Evaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricas

dc.contributor.advisorPineda Jaimes, Jorge Arturo
dc.contributor.authorCortes Torres, Daniel Alejandro
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2025-09-09T14:34:35Z
dc.date.available2025-09-09T14:34:35Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEl desarrollo de infraestructura sobre suelos blandos, como las arcillas altamente compresibles de la Sabana de Bogotá, exige soluciones técnicas que mejoren la capacidad portante y reduzcan asentamientos. Las geoceldas, estructuras tridimensionales que generan confinamiento lateral y redistribuyen cargas, han demostrado ser una alternativa eficiente y sostenible. Aunque a nivel internacional existen estudios avanzados sobre su comportamiento, en Colombia no se habían documentado análisis con modelación numérica tridimensional realista para suelos finos. Este trabajo presenta una serie de simulaciones en PLAXIS 3D que emplean geometría real tipo panal para representar la interacción suelo-refuerzo. Se analizaron 25 modelos combinando diferentes diámetros de celda (244, 320 y 508 mm), espesores de material granular (20 y 25 cm) y tamaños de placa de carga (0.2 m y 0.4 m). Los resultados mostraron que configuraciones con una relación h/d cercana a 1 optimizan el comportamiento estructural del refuerzo, al activar completamente el confinamiento lateral y mejorar la redistribución de esfuerzos en la base. También se identificaron fenómenos como el punzonamiento o la pérdida de eficiencia por sobredimensionamiento de celdas, posibles de detectar únicamente mediante modelación tridimensional. Para evaluar la eficiencia del refuerzo, se utilizó el Bearing Capacity Ratio (BCR), definido como la relación entre la capacidad portante de un sistema reforzado con geoceldas y la capacidad del mismo suelo sin refuerzo. Se obtuvieron valores de BCR entre 1.5 y 4.5, siendo más eficientes las configuraciones que alcanzaronvalores entre 1.5 y 2.5. Los hallazgos sientan bases técnicas aplicables al contexto colombiano y promueven soluciones más sostenibles en ingeniería geotécnica. En este estudio también se evaluó el desempeño mediante el factor PSR (Percentage Settlement Reduction), que cuantifica la reducción porcentual del asentamiento atribuible al refuerzo con geoceldas. Los resultados muestran que el PSR aumenta con rapidez al incrementar la relación h/d desde valores bajos, por el mayor confinamiento y la rigidez compuesta de la capa; no obstante, alrededor de h/d ≈ 0.7–0.8 aparecen comportamientos decrecientes y, después de ese óptimo, una leve disminución asociada a límites estructurales de celdas de mayor altura (pandeo o pérdida de tensión). En conjunto, se obtuvieron reducciones de asentamiento del 35% al 58%, con valores máximos de hasta 73% en los análisis desarrollados. También se evaluó el desempeño mediante el índice SSR, que refleja la proporción de esfuerzo vertical efectivo transmitido a la subrasante. Se obtuvieron reducciones del 30 % al 45 %, evidenciando la capacidad del refuerzo con geoceldas para disipar cargas y mejorar la eficiencia estructural del sistema (Texto tomado de la fuente).spa
dc.description.abstractThe development of infrastructure on soft soils, such as the highly compressible clays of the Bogotá Savanna, demands technical solutions that improve bearing capacity and reduce settlements. Geocells—three-dimensional structures that provide lateral confinement and redistribute loads—have proven to be an efficient and sustainable alternative. While advanced international studies exist, no documented research in Colombia had employed realistic three-dimensional numerical modeling to evaluate their performance on fine-grained soils. This study presents a series of PLAXIS 3D simulations using actual honeycomb shaped geometry to model the soil–reinforcement interaction. A total of 25 models were analyzed, combining different cell diameters (244, 320, and 508 mm), granular layer thicknesses (20 and 25 cm), and loading plate sizes (0.2 m and 0.4 m). The results show that configurations with an h/d ratio close to 1 optimize the structural behavior of the reinforcement by fully activating lateral confinement and improving load distribution at the base. Phenomena such as localized punching or loss of efficiency due to oversized cells were also identified—behaviors only detectable through three-dimensional modeling. Reinforcement efficiency was evaluated using the Bearing Capacity Ratio (BCR), defined as the ratio between the bearing capacity of a reinforced system and that of the same soil without reinforcement. BCR values ranged from 1.5 to 4.5, with the most efficient configurations falling between 1.5 and 2.5. The findings establish technical criteria applicable to the Colombian context and promote more sustainable geotechnical solutions, highlighting the value of 3D modeling for designing reinforced systems on soft soils. In this study, performance was also evaluated using the PSR (Percentage Settlement Reduction) factor, which quantifies the percentage reduction in settlement attributable to geocell reinforcement. The results indicate that PSR increases rapidly as the h/d ratio rises from low values, due to greater confinement and the composite stiffness of the layer; however, around h/d ≈ 0.7–0.8 the improvement plateaus, and beyond that optimum it decreases slightly, associated with structural limits in taller cells (buckling or loss of tension). Overall, settlement reductions of 35% to 58% were obtained, with maximum values up to 73% in the analyses performed. The performance was also evaluated using the Subgrade Stress Ratio (SSR), which represents the proportion of vertical effective stress transmitted to the subgrade. Stress reductions between 30% and 45% were observed, highlighting the geocell reinforcement’s ability to dissipate loads and enhance the structural efficiency of the system.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Geotecnia
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afines
dc.format.extentxxi, 271 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88664
dc.language.isospa
dc.publisherUnivesridad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.relation.referencesAri, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/j.geotexmem.2021.01.006
dc.relation.referencesAvesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655
dc.relation.referencesAvesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007
dc.relation.referencesBambi, A. A. (2019). Minería y desarrollo sostenible: un acercamiento a la explotación de materiales para la construcción en Uige, Angola. Minería y Geología, 35(4), 480–497
dc.relation.referencesBanerjee, S., Manna, B., & Shahu, J. T. (2023). Geocell as a Promising Reinforcement Technique for Road Pavement: A State of the Art. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-023-00818-0
dc.relation.referencesBaquero, V. Y., Ardila, C., Pineda, J. A., Andrés Cruz, J., Yineth, V., Espinosa, B., Camilo, C., Manrique, A., Arturo, J., Jaimes, P., Andrés, J., & Wilches, C. (2017). Numerical simulation of the role of a geocell inclusion on deformation behavior of a pavement structure laid on a fissured clayey subgrade Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI International Multi-Conference for Numerical simulation of the role of a geocell inclusion on deformation behavior of a pavement structure laid on a fissured clayey subgrade. In LACCEI. https://www.researchgate.net/publication/320306968
dc.relation.referencesBarbosa Hernández, C. A., Pineda, J. A., & Andrés Cruz, J. (2017). Geotechnical Characterization by In-Situ Testing of Overconsolidated Lacustrine Clays of Western “Sabana de Bogota.” https://www.researchgate.net/publication/320307222
dc.relation.referencesBarón Castro, M. A. (2021). Calibración del ensayo CPTu para el depósito lacustre de Bogotá
dc.relation.referencesBathurst, R. J., & Cai, Z. (1994). In-isolation cyclic load-extension behavior of two geogrids. Geosynthetics International, 1(1), 1–19. https://doi.org/10.1680/gein.1.0001
dc.relation.referencesBathurst, R. J., & Jarrett, P. M. (1989). Large-Scale Model Tests of Geocomposite. Transportation Research Record, 1188(9), 28–36
dc.relation.referencesCaicedo, B., Mendoza, C., López, F., & Lizcano, A. (2018). Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005
dc.relation.referencesChacón, G., Director, P., & Lizcano, A. (2004). CALIBRACIÓN DE MODELOS CONSTITUTIVOS EN ARCILLAS DE BOGOTÁ
dc.relation.referencesDash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/T07-035
dc.relation.referencesEmersleben, A., & Meyer, N. (2008a). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545
dc.relation.referencesEmersleben, A., & Meyer, N. (2008b). The Use of Geocells in Road Constructions Over Soft Soil: Vertical Stress and Falling Weight Deflectometer Measurements. EuroGeo4, 132, 1–8
dc.relation.referencesGarcia, R. S., & Avesani Neto, J. O. (2021). Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers. Geotextiles and Geomembranes, 49(1), 146–158. https://doi.org/10.1016/j.geotexmem.2020.09.009
dc.relation.referencesGedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1). https://doi.org/10.1007/s40891-020-00249-4
dc.relation.referencesGeosynthetic Institute. (2016). Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. 610, 1–9
dc.relation.referencesGiroud, J. P. (1984). Geotextiles and geomembranes. Geotextiles and Geomembranes, 1(1), 5–40. https://doi.org/10.1016/0266-1144(84)90003-7
dc.relation.referencesHan, J., Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of geocell reinforced sand under a vertical load. Transportation Research Record, 2045, 95–101. https://doi.org/10.3141/2045-11
dc.relation.referencesHan, J., Yang, X. M., Leshchinsky, D., Parsons, R. L., & Rosen, A. (2008). Numerical analysis for mechanisms of a geocell-reinforced base under a vertical load. Geosynthetics in Civil and Environmental Engineering - Bibliografía 205 Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics. https://doi.org/10.1007/978-3-540-69313-0_135
dc.relation.referencesHedge, A. (2017a). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. Construction and Building Materials, 154, 658–674. https://doi.org/10.1016/j.conbuildmat.2017.07.230
dc.relation.referencesHegde, A., & Sitharam, T. (2015a). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387
dc.relation.referencesHegde, A. M., & Sitharam, T. G. (2015). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387
dc.relation.referencesHegde, A., & Sitharam, T. (2015a). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387
dc.relation.referencesHegde, A., & Sitharam, T. (2015b). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387
dc.relation.referencesInternational Geosynthetics Society - IGS. (2015). Geosynthetic Functions. www.GeosyntheticsSociety.org
dc.relation.referencesLeal, A. N., Fernando, J., Tauta, C., Fernando, E., & Blanco, R. (2009). Determinación de parámetros para los modelos elastoplásticos MohrCoulomb y Hardening soil en suelos arcillosos
dc.relation.referencesLeshchinsky, B., & Ling, H. I. (2013). Numerical modeling of behavior of railway ballasted structure with geocell confinement. Geotextiles and Geomembranes, 36, 33–43. https://doi.org/10.1016/j.geotexmem.2012.10.006
dc.relation.referencesMadhavi Latha, G., & Rajagopal, K. (2007). Parametric finite element analyses of geocell-supported embankments. Canadian Geotechnical Journal, 44(8), 917– 927. https://doi.org/10.1139/T07-039
dc.relation.referencesMadhavi Latha, G., Rajagopal, K., & Krishnaswamy, N. R. (2006). Experimental and Theoretical Investigations on Geocell-Supported Embankments. International Journal of Geomechanics, 6(1), 30–35. https://doi.org/10.1061/(asce)1532-3641(2006)6:1(30)
dc.relation.referencesMadhavi Latha, G., & Somwanshi, A. (2009). Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27(6), 409–422. https://doi.org/10.1016/j.geotexmem.2009.03.005
dc.relation.referencesMiyamoto, S., & Miyata, Y. (2020). Bearing capacity mechanism of geocell reinforced soil foundations. In Lecture Notes in Civil Engineering (Vol. 50). https://doi.org/10.1007/978-981-15-0454-9_1
dc.relation.referencesOmar González-Cueto, C., Herrera Suárez, C. M., Ciro, C., Iglesias, E., Ii, C., Elvis, C., & Bravo, L. (2013). Análisis de los modelos constitutivos empleados para simular la compactación del suelo mediante el método de elementos finitos Analysis of constitutive models used to simulate soil compaction by mean of finite elements method (Vol. 22, Issue 3)
dc.relation.referencesPerkins, S. W., & Edens, M. Q. (2003). Finite element modeling of a geosynthetic pullout test. Geotechnical & Geological Engineering, 21(4), 357–375. https://doi.org/10.1023/B:GEGE.0000006053.77489.c5
dc.relation.referencesPineda. (2005). Ponencia Jornadas de Pavimentos Jorge Pineda 2005
dc.relation.referencesPineda, & Colmenares. (2007). Influence of dessiccation on volume change behavior of Bogota clay. https://doi.org/10.13140/RG.2.1.1110.0004
dc.relation.referencesPineda, J. A., & Colmenares, J. (2015). Variations of the coefficient of lateral earth pressure at rest (Ko) in surface clays of western Sabana de Bogota. https://www.researchgate.net/publication/299611027
dc.relation.referencesPineda, Jhobany, E., Colegio, O.-D., Viator, S., & Internacional, B. (2017). SIMULACIÓN DE LOS DESPLAZAMIENTOS DE UNA ESTRUCTURA MULTICAPA REFORZADA CON GEOCELDAS, APOYADA SOBRE UN MEDIO DISCONTÍNUO. http://www.ucatolica.edu.co
dc.relation.referencesPineda, Murillo-Feo, C., & Colmenares, J. (2015). Characterization of pavement pathologies associated with the action of plant species in a road at western Sabana de Bogota. Épsilon, 25, 39–68
dc.relation.referencesPokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010a). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes, 28(6), 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002
dc.relation.referencesPokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010b). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes, 28(6), 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002
dc.relation.referencesRaba Moyano, M. A. (2012). Caracterización física y geomecánica de suelos Lacustres en la ciudad de Bogotá desde el contexto del comportamiento mecánico de suelos blandos. http://hdl.handle.net/1992/12123
dc.relation.referencesRajagopal, K., Chandramouli, S., Parayil, A., & Iniyan, K. (2014). Studies on geosynthetic-reinforced road pavement structures. International Journal of Geotechnical Engineering, 8(3), 287–298. https://doi.org/10.1179/1939787914Y.0000000042
dc.relation.referencesRajagopal, K., Krishnaswamy, N. R., & Latha, G. M. (1999). Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3), 171–184. https://doi.org/10.1016/S0266-1144(98)00034-X
dc.relation.referencesRazali, M., Mahmood, N. A. C., Hashim, K. A., Mansor, S., & Zainuddin, N. I. (2018). The falling weight deflectometer (FWD) for characterization bonding state of subgrade. AIP Conference Proceedings, 2020. https://doi.org/10.1063/1.5062648
dc.relation.referencesRuiz Campo, A. S. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. http://hdl.handle.net/1992/9205
dc.relation.referencesSanabria, D. M. (2013). CARACTERÍSTICAS DE COMPRESIBILIDAD Y RESISTENCIA DE ARCILLAS TÍPICAS DEL DEPÓSITO LACUSTRE DE BOGOTÁ ESCUELA COLOMBIANA DE INGENIERÍA
dc.relation.referencesSanjei, C., & De Silva, L. I. N. (2016a). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCon.2016.7480142
dc.relation.referencesSanjei, C., & De Silva, L. I. N. (2016b). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCon.2016.7480142
dc.relation.referencesSankhat, K. T. (2022). Deformation Mode of Geocell-Soil Composite Structure
dc.relation.referencesSchary, Y. (2020). Neoloy—Developing a Novel Polymeric Alloy for Geocells (pp. 63–76). https://doi.org/10.1007/978-981-15-6095-8_3
dc.relation.referencesSimsek, M. C., & Huvaj, N. (2024). Behavior of geocell reinforced sandy soils under static load. In Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society (pp. 2654–2657). CRC Press. https://doi.org/10.1201/9781003431749-515
dc.relation.referencesSitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal, 42(2), 693–703. https://doi.org/10.1139/t04-117
dc.relation.referencesTanyu, B. F., Aydilek, A. H., Lau, A. W., Edil, T. B., & Benson, C. H. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International, 20(2), 47–61. https://doi.org/10.1680/gein.13.00001
dc.relation.referencesTavera Yunda, F. A. (2024). Estudio de la Influencia de los contenidos de diatomeas en los procesos de propagación de fisuras en arcilla. https://hdl.handle.net/1992/73603
dc.relation.referencesThakur, J. K., Han, J., Pokharel, S. K., & Parsons, R. L. (2012). Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotextiles and Geomembranes, 35, 14– 24. https://doi.org/10.1016/j.geotexmem.2012.06.004
dc.relation.referencesTorres Peña, M. A. (2021). Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
dc.relation.referencesYang, X. (2010). Numerical Analyses of Geocell- Reinforced Granular Soils under Static and Repeated Loads. In Diss
dc.relation.referencesZhang, L., Zhao, M., Shi, C., & Zhao, H. (2010). Bearing capacity of geocell reinforcement in embankment engineering. Geotextiles and Geomembranes, 28(5), 475–482. https://doi.org/10.1016/j.geotexmem.2009.12.011
dc.relation.referencesZornberg, J. G., Subramanian, S., Roodi, G. H., Yalcin, Y., & Kumar, V. V. (2024). Sustainability Benefits of Adopting Geosynthetics in Roadway Design. International Journal of Geosynthetics and Ground Engineering, 10(3), 47. https://doi.org/10.1007/s40891-024-00551-5
dc.relation.referencesZuo, Z., Hao, X., Li, H., Wang, W., Yang, G., & Liu, Y. (2023). Experimental Investigations on the Tensile Mechanical Behavior of HDPE Geocell Strip. Sustainability (Switzerland), 15(10). https://doi.org/10.3390/su15107820
dc.relation.referencesHoltz, R. D., Christopher, B. R., & Berg, R. R. (1997). Geosynthetic Design and Construction Guidelines. Federal Highway Administration (FHWA)
dc.relation.referencesISO 10319:2024. Geosynthetics – Wide-width tensile test. International Organization for Standardization (ISO)
dc.relation.referencesKoerner, R. M. (2012). Designing with Geosynthetics (6th ed.). Pearson
dc.relation.referencesDuque Escobar, G. (2024). Manual de geología para ingenieros. Universidad Nacional de Colombia - Sede Manizales
dc.relation.referencesBowles, J. E. (1996). Foundation analysis and design (5th ed.). McGraw-Hill
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (3ª ed.). John Wiley & Sons
dc.relation.referencesDas, B. M. (2012). Fundamentos de ingeniería de cimentaciones (7ª ed.). Cengage Learning
dc.relation.referencesRuiz Campo, A. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. Uniandes
dc.relation.referencesTavera Yunda, F. (2024). Estudio de la Influencia de los contenidos de diatomeas en los procesos de propagación de fisuras en arcilla. Universidad de los Andes
dc.relation.referencesÁvila Álvarez, G. (08 de septiembre de 2012). Extracción de agua subterránea, una de las causas del hundimiento del suelo en Bogotá. Agencia de Noticias UNAL. https://agenciadenoticias.unal.edu.co/detalle/extraccion-de-agua subterranea-una-de-las-causas-del-hundimiento-del-suelo-en-bogota
dc.relation.referencesCraig, R.F. (2004). Craig's Soil Mechanics (7th ed.). CRC Press. https://doi.org/10.4324/9780203494103
dc.relation.referencesDuncan, J. M., & Wright, S. G. (2005). Soil strength and slope stability (2nd ed.). John Wiley & Sons
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.lembBENTONITAspa
dc.subject.lembBentoniteeng
dc.subject.lembCONSOLIDACION DE SUELOSspa
dc.subject.lembSoil consolidationeng
dc.subject.lembESTABILIZACION DE SUELOSspa
dc.subject.lembSoil stabilizationeng
dc.subject.lembMECANICA DE SUELOSspa
dc.subject.lembSoil mechanicseng
dc.subject.lembASENTAMIENTO DE ESTRUCTURASspa
dc.subject.lembSettlement of structureseng
dc.subject.lembGEOGRAFIA-MODELOS MATEMATICOSspa
dc.subject.lembGeography - mathematical modelseng
dc.subject.proposalSuelos blandoseng
dc.subject.proposalRefuerzo celularspa
dc.subject.proposalModelación numéricaspa
dc.subject.proposalGeoceldasspa
dc.subject.proposalCapacidad portantespa
dc.subject.proposalGeocellseng
dc.subject.proposalSoft soilseng
dc.subject.proposalCellular reinforcementeng
dc.subject.proposalBearing capacityeng
dc.subject.proposalNumerical modelingeng
dc.subject.proposalPLAXIS 3Dspa
dc.titleEvaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricasspa
dc.title.translatedParametric evaluation of the mechanical response of a geocell reinforced soil system supported on fine-grained soils using numerical simulationseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricas.pdf
Tamaño:
21.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: