doi.org/10.2307/2656741spa
dc.relation.referencesRoa, A. C., Maya, M. M., Duque, M. C., Tohme, J., Allem, A. C., & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics, 95(5–6), 741–750. https://doi.org/10.1007/s001220050620spa
dc.relation.referencesRuiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book, 10, e0158. https://doi.org/10.1199/tab.0158spa
dc.relation.referencesSalcedo, A., Zambrana, C., & Siritunga, D. (2014). Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biology, 7(2), 53–64. https://doi.org/10.1007/s12042-014-9137-5spa
dc.relation.referencesSaltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/10.1016/j.gfs.2012.12.003spa
dc.relation.referencesSánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F., … Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chemistry, 151, 444–451. https://doi.org/10.1016/j.foodchem.2013.11.081spa
dc.relation.referencesSennepin, A. D., Charpentier, S., Normand, T., Sarré, C., Legrand, A., & Mollet, L. M. (2009). Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Analytical Biochemistry, 393, 129–131. https://doi.org/10.1016/j.ab.2009.06.004spa
dc.relation.referencesShewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412. https://doi.org/10.1046/j.1365-313x.1999.00611.xspa
dc.relation.referencesSoto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., … López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4spa
dc.relation.referencesTalsma, E. F., Brouwer, I. D., Verhoef, H., Mbera, G. N., Mwangi, A. M., Demir, A. Y., … Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 103(1), 258–267. https://doi.org/10.3945/ajcn.114.100164spa
dc.relation.referencesTrösch, R., Mühlhaus, T., Schroda, M., & Willmund, F. (2015). ATP-dependent molecular chaperones in plastids - More complex than expected. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 872–888. https://doi.org/10.1016/j.bbabio.2015.01.002spa
dc.relation.referencesTzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., … Tadmor, Y. (2015). A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814spa
dc.relation.referencesUdoh, L. I., Gedil, M., Parkes, E. Y., Kulakow, P., Adesoye, A., Nwuba, C., & Rabbi, I. Y. (2017). Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 37(10). https://doi.org/10.1007/s11032-017-0718-5spa
dc.relation.referencesvon Lintig, J. (2012). Metabolism of carotenoids and retinoids related to vision. The Journal of Biological Chemistry, 287(3), 1627–1634. https://doi.org/10.1074/jbc.R111.303990spa
dc.relation.referencesWahyuni, Y., Anika, M., Putri, D. H., Hartati, N. S., Harmoko, R., & Sudarmonowati, E. (2020). Variation in transcriptional profiles of carotenoid biosynthetic genes in Indonesian yellow- and white-fleshed tuberous root cassava (Manihot esculenta Crantz) accessions. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012016spa
dc.relation.referencesWelsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., … Beyer, P. (2010). Provitamin A Accumulation in Cassava ( Manihot esculenta ) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22(10), 3348–3356. https://doi.org/10.1105/tpc.110.077560spa
dc.relation.referencesWelsch, R., Zhou, X., Koschmieder, J., Schlossarek, T., Yuan, H., Sun, T., & Li, L. (2020). Characterization of Cauliflower OR Mutant Variants. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01716spa
dc.relation.referencesWHO. (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficienc. WHO. Geneva: World Health Organization. Retrieved from http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/spa
dc.relation.referencesWu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., … Fei, Z. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-06983-8spa
dc.relation.referencesYe, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/SCIENCE.287.5451.303spa
dc.relation.referencesZhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., … Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences, 112(11). https://doi.org/10.1073/pnas.1420831112spa
dc.relation.referencesZhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18232–18237. https://doi.org/10.1073/pnas.0809737105spa
dc.rightsDerechos reservados - Universidad Nacional de Colombia, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCarotenoides
dc.subject.agrovocMandioca
dc.subject.agrovoccassava
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalBiofortificaciónspa
dc.subject.proposalManihot esculentaother
dc.subject.proposalregulación postranscripcionalspa
dc.subject.proposalPCR tiempo real cuantitativospa
dc.subject.proposalBiofortificationeng
dc.subject.proposalposttranscriptional regulationeng
dc.subject.proposalquantitative real time PCReng
dc.titleFunción de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)spa
dc.title.translatedOrange (OR) protein role in the production and accumulation of β-carotene in cassava roots (Manihot esculenta Crantz)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1130612219.2021.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en ciencias biológicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: