Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas

dc.contributor.advisorOrtiz Pimienta, Carolina
dc.contributor.advisorCaballero Acosta, Jose Humberto
dc.contributor.authorCárdenas Giraldo, Deisy Natalia
dc.date.accessioned2023-01-02T16:24:28Z
dc.date.available2023-01-02T16:24:28Z
dc.date.issued2022-11-24
dc.description.abstractSe propone una metodología para zonificar hidrogeológicamente el país considerando experiencias en otros países e incluyendo rocas ígneas y metamórficas con base en información existente. Después de revisada la información disponible y evaluar el uso de productos de sensores remotos, los principales insumos consisten en el Atlas Geológico de Colombia (AGC) 1:500.000 versión 2020 que constituye la geología más detallada homologada y homogenizada por el SGC con cobertura nacional completa y la anomalía de almacenamiento de agua subterránea somera (GWS-GLDAS) obtenida de la asimilación de datos de la misión GRACE en el modelo GLDAS versión 2.2. La zonificación propuesta consiste básicamente en la actualización de las provincias definidas en IDEAM (2010) considerando elementos conceptuales tomados de otros países y refinando los límites según las unidades cronoestratigráficas y fallas del AGC, además de divisorias de áreas y zonas hidrográficas. Las rocas cristalinas se incluyeron nombrando las zonas de “basamento” (en IDEAM, 2010) como ocho provincias hidrogeológicas nuevas, la geología usada no cuenta con información suficiente para discretizar su potencial hidrogeológico. El uso de GWS-GLDAS permitió evaluar el comportamiento hidrológico subterráneo en todas las provincias propuestas, mostrando que en las rocas cristalinas y volcánicas también hay cambios importantes y con base en esta variable se plantea una división al interior de seis provincias en regiones hidrogeológicas. El principal aporte de esta propuesta es incluir las rocas cristalinas y volcánicas en la zonificación hidrogeológica con base en aspectos geológicos e hidrológicos asociados a la anomalía de almacenamiento de agua subterránea (tomado de la fuente)spa
dc.description.abstractA methodology is proposed to hydrogeological zoning in the country considering experiences in other countries and including igneous and metamorphic rocks based on existing information. After reviewing the available information and evaluating the use of remote sensing products, the main inputs consist of the Geological Atlas of Colombia (AGC) 1:500.000 version 2020, which constitutes the most detailed geology approved and homogenized by the SGC with complete national coverage and the shallow groundwater storage anomaly (GWS-GLDAS) obtained from the assimilation of data from the GRACE mission in the GLDAS model version 2.2. The proposed zoning basically consists of updating the provinces defined in IDEAM (2010) considering conceptual elements taken from other countries and refining the limits according to the chronostratigraphic units and faults of the AGC, in addition to surface water basins. The crystalline rocks were included by naming the "basement" zones (in IDEAM, 2010) as seven new hydrogeological provinces, the geology used does not have enough information to discretize their hydrogeological potential. The use of GWS-GLDAS made it possible to evaluate the subterranean hydrological behavior in all the proposed provinces, showing that there are also important changes in crystalline and volcanic rocks and based on this variable, a division within six provinces into hydrogeological regions is proposed. The main contribution of this proposal is to include crystalline and volcanic rocks in the hydrogeological zoning based on geological and hydrological aspects associated with the groundwater storage anomalyeng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrogeologíaspa
dc.format.extentxvii, 158 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82871
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdelmohsen, K., Sultan, M., Ahmed, M., Save, H., Elkaliouby, B., Emil, M., Yan, E., Abotalib, A. Z., Krishnamurthy, R. V., & Abdelmalik, K. (2019). Response of deep aquifers to climate variability. Science of the Total Environment, 677, 530–544. https://doi.org/10.1016/j.scitotenv.2019.04.316spa
dc.relation.referencesAbdullah, A., Akhir, J. ., & Abdullah, I. (2010). Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. The Electronic Journal of Geotechnical Engineering, 15, 949–957.spa
dc.relation.referencesAhmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 1–31. https://doi.org/10.3390/GEOSCIENCES11050183spa
dc.relation.referencesAhmed, M., & Abdelmohsen, K. (2018). Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751. https://doi.org/10.1007/s10712-018-9465-3spa
dc.relation.referencesAlimi, J. (n.d.). Groundwater Resources and Management in Nigeria.spa
dc.relation.referencesARSET. (n.d.). Sinopsis del Satélite GRACE y Sus Datos y Aplicaciones. NASA Applied Remote Sensing Training Program (ARSET).spa
dc.relation.referencesAwange, J. L., Gebremichael, M., Forootan, E., Wakbulcho, G., Anyah, R., Ferreira, V. G., & Alemayehu, T. (2014). Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. https://doi.org/10.1016/j.advwatres.2014.07.012spa
dc.relation.referencesBarrero, D., Pardo, A., Vargas, C. ., & Martínez, J. . (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. In Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5spa
dc.relation.referencesBelle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., & Gourry, J.-C. (2019). Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geological Society, London, Special Publications, 479(1), 187–205. https://doi.org/10.1144/SP479.7spa
dc.relation.referencesBetancur, T., García, D. A., Vélez, A. J., Gómez, A. M., Flórez, C., Patiño, J., & Ortíz, J. A. (2017). Aguas subterráneas , humedales y servicios ecosistémicos en Colombia. Biota Colombiana, 18(1), 1–27. https://doi.org/10.21068/c2017.v18n01a1spa
dc.relation.referencesBolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 1–13. https://doi.org/10.1016/j.jhydrol.2020.125687spa
dc.relation.referencesBrugeron, A., Paroissien, J. B., & Tillier, L. (2018). Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions (p. 69).spa
dc.relation.referencesCentral Ground Water Board - CGWB. (2012). Aquifer Systems of India.spa
dc.relation.referencesChilton, P. J., & Foster, S. (1995). Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061spa
dc.relation.referencesChowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222. https://doi.org/10.1007/s12665-009-0110-9spa
dc.relation.referencesCross, A. M. (1988). Detection of circular geological features using the Hough transform. International Journal of Remote Sensing, 9(9), 1519–1528. https://doi.org/10.1080/01431168808954956spa
dc.relation.referencesCustodio, E. (2003). Hydrogeological similarities and differences between volcanic and hard rocks. International Conference on Groundwater in Fractured Rocks, 5.spa
dc.relation.referencesDas, B., & Singh, S. K. (2016). Ground water potential zone mapping of semi-arid region of Kalaburgi and Yadgir districts of North Karnataka: A geospatial analysis approach. International Journal of Current Research, 8(3), 28797–28807.spa
dc.relation.referencesDewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026spa
dc.relation.referencesDíaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3spa
dc.relation.referencesDNP. (1983). Mapa Hidrogeológico General de Colombia Escala 1:500.000.spa
dc.relation.referencesEl-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated Approach for Groundwater Exploration in Wadi Araba Using Remote Sensing and GIS. Jordan Journal of Civil Engineering, 3(3), 229–243.spa
dc.relation.referencesFenta, M. C., Anteneh, Z. L., Szanyi, J., Walker, D., Walker, D., & Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/J.GSD.2020.100408spa
dc.relation.referencesFoster, S. (1984). African groundwater development - the challenges for hydrogeological science. Challenges in African Hydrology and Water Resources, December, 3–12.spa
dc.relation.referencesFoster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de la Calidad del Agua Subterránea - Guía para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial.spa
dc.relation.referencesFrappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060829spa
dc.relation.referencesFreeze, R. ., & Cherry, J. . (1979). Groundwater. Prentice Hall.spa
dc.relation.referencesFunk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66spa
dc.relation.referencesGilbrich, W., & Struckmeier, W. (2014). 50 Years of Hydro(geo)logical Mapping Activities.spa
dc.relation.referencesGómez, J. (2022). La geología como condicionante del paisaje - YouTube. Sociedad Geográfica de Colombia. https://www.youtube.com/watch?v=a4_Zl-iBHX8spa
dc.relation.referencesGómez, J., Montes, N. ., & Compiladores. (2020). Atlas Geológico de Colombia 2020 - Escala 1:500.000. Servicio Geológico Colombiano.spa
dc.relation.referencesGómez, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia.spa
dc.relation.referencesGonzález de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería Geológica. Pearson Educación.spa
dc.relation.referencesGuarín, G., & Poveda, G. (2013). Variabilidad Espacial Y Temporal Del Almacenamiento De Agua En El Suelo En Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89–113.spa
dc.relation.referencesGuihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S., & Maréchal, J. C. (2014). Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology, 511, 320–324.spa
dc.relation.referencesGun, J., Vasak, S., & Reckman, J. (2008). Scale-dependent hydrogeological zoning for effective communication and efficient information management on groundwater. 33rd International Geological Congress.spa
dc.relation.referencesHenry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3spa
dc.relation.referencesHerbich, P., Woźnicka, M., & Witczak, S. (2010). Hydrogeological cartography as a tool supporting water management, spatial planning and environmental protection. Przeglad Geologiczny, 58(9 PART 1), 746–753.spa
dc.relation.referencesHerms, I., & Arnó, G. (2016). Cartografía Hidrogeológica.spa
dc.relation.referencesHoyos, F. (2012). GEOTECNIA diccionario básico.spa
dc.relation.referencesHuat, B. B. ., Toll, D. ., & Prasad, A. (Eds. . (2012). Handbook of Tropical Residual Soils Engineering. CRC Press.spa
dc.relation.referencesIDEAM. (2010). Estudio Nacional de Agua 2010.spa
dc.relation.referencesIDEAM. (2013a). Aguas Subterráneas en Colombia Una Visión General.spa
dc.relation.referencesIDEAM. (2013b). Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia.spa
dc.relation.referencesIDEAM. (2015a). Estudio Nacional del Agua 2014. IDEAM.spa
dc.relation.referencesIDEAM. (2015b). Principios básicos para el conocimiento y monitoreo de las aguas subterráneas - Contenidos del Taller de Formación (p. 180).spa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM.spa
dc.relation.referencesIGAC. (1997). Mapa Regiones Naturales de Colombia. Escala 1:5.000.000.spa
dc.relation.referencesINGEOMINAS. (1977). Mapa Hidrogeológico de Colombia Escala 1:3.000.000.spa
dc.relation.referencesINGEOMINAS. (1987). Memoria del Mapa Hidrogeológico de Colombia Edición 1987.spa
dc.relation.referencesINGEOMINAS. (2004a). Atlas de Aguas Subterráneas de Colombia a escala 1:500.000.spa
dc.relation.referencesINGEOMINAS. (2004b). Programa de exploración de aguas subterráneas – PEXAS.spa
dc.relation.referencesINGEOMINAS. (2011). Mapa litoestratigráfico con permeabilidades de Colombia escala 1:500.000.spa
dc.relation.referencesISPRA. (2018). Carta Idrogeologica D’Italia – 1:50.000 (p. 71).spa
dc.relation.referencesJoshi, A. K. (1989). Automatic detection of lineaments from Landsat data. Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1, 85–88. https://doi.org/10.1109/IGARSS.1989.567160spa
dc.relation.referencesKoike, K., Nagano, S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7spa
dc.relation.referencesKrishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884. https://doi.org/10.1080/01431169608948744spa
dc.relation.referencesKumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050spa
dc.relation.referencesKuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79(1), 27–38. https://doi.org/10.1016/J.CATENA.2009.05.005spa
dc.relation.referencesLachassagne, P. (2008). Overview of the hydrogeology of hard rock aquifers: Applications for their survey, management, modelling and protection. In Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design (pp. 40–63). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6540-8_3spa
dc.relation.referencesLachassagne, P., Aunay, B., Frissant, N., Guilbert, M., & Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova, 26(4), 15 p. https://doi.org/10.1111/TER.12102spa
dc.relation.referencesLachassagne, P., Dewandel, B., & Wyns, R. (2014a). Hydrogeology of Hard Rock Aquifers. In S. Eslamian (Ed.), Handbook of Engineering Hydrology (pp. 297–326). CRC Press. https://doi.org/10.1201/b15625-18spa
dc.relation.referencesLachassagne, P., Dewandel, B., & Wyns, R. (2014b). The conceptual model of weathered hard rock aquifers and its practical applications. In J. M. Sharp (Ed.), Fractured Rock Hydrogeology (IAH Select, Vol. 20, pp. 35–68). CRC Press. https://doi.org/10.1201/b17016-7spa
dc.relation.referencesLachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal 2021, 1–34. https://doi.org/10.1007/S10040-021-02339-7spa
dc.relation.referencesLachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J. F., & Le Strat, P. (2001). Exploitation of high-yields in hard-rock aquifers: Downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39(4), 568–581. https://doi.org/10.1111/j.1745-6584.2001.tb02345.xspa
dc.relation.referencesLachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.xspa
dc.relation.referencesLanderer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 4531. https://doi.org/10.1029/2011WR011453spa
dc.relation.referencesLi, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., … Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618spa
dc.relation.referencesMacDonald, A. ., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa - BGS Technical Report WC/00/33.spa
dc.relation.referencesMaréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003137spa
dc.relation.referencesMaréchal, J. C., Selles, A., Dewandel, B., Boisson, A., Perrin, J., & Ahmed, S. (2018). An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal, 17(1), 1–14. https://doi.org/10.2136/vzj2018.04.0076spa
dc.relation.referencesMargat, J., & Gun, J. (2013). Groundwater around the World (CRC Press (ed.)). https://doi.org/https://doi.org/10.1201/b13977spa
dc.relation.referencesMarghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126–130. https://doi.org/10.3923/RJASCI.2010.126.130spa
dc.relation.referencesMasoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. https://doi.org/10.1016/J.CAGEO.2017.06.006spa
dc.relation.referencesMaxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology, 2(2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-Xspa
dc.relation.referencesMehta, A. (n.d.). Satélites, sensores y modelos de sistemas terrestres de la NASA usados para la gestión de recursos hídricos - NASA Applied Remote Sensing Training Program (ARSET).spa
dc.relation.referencesMehta, A., Podest, E., & McCartney, S. (2020). Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions - NASA Applied Remote Sensing Training Program (ARSET).spa
dc.relation.referencesMeijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. Hydrological Sciences Journal, 41(4), 549–561. https://doi.org/10.1080/02626669609491525spa
dc.relation.referencesMeijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. ., & Pointet, T. (2007). Remote Sensing Applications to Groundwater. IHP-VI, Series on Groundwater No.16 (UNESCO (ed.)).spa
dc.relation.referencesMohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016spa
dc.relation.referencesMohamed, A., Sultan, M., Ahmed, M., Yan, E., & Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bulletin of the Geological Society of America, 129(5–6), 534–546. https://doi.org/10.1130/B31460.1spa
dc.relation.referencesMonreal, R., Rangel, M., Grijalva, A., Minjarez, I., & Morales, M. (2011). Metodología para la definición de unidades hidroestratigráficas: Caso del acuífero del valle del río Yaqui, Sonora, México. Boletin de La Sociedad Geológica Mexicana, 63(1), 119–135. https://doi.org/10.18268/bsgm2011v63n1a10spa
dc.relation.referencesNag, S. K., & Chowdhury, P. (2019). Decipherment of potential zones for groundwater occurrence: a study in Khatra Block, Bankura District, West Bengal, using geospatial techniques. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/S12665-018-8034-Xspa
dc.relation.referencesOliveira, J., Brito, A., De Carlo, R., & Feijó, T. (2014). Manual de Cartografia Hidrogeológica (Servicio Geológico de Brasil - CPRM (ed.)).spa
dc.relation.referencesOspina, D. L., & Vargas, C. A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal, 26(8), 2769–2779. https://doi.org/10.1007/s10040-018-1824-0spa
dc.relation.referencesPantaleone, D. V., Vincenzo, A., Fulvio, C., Silvia, F., Cesaria, M., Giuseppina, M., Ilaria, M., Vincenzo, P., Rosa, S. A., Gianpietro, S., Giuseppe, T., & Pietro, C. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352spa
dc.relation.referencesPetit, V., Hanot, F., & Pointet, T. (2003). Référentiel hydrogéologique BD RHF. Guide méthodologique de découpage des entités. BRGM/RP-52261-FR (p. 101). https://doi.org/PNR61spa
dc.relation.referencesPortal, A., Belle, P., Mathieu, F., Lachassagne, P., & Brisset, N. (2017). Identification and characterization of hard rocks weathering profile by electrical resistivity imaging. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201702054spa
dc.relation.referencesPrasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/S00254-007-0992-3/FIGURES/9spa
dc.relation.referencesRahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/S12517-014-1668-4/FIGURES/5spa
dc.relation.referencesRahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing 2014, Vol. 6, Pages 5938-5958, 6(7), 5938–5958. https://doi.org/10.3390/RS6075938spa
dc.relation.referencesRamírez, T. . (2016). Análisis de la problemática Socioambiental generada por la Construcción de Túneles Viales en Colombia: Caso de estudio Túnel de Occidente. Universidad Nacional de Colombia.spa
dc.relation.referencesRamli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69(2), 215–233. https://doi.org/10.1007/S10064-009-0255-5spa
dc.relation.referencesRazandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/S12145-015-0220-8/FIGURES/5spa
dc.relation.referencesRichey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349spa
dc.relation.referencesRichts, A., Struckmeier, W. F., & Zaepke, M. (2011). WHYMAP and the Groundwater Resources Map of the World 1:25,000,000. In Sustaining Groundwater Resources (pp. 159–173). https://doi.org/10.1007/978-90-481-3426-7spa
dc.relation.referencesRodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/S10040-006-0103-7/FIGURES/5spa
dc.relation.referencesRodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141spa
dc.relation.referencesRodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256. https://doi.org/10.1016/S0022-1694(02)00060-4spa
dc.relation.referencesRodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381spa
dc.relation.referencesRui, H., & Beaudoing, H. (2021). README Document for NASA GLDAS Version 2 Data Products. Goddard Earth Sciences Data and Information Services Center (GES DISC). NASA.spa
dc.relation.referencesScanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 1–9. https://doi.org/10.1029/2011WR011312spa
dc.relation.referencesSGC. (2020). Atlas Geológico de Colombia 2020. https://www2.sgc.gov.co/MGC/Paginas/agc_500K2020.aspxspa
dc.relation.referencesShafique, M., van der Meijde, M., & Rossiter, D. G. (2011). Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. CATENA, 87(1), 11–19. https://doi.org/10.1016/J.CATENA.2011.04.004spa
dc.relation.referencesShafique, M., van der Meijde, M., & Ullah, S. (2011). Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach. Journal of Asian Earth Sciences, 42(1–2), 65–75. https://doi.org/10.1016/J.JSEAES.2011.04.004spa
dc.relation.referencesSharpe, D., Russell, H., Dyke, L., Grasby, S., Gleeson, T., Michaud, Y., Savard, M., Mei, M., & Wozniak, P. (2010). Hydrogeological regions of Canada - Chapter 8.spa
dc.relation.referencesSima, J. (n.d.). Hydrogeological zones Czech Republic. Retrieved November 6, 2019, from http://www.geology.cz/projekt681900/english/learning-resourcesspa
dc.relation.referencesSinghal, B. B. ., & Gupta, R. . (2010). Applied Hydrogeology of Fractured Rocks (Second Edi). Springer. https://doi.org/10.1007/978-90-481-8799-7spa
dc.relation.referencesSoto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers and Geosciences, 57, 93–103. https://doi.org/10.1016/J.CAGEO.2013.03.019spa
dc.relation.referencesStrahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038I006P00913spa
dc.relation.referencesStruckmeier, W., & Margat, J. (1995). Hydrogeological Maps A Guide and a Standard Legend (International Association of Hydrogeologists (ed.)).spa
dc.relation.referencesSuárez, J. (2009). Deslizamientos Tomo I: Análisis Geotécnico.spa
dc.relation.referencesTarbuck, E. J., Lutgens, F. K., & Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S.A.spa
dc.relation.referencesTaylor, R. G., & Howard, K. W. F. (1999). The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. Journal of Hydrology, 218(1–2), 44–71. https://doi.org/10.1016/S0022-1694(99)00024-4spa
dc.relation.referencesThomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545. https://doi.org/10.1002/2014GL059323spa
dc.relation.referencesThomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392. https://doi.org/10.1016/j.rse.2017.06.026spa
dc.relation.referencesUNESCO. (1985). Aguas subterráneas en rocas duras - Proyecto 8.6 del Programa Hidrológico Internacional.spa
dc.relation.referencesUrrea, V. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. Universidad Nacional de Colombia sede Medellín.spa
dc.relation.referencesUSGS. (1992). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-J.spa
dc.relation.referencesUSGS. (1995). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-M.spa
dc.relation.referencesVargas, N. O. (2001). Zonas hidrogeológicas homogéneas de Colombia.spa
dc.relation.referencesVargas, N. O. (2005). Zonas hidrogeológicas homogéneas de Colombia. 17.spa
dc.relation.referencesVargas, N. O. (2006). Zonas hidrogeológicas homogéneas de Colombia. Boletín Geológico y Minero, 117(1), 47–61.spa
dc.relation.referencesWendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J. S. ., & Walraevens, K. (2007). European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology. https://doi.org/10.1007/s00254-007-0966-5spa
dc.relation.referencesWesley, L. (2010). Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc.spa
dc.relation.referencesWorthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/J.EARSCIREV.2016.07.002spa
dc.relation.referencesWright, E. P., & Burgess, W. G. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66, 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01spa
dc.relation.referencesWu, Q., Si, B., He, H., & Wu, P. (2019). Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020154spa
dc.relation.referencesWyns, R., Baltassat, J.-M., Lachassagne, P., Legchenko, A., Vairon, J., & Mathieu, F. (2004). Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de La Société Géologique de France, 175(1), 21–34. https://doi.org/10.2113/175.1.21spa
dc.relation.referencesZaporozec, A. (1972). Groundwater zoning in water resources management. Journal of the American Water Resources Association, 8(6), 1137–1143.spa
dc.relation.referencesZlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-Qspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembSensores remotos
dc.subject.lembHidrogeología
dc.subject.lembAguas subterráneas - Procesamiento de datos
dc.subject.proposalZonificación hidrogeológicaspa
dc.subject.proposalColombiaspa
dc.subject.proposalRocas cristalinasspa
dc.subject.proposalSensores remotosspa
dc.subject.proposalHydrogeological zoningeng
dc.subject.proposalCrystalline rockseng
dc.subject.proposalGroundwater storage anomalyeng
dc.subject.proposalRemote sensingeng
dc.subject.proposalAnomalía de almacenamiento de agua subterráneaspa
dc.titleZonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinasspa
dc.title.translatedHydrogeological zoning of Colombia from existing information, including crystalline rockseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1038407489.2022.pdf
Tamaño:
15.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: