Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado

dc.contributor.advisorEcheverri Ramírez, Óscar
dc.contributor.advisorValencia González, Yamile
dc.contributor.authorPatiño Restrepo, Juliana
dc.contributor.researchgroupGrupo de Geotecniaspa
dc.coverage.countryColombia
dc.date.accessioned2022-03-15T19:57:32Z
dc.date.available2022-03-15T19:57:32Z
dc.date.issued2021-09
dc.descriptionilustracionesspa
dc.description.abstractLa estabilidad de los taludes se ve afectada por diversidad de fenómenos físicos y químicos, el clima es uno de los factores más relevantes en este aspecto. En las zonas tropicales existen grandes variaciones meteorológicas durante todo el año, y son los suelos superficiales los más susceptibles a cambio de humedad y temperatura que repercuten en su comportamiento y resistencia. Para evaluar la influencia de estas variaciones, se desarrollaron varios ciclos de humedecimiento y secado para el suelo de un talud vial localizado al occidente del Valle de Aburra. Las pruebas de laboratorio se realizaron inicialmente en muestras inalteradas y compactadas y posteriormente en muestras sometidas a humedecimiento por goteo y secado al horno a 30°C. Se realiza inicialmente la caracterización física y química del suelo y se mide la curva de succión por el método del papel filtro, la permeabilidad y los parámetros de resistencia para cada ciclo de humedecimiento y secado. Los resultados mostraron que la succión del suelo disminuye gradualmente con el número de ciclos de humedecimiento y secado para ambas muestras, más notorio en la natural que en la compactada ya que esta última tiene una estructura con poros de menor tamaño y las variaciones se perciben en menor grado. Los resultados de la investigación incluyen un análisis de estabilidad de taludes donde se incluyen las propiedades hidráulicas y de resistencia de ambas muestras, obteniéndose una disminución del factor de seguridad después de los ciclos de humedecimiento y secado, en comparación con la muestra inicial, tanto para la muestra natural y compactada. Con los resultados se da un paso adelante en el estudio de los movimientos en masa detonados por lluvia ya que a través de la metodología experimental por la cual se recrean los ciclos de humedecimiento a partir de datos de campo como humedad, temperatura y precipitación, se puede anticipar la variación en los parámetros que influyen en la estabilidad del talud. 8Texto tomado de la fuente)spa
dc.description.abstractSlope stability is affected by a variety of physical and chemical phenomena, climate is one of the most relevant factors in this regard. In tropical areas there are great meteorological variations throughout the year, and surface soils are the most susceptible to changes in humidity and temperature that affect their behavior and resistance. To evaluate the influence of these variations, several moistening and drying cycles were developed for the soil of a road slope located west of the Aburra Valley. Laboratory tests were initially performed on undisturbed and compacted samples and subsequently on samples subjected to drip wetting and oven drying at 30 ° C. The physical and chemical characterization of the soil is initially carried out and the suction curve is measured by the filter paper method, the permeability and the resistance parameters for each wetting and drying cycle. The results showed that the soil suction gradually decreases with the number of wetting and drying cycles for both samples, more noticeable in the natural than in the compacted sample since the latter has a structure with smaller pores and the variations are perceived in less. The results of the research include a slope stability analysis that includes the hydraulic and resistance properties of both samples, obtaining a decrease in the safety factor after the wetting and drying cycles, compared to the initial sample, both for the natural and compacted sample. With the results, a step forward is taken in the study of mass movements triggered by rain since through the experimental methodology by which the moistening cycles are recreated from field data such as humidity, temperature and precipitation, it is can anticipate variation in parameters that influence slope stability.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaSuelos tropicalesspa
dc.description.researchareaMovimientos en masa detonados por lluviaspa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81228
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAitchison, G. D., & Bishop, A. W. (1961). Pore pressure and suction in soils: Conference discussion. Pore Pressure and Suction in Soils: Conference Organised by the British National Society of the International Society of Soil Mechanics and Foundation Engineering, 150–151.spa
dc.relation.referencesArbhabhirama, A., & Kridakorn, C. (1968). Steady Downward Flow to a Water Table. Water Resources Research, 4(6), 1249–1257. https://doi.org/https://doi.org/10.1029/WR004i006p01249spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2021). SIATA Sistema de Alerta Temprana de Medellín y el Valle de Aburrá. https://siata.gov.cospa
dc.relation.referencesAristizábal Giraldo, E. V., González, T., Montoya, J. D., Vélez Upegui, J. I., Martínez Carvajal, H. E., & Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el valle de Aburrá, Colombia. Revista EIA, 95–111.spa
dc.relation.referencesAristizábal Giraldo, E. V., Martínez Carvajal, H. E., & Vélez, J. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227.spa
dc.relation.referencesAristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016a). A comparison of linear and nonlinear model performance of SHIA_Landslide: A forecasting model for rainfall-induced landslides. Revista Facultad de Ingenieria, 2016(80), 74–88. https://doi.org/10.17533/udea.redin.n80a09spa
dc.relation.referencesAristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016b). Influences of Antecedent Rainfall and Hydraulic Conductivity on Landslides Triggered By Rainfall Occurrence Using the Model Shia_Landslide. Revista EIA, 13(26), 31–46.spa
dc.relation.referencesASTM D698-12(21). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International.spa
dc.relation.referencesASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.spa
dc.relation.referencesASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International.spa
dc.relation.referencesASTM D4221-18. (2018). Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International.spa
dc.relation.referencesASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International.spa
dc.relation.referencesASTM D4943-18. (2018). Standard Test Method for Shrinkage Factors of Cohesive Soils by the Water Submersion. ASTM International.spa
dc.relation.referencesASTM D5298-16. (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International. https://doi.org/10.1520/D5298-16spa
dc.relation.referencesAzmi, M., Ramli, M. H., Hezmi, M. A., Mohd Yusoff, S. A. N., & Alel, M. N. A. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012016spa
dc.relation.referencesBarrera Bucio, M., & Garnica Anguas, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica, 198, 143.spa
dc.relation.referencesBishop, A. W. (1959). The principle of effective stress (Norges Geotekniske Inst, Ed.).spa
dc.relation.referencesBlight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In CRC Press (Ed.), Environmental & Engineering Geoscience. https://doi.org/10.2113/gseegeosci.v.2.255spa
dc.relation.referencesBrand, E. W. (1984). Landslides in Southeast Asia: A State-of-the-Art Report. 4th International Symposium on Landslides, 17–59.spa
dc.relation.referencesBrand, E. W., Phillipson, H. B., Borrie, G. W., & Clover, A. W. (1983). In-situ direct shear tests on Hong Kong residual soils. Int. Symp. on Soil and Rock Investigations by In-Situ Testing, 13–17.spa
dc.relation.referencesBrooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2). https://doi.org/10.1061/jrcea4.0000425spa
dc.relation.referencesBuol, S. W., Hole, F. D., & McCracken, R. J. (1983). Génesis y clasificación de suelos. Trillas.spa
dc.relation.referencesCamapun de Carvallo, J., De Farias Neves, G., Lemos Machado, S., Mascarenha, M., & Chagas da Silva, F. (2015). Solos não saturados no contexto geotécnico (Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica, Ed.).spa
dc.relation.referencesCampbell, J. D. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117, 311–314.spa
dc.relation.referencesCardona Giraldo, I. C. (2016). Validation of landslide assessment models by means of landslide inventories at sub-regional scales. Universidad Nacional de Colombia Sede Medellín.spa
dc.relation.referencesChandler, R. J., & Gutierrez, C. I. (1986). The filter-paper method of suction measurement. Geotechnique, 36(2), 265–268. https://doi.org/10.1680/geot.1986.36.2.265spa
dc.relation.referencesChipp, P. N., Clare, D. G., Henkel, D. J., & Pope, R. G. (1982). Field measurement of suction in colluvium covered slopes in Hong Kong. 7th South East Asian Geotechnical Conference, 22-26 November 1982, 49-62.spa
dc.relation.referencesDas, B. M. (2015). Fundamentos de Ingeniería Geotécnica (C. Learning, Ed.; 4th ed.).spa
dc.relation.referencesDepartamento Administrativo de Planeación de Medellín;, & Corporación Penca de Sábila. (2006). Plan de Desarrollo San Cristóbal 2006-2016 (pp. 12–15).spa
dc.relation.referencesEspitia, C. J., Quintero, J., Rodriguez, A., Bernal, F. I., Romero, F., Mojica, J., Cabezas, H., Hernández, M., Pachón, M., Múnera, M. H., & Ramirez, J. (2003). Catálogo de propiedades físicas, químicas y mineralógicas de las arcillas para cerámica roja en los centros urbanos de Medellín, Ibagué y sabana de Bogotá.hb (p. 203). Ingeominas.spa
dc.relation.referencesFredlund, D. G. (1987). Slope Stability Chapter 4 Slope Stability Analysis Incorporating the Effect of Soil Suction.spa
dc.relation.referencesFredlund, D. G. (2016). State Variables in Saturated-Unsaturated Soil Mechanics. Soils and Rocks, 39(1), 3–17. https://doi.org/10.28927/sr.391003spa
dc.relation.referencesFredlund, D. G., & Morgenstern, N. R. (1977). Stress State Variables for Unsaturated Soils. Journal of the Geotechnical Engineering Division, 103(5), 447–466. https://doi.org/10.1061/AJGEB6.0000423spa
dc.relation.referencesFredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice. https://doi.org/10.1002/9781118280492spa
dc.relation.referencesFredlund, D. G., Rahardjo, H., & J.K.M., G. (1987). Non-linearity of strength envelope for unsaturated soils.spa
dc.relation.referencesFredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061spa
dc.relation.referencesGardner, W. R. (1958). Mathematics of Isothermal in Water Conduction Unsaturated Soil. Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California, 78–87.spa
dc.relation.referencesH&G Consultores. (n.d.). MapGIS. Retrieved March 18, 2015, from https://www.medellin.gov.co/MapGIS/web/swf/MAPGIS_FLEX.jspspa
dc.relation.referencesHoyos Patiño, F. (2004). Suelos Residuales Tropicales (P. G. Fookes, Ed.).spa
dc.relation.referencesHuat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293–1306. https://doi.org/10.1007/s10706-005-1881-8spa
dc.relation.referencesJohnson, K. A., & Sitar, N. (1990). Hydrologic conditions leading to debris-flow initiation. Canadian Geotechnical Journal, 27(6), 789–801. https://doi.org/10.1139/t90-092spa
dc.relation.referencesKeng, J. C. W., & Uehara, G. (1974). Chemistry, mineralogy, and taxonomy of Oxisols and Uttisol s. [Soils]. In Proc Soil Crop Sci Soc Fla: Vol. v. 1974, 3.spa
dc.relation.referencesKim, J., Kim, Y., Jeong, S., & Hong, M. (2017). Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environmental Earth Sciences, 76(23), 1–17. https://doi.org/10.1007/s12665-017-7127-2spa
dc.relation.referencesLi, J. H., Lu, Z., Guo, L. B., & Zhang, L. M. (2017). Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Engineering Geology, 218, 70–76. https://doi.org/10.1016/j.enggeo.2017.01.004spa
dc.relation.referencesLim, L. L., Chang, M. F., Fredlund, D. G., & Rahardjo, H. (1996). Effect of rainfall on matric suctions in a residual soil slope. NATL RESEARCH COUNCIL OF CANADA, OTTAWA, (CAN).spa
dc.relation.referencesLu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. J. Wiley.spa
dc.relation.referencesMalaver Soto, N. M., & Tafur Tafur, R. (2018). Lineamientos básicos para la clasificación de suelos tropicales en Colombia orientado a pavimentos. Universidad Católica de Colombia.spa
dc.relation.referencesMalaya, C., & Sreedeep, S. (2010). A Study on Wetting Soil-Water Characteristic Curve of a Sandy Soil. Indian Geotechnical Conference, 2–3.spa
dc.relation.referencesMeza Ochoa, V. (2012). Suelos parcialmente saturados: De la investigación a la cátedra universitaria. Boletín de Ciencias de La Tierra, 0(31), 23–38.spa
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. In Soil Science (Tercera Ed, Vol. 158, Issue 1). John Wiley & Sons, Inc. https://doi.org/10.1097/00010694-199407000-00009spa
dc.relation.referencesMonsalve, G., Villarraga, C., & Vallejo, J. (2010). Inferences about the seismic structure of the upper lithosphere beneath the Aburrá Valley using data from accelerometer networks. Boletín de Ciencias de La Tierra, 77–94.spa
dc.relation.referencesNascimento, Í., Alencar, T., Santos, C., Assis, R., & Mota, J. (2018). Effect of sample re-saturation on soil-water characteristic curve. Revista Caatinga, 31, 446–454. https://doi.org/10.1590/1983-21252018v31n221rcspa
dc.relation.referencesNg, C. W. W., & Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1), 1–28. https://doi.org/https://doi.org/10.1016/S0266-352X(97)00036-0spa
dc.relation.referencesNogami, J. S., & Villibor, D. F. P. P.-S. P. (1995). Pavimentacao de baixo custo com solos lateriticos. Vilibor.spa
dc.relation.referencesPasculli, A., Sciarra, N., Esposito, L., & Esposito, A. W. (2017). Effects of wetting and drying cycles on mechanical properties of pyroclastic soils. Catena, 156(April), 113–123. https://doi.org/10.1016/j.catena.2017.04.004spa
dc.relation.referencesPerez Garcia, N., Garnica Anguas, P., & Pola Velazquez, J. C. (2013). Predicción de la curva característica con el modelo de proporcionalidad natural. Publicación Técnica, 361, 78.spa
dc.relation.referencesPitts, J. (1983). The form and causes of slope failures in an area of west Singapore Island. Journal of Tropical Geography, 4, 162–168.spa
dc.relation.referencesPitts, J. (1984). A survey of engineering geology in Singapore. J. of Southeast Asian Geotechnical Society, 15, 1–20.spa
dc.relation.referencesPitts, J., & Cy, S. (1987). Insitu soil suction measurements in relation to slope stability investigations in Singapore. In E. T. Hanrahan, T. L. L. Orr, & T. F. Widdis (Eds.), 9th European Conf. on Soil Mechanics and Foundation Engineering (pp. 79–82.).spa
dc.relation.referencesRahardjo, H., Lim, T. T., Chang, M. F., & Fredlund, D. G. (1995). Shear-strength characteristics of a residual soil. Canadian Geotechnical Journal, 32(1), 60–77. https://doi.org/10.1139/t95-005spa
dc.relation.referencesRidley, A. M. (1993). The measurement of soil moisture suction. In University of London. University of London.spa
dc.relation.referencesRidley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Géotechnique, 43(2), 321–324. https://doi.org/10.1680/geot.1993.43.2.321spa
dc.relation.referencesSchofield, R. K. (1935). The pF of the water in soil. 3rd Int. Congr. Soil Science, 37–48.spa
dc.relation.referencesSkempton, A. W., & Hutchinson, J. N. (1969). Stability of natural slopes and embankment foundations. In Sociedad Mexicana de Mecánica de Suelos (Ed.), VII Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones (pp. 291–340). https://doi.org/10.1007/978-3-319-73568-9_174spa
dc.relation.referencesSweeney, D. J., & Robertson, P. K. (1979). A fundamental approach to slope stability problems in Hong Kong. Hong Kong Engineer, 7, 35–44.spa
dc.relation.referencesTan, S. B., Tan, S. L., Lim, T. L., & Yang, K. S. (1987). Landslide problems and their control in Singapore. 9th Southeast Asian Geotechnical Conf., Southeast Asian Geotechnical Soc., 25–36.spa
dc.relation.referencesVan Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44. https://doi.org/10.2136/sssaj1980.03615995004400050002xspa
dc.relation.referencesVanapalli, S., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal - CAN GEOTECH J, 33, 379–392. https://doi.org/10.1139/t96-060spa
dc.relation.referencesZapata, C., Houston, W., Houston, S., & Walsh, K. (2000). Soil–Water Characteristic Curve Variability. In Geotechnical Special Publication (Vol. 287). https://doi.org/10.1061/40510(287)7spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcSoil stabilization
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.lembEstabilización de suelos
dc.subject.lembPermeabilidad de suelos
dc.subject.proposalSucciónspa
dc.subject.proposalSuelos parcialmente saturadosspa
dc.subject.proposalEstabilidad de taludesspa
dc.subject.proposalHumedecimiento-secadospa
dc.subject.proposalPartially saturated soilseng
dc.subject.proposalSlope stabilityeng
dc.subject.proposalWetting-dryingeng
dc.titleEfecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactadospa
dc.title.translatedEffect of wetting-drying cycles on a residual amphibolite soil's suction from western Medellin in a natural and compacted stateeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035858397.2021.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: