Evaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricas
dc.contributor.advisor | Pineda Jaimes, Jorge Arturo | |
dc.contributor.author | Cortes Torres, Daniel Alejandro | |
dc.coverage.city | Bogotá | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-09T14:34:35Z | |
dc.date.available | 2025-09-09T14:34:35Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | El desarrollo de infraestructura sobre suelos blandos, como las arcillas altamente compresibles de la Sabana de Bogotá, exige soluciones técnicas que mejoren la capacidad portante y reduzcan asentamientos. Las geoceldas, estructuras tridimensionales que generan confinamiento lateral y redistribuyen cargas, han demostrado ser una alternativa eficiente y sostenible. Aunque a nivel internacional existen estudios avanzados sobre su comportamiento, en Colombia no se habían documentado análisis con modelación numérica tridimensional realista para suelos finos. Este trabajo presenta una serie de simulaciones en PLAXIS 3D que emplean geometría real tipo panal para representar la interacción suelo-refuerzo. Se analizaron 25 modelos combinando diferentes diámetros de celda (244, 320 y 508 mm), espesores de material granular (20 y 25 cm) y tamaños de placa de carga (0.2 m y 0.4 m). Los resultados mostraron que configuraciones con una relación h/d cercana a 1 optimizan el comportamiento estructural del refuerzo, al activar completamente el confinamiento lateral y mejorar la redistribución de esfuerzos en la base. También se identificaron fenómenos como el punzonamiento o la pérdida de eficiencia por sobredimensionamiento de celdas, posibles de detectar únicamente mediante modelación tridimensional. Para evaluar la eficiencia del refuerzo, se utilizó el Bearing Capacity Ratio (BCR), definido como la relación entre la capacidad portante de un sistema reforzado con geoceldas y la capacidad del mismo suelo sin refuerzo. Se obtuvieron valores de BCR entre 1.5 y 4.5, siendo más eficientes las configuraciones que alcanzaronvalores entre 1.5 y 2.5. Los hallazgos sientan bases técnicas aplicables al contexto colombiano y promueven soluciones más sostenibles en ingeniería geotécnica. En este estudio también se evaluó el desempeño mediante el factor PSR (Percentage Settlement Reduction), que cuantifica la reducción porcentual del asentamiento atribuible al refuerzo con geoceldas. Los resultados muestran que el PSR aumenta con rapidez al incrementar la relación h/d desde valores bajos, por el mayor confinamiento y la rigidez compuesta de la capa; no obstante, alrededor de h/d ≈ 0.7–0.8 aparecen comportamientos decrecientes y, después de ese óptimo, una leve disminución asociada a límites estructurales de celdas de mayor altura (pandeo o pérdida de tensión). En conjunto, se obtuvieron reducciones de asentamiento del 35% al 58%, con valores máximos de hasta 73% en los análisis desarrollados. También se evaluó el desempeño mediante el índice SSR, que refleja la proporción de esfuerzo vertical efectivo transmitido a la subrasante. Se obtuvieron reducciones del 30 % al 45 %, evidenciando la capacidad del refuerzo con geoceldas para disipar cargas y mejorar la eficiencia estructural del sistema (Texto tomado de la fuente). | spa |
dc.description.abstract | The development of infrastructure on soft soils, such as the highly compressible clays of the Bogotá Savanna, demands technical solutions that improve bearing capacity and reduce settlements. Geocells—three-dimensional structures that provide lateral confinement and redistribute loads—have proven to be an efficient and sustainable alternative. While advanced international studies exist, no documented research in Colombia had employed realistic three-dimensional numerical modeling to evaluate their performance on fine-grained soils. This study presents a series of PLAXIS 3D simulations using actual honeycomb shaped geometry to model the soil–reinforcement interaction. A total of 25 models were analyzed, combining different cell diameters (244, 320, and 508 mm), granular layer thicknesses (20 and 25 cm), and loading plate sizes (0.2 m and 0.4 m). The results show that configurations with an h/d ratio close to 1 optimize the structural behavior of the reinforcement by fully activating lateral confinement and improving load distribution at the base. Phenomena such as localized punching or loss of efficiency due to oversized cells were also identified—behaviors only detectable through three-dimensional modeling. Reinforcement efficiency was evaluated using the Bearing Capacity Ratio (BCR), defined as the ratio between the bearing capacity of a reinforced system and that of the same soil without reinforcement. BCR values ranged from 1.5 to 4.5, with the most efficient configurations falling between 1.5 and 2.5. The findings establish technical criteria applicable to the Colombian context and promote more sustainable geotechnical solutions, highlighting the value of 3D modeling for designing reinforced systems on soft soils. In this study, performance was also evaluated using the PSR (Percentage Settlement Reduction) factor, which quantifies the percentage reduction in settlement attributable to geocell reinforcement. The results indicate that PSR increases rapidly as the h/d ratio rises from low values, due to greater confinement and the composite stiffness of the layer; however, around h/d ≈ 0.7–0.8 the improvement plateaus, and beyond that optimum it decreases slightly, associated with structural limits in taller cells (buckling or loss of tension). Overall, settlement reductions of 35% to 58% were obtained, with maximum values up to 73% in the analyses performed. The performance was also evaluated using the Subgrade Stress Ratio (SSR), which represents the proportion of vertical effective stress transmitted to the subgrade. Stress reductions between 30% and 45% were observed, highlighting the geocell reinforcement’s ability to dissipate loads and enhance the structural efficiency of the system. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ingeniería - Geotecnia | |
dc.description.researcharea | Relaciones constitutivas de suelos, rocas y materiales afines | |
dc.format.extent | xxi, 271 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88664 | |
dc.language.iso | spa | |
dc.publisher | Univesridad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | |
dc.relation.references | Ari, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/j.geotexmem.2021.01.006 | |
dc.relation.references | Avesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655 | |
dc.relation.references | Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007 | |
dc.relation.references | Bambi, A. A. (2019). Minería y desarrollo sostenible: un acercamiento a la explotación de materiales para la construcción en Uige, Angola. Minería y Geología, 35(4), 480–497 | |
dc.relation.references | Banerjee, S., Manna, B., & Shahu, J. T. (2023). Geocell as a Promising Reinforcement Technique for Road Pavement: A State of the Art. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-023-00818-0 | |
dc.relation.references | Baquero, V. Y., Ardila, C., Pineda, J. A., Andrés Cruz, J., Yineth, V., Espinosa, B., Camilo, C., Manrique, A., Arturo, J., Jaimes, P., Andrés, J., & Wilches, C. (2017). Numerical simulation of the role of a geocell inclusion on deformation behavior of a pavement structure laid on a fissured clayey subgrade Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI International Multi-Conference for Numerical simulation of the role of a geocell inclusion on deformation behavior of a pavement structure laid on a fissured clayey subgrade. In LACCEI. https://www.researchgate.net/publication/320306968 | |
dc.relation.references | Barbosa Hernández, C. A., Pineda, J. A., & Andrés Cruz, J. (2017). Geotechnical Characterization by In-Situ Testing of Overconsolidated Lacustrine Clays of Western “Sabana de Bogota.” https://www.researchgate.net/publication/320307222 | |
dc.relation.references | Barón Castro, M. A. (2021). Calibración del ensayo CPTu para el depósito lacustre de Bogotá | |
dc.relation.references | Bathurst, R. J., & Cai, Z. (1994). In-isolation cyclic load-extension behavior of two geogrids. Geosynthetics International, 1(1), 1–19. https://doi.org/10.1680/gein.1.0001 | |
dc.relation.references | Bathurst, R. J., & Jarrett, P. M. (1989). Large-Scale Model Tests of Geocomposite. Transportation Research Record, 1188(9), 28–36 | |
dc.relation.references | Caicedo, B., Mendoza, C., López, F., & Lizcano, A. (2018). Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005 | |
dc.relation.references | Chacón, G., Director, P., & Lizcano, A. (2004). CALIBRACIÓN DE MODELOS CONSTITUTIVOS EN ARCILLAS DE BOGOTÁ | |
dc.relation.references | Dash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/T07-035 | |
dc.relation.references | Emersleben, A., & Meyer, N. (2008a). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545 | |
dc.relation.references | Emersleben, A., & Meyer, N. (2008b). The Use of Geocells in Road Constructions Over Soft Soil: Vertical Stress and Falling Weight Deflectometer Measurements. EuroGeo4, 132, 1–8 | |
dc.relation.references | Garcia, R. S., & Avesani Neto, J. O. (2021). Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers. Geotextiles and Geomembranes, 49(1), 146–158. https://doi.org/10.1016/j.geotexmem.2020.09.009 | |
dc.relation.references | Gedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1). https://doi.org/10.1007/s40891-020-00249-4 | |
dc.relation.references | Geosynthetic Institute. (2016). Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. 610, 1–9 | |
dc.relation.references | Giroud, J. P. (1984). Geotextiles and geomembranes. Geotextiles and Geomembranes, 1(1), 5–40. https://doi.org/10.1016/0266-1144(84)90003-7 | |
dc.relation.references | Han, J., Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of geocell reinforced sand under a vertical load. Transportation Research Record, 2045, 95–101. https://doi.org/10.3141/2045-11 | |
dc.relation.references | Han, J., Yang, X. M., Leshchinsky, D., Parsons, R. L., & Rosen, A. (2008). Numerical analysis for mechanisms of a geocell-reinforced base under a vertical load. Geosynthetics in Civil and Environmental Engineering - Bibliografía 205 Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics. https://doi.org/10.1007/978-3-540-69313-0_135 | |
dc.relation.references | Hedge, A. (2017a). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. Construction and Building Materials, 154, 658–674. https://doi.org/10.1016/j.conbuildmat.2017.07.230 | |
dc.relation.references | Hegde, A., & Sitharam, T. (2015a). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387 | |
dc.relation.references | Hegde, A. M., & Sitharam, T. G. (2015). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387 | |
dc.relation.references | Hegde, A., & Sitharam, T. (2015a). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387 | |
dc.relation.references | Hegde, A., & Sitharam, T. (2015b). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52(9), 1396–1407. https://doi.org/10.1139/cgj-2014-0387 | |
dc.relation.references | International Geosynthetics Society - IGS. (2015). Geosynthetic Functions. www.GeosyntheticsSociety.org | |
dc.relation.references | Leal, A. N., Fernando, J., Tauta, C., Fernando, E., & Blanco, R. (2009). Determinación de parámetros para los modelos elastoplásticos MohrCoulomb y Hardening soil en suelos arcillosos | |
dc.relation.references | Leshchinsky, B., & Ling, H. I. (2013). Numerical modeling of behavior of railway ballasted structure with geocell confinement. Geotextiles and Geomembranes, 36, 33–43. https://doi.org/10.1016/j.geotexmem.2012.10.006 | |
dc.relation.references | Madhavi Latha, G., & Rajagopal, K. (2007). Parametric finite element analyses of geocell-supported embankments. Canadian Geotechnical Journal, 44(8), 917– 927. https://doi.org/10.1139/T07-039 | |
dc.relation.references | Madhavi Latha, G., Rajagopal, K., & Krishnaswamy, N. R. (2006). Experimental and Theoretical Investigations on Geocell-Supported Embankments. International Journal of Geomechanics, 6(1), 30–35. https://doi.org/10.1061/(asce)1532-3641(2006)6:1(30) | |
dc.relation.references | Madhavi Latha, G., & Somwanshi, A. (2009). Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27(6), 409–422. https://doi.org/10.1016/j.geotexmem.2009.03.005 | |
dc.relation.references | Miyamoto, S., & Miyata, Y. (2020). Bearing capacity mechanism of geocell reinforced soil foundations. In Lecture Notes in Civil Engineering (Vol. 50). https://doi.org/10.1007/978-981-15-0454-9_1 | |
dc.relation.references | Omar González-Cueto, C., Herrera Suárez, C. M., Ciro, C., Iglesias, E., Ii, C., Elvis, C., & Bravo, L. (2013). Análisis de los modelos constitutivos empleados para simular la compactación del suelo mediante el método de elementos finitos Analysis of constitutive models used to simulate soil compaction by mean of finite elements method (Vol. 22, Issue 3) | |
dc.relation.references | Perkins, S. W., & Edens, M. Q. (2003). Finite element modeling of a geosynthetic pullout test. Geotechnical & Geological Engineering, 21(4), 357–375. https://doi.org/10.1023/B:GEGE.0000006053.77489.c5 | |
dc.relation.references | Pineda. (2005). Ponencia Jornadas de Pavimentos Jorge Pineda 2005 | |
dc.relation.references | Pineda, & Colmenares. (2007). Influence of dessiccation on volume change behavior of Bogota clay. https://doi.org/10.13140/RG.2.1.1110.0004 | |
dc.relation.references | Pineda, J. A., & Colmenares, J. (2015). Variations of the coefficient of lateral earth pressure at rest (Ko) in surface clays of western Sabana de Bogota. https://www.researchgate.net/publication/299611027 | |
dc.relation.references | Pineda, Jhobany, E., Colegio, O.-D., Viator, S., & Internacional, B. (2017). SIMULACIÓN DE LOS DESPLAZAMIENTOS DE UNA ESTRUCTURA MULTICAPA REFORZADA CON GEOCELDAS, APOYADA SOBRE UN MEDIO DISCONTÍNUO. http://www.ucatolica.edu.co | |
dc.relation.references | Pineda, Murillo-Feo, C., & Colmenares, J. (2015). Characterization of pavement pathologies associated with the action of plant species in a road at western Sabana de Bogota. Épsilon, 25, 39–68 | |
dc.relation.references | Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010a). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes, 28(6), 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002 | |
dc.relation.references | Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010b). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes, 28(6), 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002 | |
dc.relation.references | Raba Moyano, M. A. (2012). Caracterización física y geomecánica de suelos Lacustres en la ciudad de Bogotá desde el contexto del comportamiento mecánico de suelos blandos. http://hdl.handle.net/1992/12123 | |
dc.relation.references | Rajagopal, K., Chandramouli, S., Parayil, A., & Iniyan, K. (2014). Studies on geosynthetic-reinforced road pavement structures. International Journal of Geotechnical Engineering, 8(3), 287–298. https://doi.org/10.1179/1939787914Y.0000000042 | |
dc.relation.references | Rajagopal, K., Krishnaswamy, N. R., & Latha, G. M. (1999). Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3), 171–184. https://doi.org/10.1016/S0266-1144(98)00034-X | |
dc.relation.references | Razali, M., Mahmood, N. A. C., Hashim, K. A., Mansor, S., & Zainuddin, N. I. (2018). The falling weight deflectometer (FWD) for characterization bonding state of subgrade. AIP Conference Proceedings, 2020. https://doi.org/10.1063/1.5062648 | |
dc.relation.references | Ruiz Campo, A. S. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. http://hdl.handle.net/1992/9205 | |
dc.relation.references | Sanabria, D. M. (2013). CARACTERÍSTICAS DE COMPRESIBILIDAD Y RESISTENCIA DE ARCILLAS TÍPICAS DEL DEPÓSITO LACUSTRE DE BOGOTÁ ESCUELA COLOMBIANA DE INGENIERÍA | |
dc.relation.references | Sanjei, C., & De Silva, L. I. N. (2016a). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCon.2016.7480142 | |
dc.relation.references | Sanjei, C., & De Silva, L. I. N. (2016b). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCon.2016.7480142 | |
dc.relation.references | Sankhat, K. T. (2022). Deformation Mode of Geocell-Soil Composite Structure | |
dc.relation.references | Schary, Y. (2020). Neoloy—Developing a Novel Polymeric Alloy for Geocells (pp. 63–76). https://doi.org/10.1007/978-981-15-6095-8_3 | |
dc.relation.references | Simsek, M. C., & Huvaj, N. (2024). Behavior of geocell reinforced sandy soils under static load. In Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society (pp. 2654–2657). CRC Press. https://doi.org/10.1201/9781003431749-515 | |
dc.relation.references | Sitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal, 42(2), 693–703. https://doi.org/10.1139/t04-117 | |
dc.relation.references | Tanyu, B. F., Aydilek, A. H., Lau, A. W., Edil, T. B., & Benson, C. H. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International, 20(2), 47–61. https://doi.org/10.1680/gein.13.00001 | |
dc.relation.references | Tavera Yunda, F. A. (2024). Estudio de la Influencia de los contenidos de diatomeas en los procesos de propagación de fisuras en arcilla. https://hdl.handle.net/1992/73603 | |
dc.relation.references | Thakur, J. K., Han, J., Pokharel, S. K., & Parsons, R. L. (2012). Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotextiles and Geomembranes, 35, 14– 24. https://doi.org/10.1016/j.geotexmem.2012.06.004 | |
dc.relation.references | Torres Peña, M. A. (2021). Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos | |
dc.relation.references | Yang, X. (2010). Numerical Analyses of Geocell- Reinforced Granular Soils under Static and Repeated Loads. In Diss | |
dc.relation.references | Zhang, L., Zhao, M., Shi, C., & Zhao, H. (2010). Bearing capacity of geocell reinforcement in embankment engineering. Geotextiles and Geomembranes, 28(5), 475–482. https://doi.org/10.1016/j.geotexmem.2009.12.011 | |
dc.relation.references | Zornberg, J. G., Subramanian, S., Roodi, G. H., Yalcin, Y., & Kumar, V. V. (2024). Sustainability Benefits of Adopting Geosynthetics in Roadway Design. International Journal of Geosynthetics and Ground Engineering, 10(3), 47. https://doi.org/10.1007/s40891-024-00551-5 | |
dc.relation.references | Zuo, Z., Hao, X., Li, H., Wang, W., Yang, G., & Liu, Y. (2023). Experimental Investigations on the Tensile Mechanical Behavior of HDPE Geocell Strip. Sustainability (Switzerland), 15(10). https://doi.org/10.3390/su15107820 | |
dc.relation.references | Holtz, R. D., Christopher, B. R., & Berg, R. R. (1997). Geosynthetic Design and Construction Guidelines. Federal Highway Administration (FHWA) | |
dc.relation.references | ISO 10319:2024. Geosynthetics – Wide-width tensile test. International Organization for Standardization (ISO) | |
dc.relation.references | Koerner, R. M. (2012). Designing with Geosynthetics (6th ed.). Pearson | |
dc.relation.references | Duque Escobar, G. (2024). Manual de geología para ingenieros. Universidad Nacional de Colombia - Sede Manizales | |
dc.relation.references | Bowles, J. E. (1996). Foundation analysis and design (5th ed.). McGraw-Hill | |
dc.relation.references | Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (3ª ed.). John Wiley & Sons | |
dc.relation.references | Das, B. M. (2012). Fundamentos de ingeniería de cimentaciones (7ª ed.). Cengage Learning | |
dc.relation.references | Ruiz Campo, A. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. Uniandes | |
dc.relation.references | Tavera Yunda, F. (2024). Estudio de la Influencia de los contenidos de diatomeas en los procesos de propagación de fisuras en arcilla. Universidad de los Andes | |
dc.relation.references | Ávila Álvarez, G. (08 de septiembre de 2012). Extracción de agua subterránea, una de las causas del hundimiento del suelo en Bogotá. Agencia de Noticias UNAL. https://agenciadenoticias.unal.edu.co/detalle/extraccion-de-agua subterranea-una-de-las-causas-del-hundimiento-del-suelo-en-bogota | |
dc.relation.references | Craig, R.F. (2004). Craig's Soil Mechanics (7th ed.). CRC Press. https://doi.org/10.4324/9780203494103 | |
dc.relation.references | Duncan, J. M., & Wright, S. G. (2005). Soil strength and slope stability (2nd ed.). John Wiley & Sons | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | |
dc.subject.lemb | BENTONITA | spa |
dc.subject.lemb | Bentonite | eng |
dc.subject.lemb | CONSOLIDACION DE SUELOS | spa |
dc.subject.lemb | Soil consolidation | eng |
dc.subject.lemb | ESTABILIZACION DE SUELOS | spa |
dc.subject.lemb | Soil stabilization | eng |
dc.subject.lemb | MECANICA DE SUELOS | spa |
dc.subject.lemb | Soil mechanics | eng |
dc.subject.lemb | ASENTAMIENTO DE ESTRUCTURAS | spa |
dc.subject.lemb | Settlement of structures | eng |
dc.subject.lemb | GEOGRAFIA-MODELOS MATEMATICOS | spa |
dc.subject.lemb | Geography - mathematical models | eng |
dc.subject.proposal | Suelos blandos | eng |
dc.subject.proposal | Refuerzo celular | spa |
dc.subject.proposal | Modelación numérica | spa |
dc.subject.proposal | Geoceldas | spa |
dc.subject.proposal | Capacidad portante | spa |
dc.subject.proposal | Geocells | eng |
dc.subject.proposal | Soft soils | eng |
dc.subject.proposal | Cellular reinforcement | eng |
dc.subject.proposal | Bearing capacity | eng |
dc.subject.proposal | Numerical modeling | eng |
dc.subject.proposal | PLAXIS 3D | spa |
dc.title | Evaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricas | spa |
dc.title.translated | Parametric evaluation of the mechanical response of a geocell reinforced soil system supported on fine-grained soils using numerical simulations | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Evaluación paramétrica de la respuesta mecánica de un sistema de suelo reforzado con geoceldas apoyado sobre suelos finos mediante simulaciones numéricas.pdf
- Tamaño:
- 21.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: