Numerical and experimental evaluation of surfaces with deterministic textures in connecting rod bearings of a single-cylinder diesel engine

dc.contributor.advisorToro, Alejandro
dc.contributor.advisorRudas Flórez, Juan Sebastián
dc.contributor.authorValdés Ortiz, Miyer Jaiver
dc.contributor.orcidValdés Ortiz, Miyer Jaivet [0000000234074636]
dc.contributor.orcidRudas Flórez, Juan Sebastián [000000033730705X]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Miyer-Valdes
dc.contributor.researchgroupGrupo de Tribología y Superficies
dc.date.accessioned2025-10-14T16:40:53Z
dc.date.available2025-10-14T16:40:53Z
dc.date.issued2025-04
dc.description.abstractThis doctoral research presents a comprehensive numerical and experimental study on the influence of deterministic surface texturing on the tribological behavior of connecting rod bearings in internal combustion engines. A hydrodynamic lubrication model based on the Reynolds equation was developed to predict the effects of texture geometry, depth, and spatial distribution on film pressure, friction force, and load-carrying capacity. A parametric optimization was conducted using the Grey Relational Analysis (GRA) method to identify the most efficient texture configurations in terms of friction reduction and enhanced load support. The optimal texture design, defined by circular dimples with controlled density and positioning, was manufactured through precision CNC micromachining and evaluated experimentally on a single-cylinder diesel engine under controlled load and speed conditions. Measurements of torque and friction mean effective pressure (FMEP) demonstrated a reduction of 5.9% and 6.4%, respectively, compared to the untextured bearings. Despite the absence of statistically significant differences in global FMEP values, local torque analysis confirmed that the optimized textured surfaces effectively reduced friction during the high-load phases of the engine cycle. Post-test surface inspections confirmed minimal wear and consistent lubricant film stability, validating the tribological advantages of deterministic texturing under dynamic operation. The close agreement between the numerical predictions and experimental data supports the robustness of the proposed model and optimization methodology. Overall, the study provides a validated framework for the design, fabrication, and evaluation of textured bearings, offering valuable insights for improving mechanical efficiency and fuel economy inmodern engine systems.eng
dc.description.abstractEsta investigación doctoral presenta un estudio numérico y experimental exhaustivo sobre la influencia del texturizado superficial determinístico en el comportamiento tribológico de los cojinetes de biela en motores de combustión interna. Se desarrolló un modelo de lubricación hidrodinámica basado en la ecuación de Reynolds para predecir los efectos de la geometría, profundidad y distribución de las texturas sobre la presión del film lubricante, la fuerza de fricción y la capacidad de carga. La optimización de los parámetros de textura se realizó mediante el método de Análisis Relacional Gris (GRA), identificando las configuraciones más eficaces en la reducción de fricción y el incremento de la capacidad portante. El diseño óptimo, compuesto por cavidades circulares con densidad y ubicación controladas, fue fabricado mediante micromecanizado CNC de alta precisión y evaluado experimentalmente en un motor diésel monocilíndrico bajo condiciones controladas de carga y velocidad. Las mediciones de torque y presión media efectiva de fricción (FMEP) evidenciaron reducciones del 6.4% y 5.9% respecto a los cojinetes sin textura. Aunque no se observaron diferencias estadísticamente significativas en los valores globales de FMEP, el análisis local del torque confirmó que las superficies texturizadas optimizadas reducen la fricción durante las fases de mayor carga del ciclo. Las inspecciones posteriores al ensayo mostraron un desgaste mínimo y una película lubricante estable, validando las ventajas tribológicas del texturizado determinístico en condiciones dinámicas. La alta coherencia entre las predicciones numéricas y los resultados experimentales respalda la solidez del modelo propuesto y del enfoque de optimización. En conjunto, el estudio ofrece una metodología validada para el diseño, fabricación y evaluación de cojinetes texturizados, aportando herramientas aplicables a la mejora de la eficiencia mecánica y el rendimiento energético de motores modernos. (Texto tomado de la fuente)spa
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.researchareaSistemas Deslizantes Rodantes
dc.description.sponsorshipMincinecias
dc.format.extent1 recurso en líne (129 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89029
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.relation.referencesA. Erdemir and K. Holmberg, Energy Consumption Due to Friction in Motored Vehicles and Low-Friction Coatings to Reduce It. Cham: Springer International Publishing, 2015, pp. 1--23. [Online]. Available: https://doi.org/10.1007/978-3-319-14771-0_1
dc.relation.referencesA. P. Malshe, S. Bapat, K. P. Rajurkar, and H. H. Haitjema, ‘‘Bio-inspired textures for functional applications,’’ Cirp Annalsmanufacturing Technology, vol. 67, pp. 627--650, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:115283637
dc.relation.referencesD. Gropper, L. Wang, and T. J. Harvey, ‘‘Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings,’’ Tribology International, vol. 94, pp. 509--529, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X15004582
dc.relation.referencesA. Razavykia, C. Delprete, and P. Baldissera, ‘‘Numerical study of power loss and lubrication of connecting rod big-end,’’ Lubricants, vol. 7, no. 6, 2019. [Online]. Available: https://www.mdpi.com/2075-4442/7/6/47
dc.relation.referencesX. Lu and M. M. Khonsari, ‘‘An experimental investigation of dimple effect on the stribeck curve of journal bearings,’’ Tribology Letters, vol. 27, pp. 169--176, 05 2007.
dc.relation.referencesF. Profito, S. Vladescu, T. Reddyhoff, and D. Dini, ‘‘Numerical and experimental investigation of textured journal bearings for friction reduction,’’ Tribology International, vol. 195, p. 109643, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X24003955
dc.relation.referencesK. Holmberg and A. Erdemir, ‘‘Influence of tribology on global energy consumption, costs and emissions,’’ Friction, vol. 5, no. 3, pp. 263--284, Sep 2017. [Online]. Available: https://doi.org/10.1007/s40544-017-0183-5
dc.relation.referencesH. P. Jost and J. Schofield, ‘‘Energy saving through tribology: A techno-economic study,’’ Proceedings of the Institution of Mechanical Engineers, vol. 195, no. 1, pp. 151--173, 1981. [Online]. Available: https: //doi.org/10.1243/PIME_PROC_1981_195_016_02
dc.relation.referencesI. Etsion, ‘‘Modeling of surface texturing in hydrodynamic lubrication,’’ Friction, vol. 1, no. 3, pp. 195--209, Sep 2013. [Online]. Available: https://doi.org/10.1007/s40544-013-0018-y
dc.relation.referencesH. Zhang, D. Y. Zhang, M. Hua, G. N. Dong, and K. S. Chin, ‘‘A study on the tribological behavior of surface texturing on babbitt alloy under mixed or starved lubrication,’’ Tribology Letters, vol. 56, no. 2, pp. 305--315, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11249-014-0410-4
dc.relation.referencesH. Zhang, Y. Liu, M. Hua, D. ya Zhang, L. guo Qin, and G. neng Dong, ‘‘An optimization research on the coverage of micro-textures arranged on bearing sliders,’’ Tribology International, vol. 128, pp. 231--239, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X18303712
dc.relation.referencesJ. Shi, B. Zhao, J. He, and X. Lu, ‘‘The optimization design for the journal-thrust couple bearing surface texture based on particle swarm algorithm,’’ Tribology International, vol. 198, p. 109874, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X24006261
dc.relation.referencesQ. Huang, X. Shi, Y. Xue, K. Zhang, and C. Wu, ‘‘Assessment and optimization of tribological parameters for bionic textured aisi 4140-snagcu self-lubricating composite under dry sliding conditions using ahp and rsm,’’ Tribology Transactions, vol. 65, no. 3, pp. 479--491, 2022. [Online]. Available: https://doi.org/10.1080/10402004.2022.2052212
dc.relation.referencesN. D. Hingawe and S. P. Bhore, ‘‘Optimal design of surface texture in meso scale air journal bearing,’’ Surface Topography: Metrology and Properties, vol. 9, no. 3, p. 034001, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/2051-672X/ac0f35
dc.relation.referencesC. B. Khatri, S. K. Yadav, K. Sahu, and S. C. Sharma, ‘‘Performance analysis of er fluid-lubricated two-lobe hole-entry hybrid journal bearings with bionic and spherical texture surfaces optimized by genetic algorithm,’’ Tribology International, vol. 202, p. 110332, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X24010843
dc.relation.referencesK. Holmberg, P. Andersson, and A. Erdemir, ‘‘Global energy consumption due to friction in passenger cars,’’ Tribology International, vol. 47, pp. 221--234, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0301679X11003501
dc.relation.referencesM. Nakada, ‘‘Trends in engine technology and tribology,’’ Tribology International, vol. 27, no. 1, pp. 3--8, 1994, special Issue Tribology for Automobiles in Japan. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0301679X94900566
dc.relation.referencesN. D. S. A. Santos, V. R. Roso, and M. T. C. Faria, ‘‘Review of engine journal bearing tribology in start-stop applications,’’ Engineering Failure Analysis, vol. 108, p. 104344, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1350630719312403
dc.relation.referencesM. R. Islam Sazzad, M. M. Rahman, T. Hassan, A. Al Rifat, A. Al Mamun, A. R. Adib, R. M. Meraz, and M. Ahmed, ‘‘Advancing sustainable lubricating oil management: Re-refining techniques, market insights, innovative enhancements, and conversion to fuel,’’ Heliyon, vol. 10, no. 20, p. e39248, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405844024152796
dc.relation.referencesN. O. Jean Michel Martin, Ed., Nanolubricants. Wiley, Apr. 2008. [Online]. Available: http://dx.doi.org/10.1002/9780470987711
dc.relation.referencesM. Kalin, J. Kogovšek, and M. Remškar, ‘‘Nanoparticles as novel lubricating additives in a green, physically based lubrication technology for dlc coatings,’’ Wear, vol. 303, no. 1, pp. 480--485, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164813001889
dc.relation.referencesW. Dai, B. Kheireddin, H. Gao, and H. Liang, ‘‘Roles of nanoparticles in oil lubrication,’’ Tribology International, vol. 102, pp. 88--98, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X16301116
dc.relation.referencesN. Argibay, J. H. Keith, B. A. Krick, D. W. Hahn, G. R. Bourne, and W. G. Sawyer, ‘‘High-temperature vapor phase lubrication using carbonaceous gases,’’ Tribology Letters, vol. 40, no. 1, p. 3–9, Sep. 2009. [Online]. Available: http://dx.doi.org/10.1007/s11249-009-9514-7
dc.relation.referencesJ. Charles, F. Crane, and J. Furness, ‘‘19 - materials for bearings,’’ in Selection and Use of Engineering Materials (Third Edition), third edition ed., J. Charles, F. Crane, and J. Furness, Eds. Oxford: Butterworth-Heinemann, 1997, pp. 301--304. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780750632775500210
dc.relation.referencesV. Cox and E. Gainey, ‘‘Paper iii(iv) - connecting rod bearing failures in large offshore compressors,’’ in Tribology of Reciprocating Engines, D. Dowson, C. Taylor, M. Godet, and D. Berthe, Eds. Butterworth-Heinemann, 1993, pp. 72--76. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780408221610500135
dc.relation.referencesN. MacQuarrie and D. Green, ‘‘Paper viii(i) - bearing material requirements for the future,’’ in Tribology of Reciprocating Engines, D. Dowson, C. Taylor, M. Godet, and D. Berthe, Eds. Butterworth-Heinemann, 1993, pp. 191--200. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780408221610500329
dc.relation.referencesS. Nilufar, ‘‘Experimental investigation of structure, composition and properties of novel metal-carbon covetic materials,’’ Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2014. [Online]. Available: http://hdl.handle.net/2142/50353
dc.relation.referencesS. Jacobson and S. Hogmark, ‘‘Surface modifications in tribological contacts,’’ Wear, vol. 266, no. 3, pp. 370--378, 2009, tribology of Engineered Surfaces. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164808002159
dc.relation.referencesA. Bramley, S. Dunning, and C. Taylor, ‘‘Paper ix(ii) - a study of cavitation erosion resistance of bearing materials using an ultrasonic vibrator,’’ in Tribology of Reciprocating Engines, D. Dowson, C. Taylor, M. Godet, and D. Berthe, Eds. Butterworth- Heinemann, 1993, pp. 233--242. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780408221610500378
dc.relation.referencesI. Mcluckie, ‘‘9 - predictive methods for tribological performance in internal combustion engines,’’ in Tribology and Dynamics of Engine and Powertrain, H. Rahnejat, Ed. Woodhead Publishing, 2010, pp. 284--340. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9781845693619500090
dc.relation.referencesF. Martin, ‘‘Engine bearing design: Design studies, wider aspects and future developments,’’ in Engine Tribology, ser. Tribology Series, C. Taylor, Ed. Elsevier, 1993, vol. 26, pp. 113--157. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0167892208700105
dc.relation.referencesP. Maspeyrot and J. Frene, ‘‘Shape defects and misalignment effects in connecting-rod bearings,’’ in Tribological Design of Machine Elements, ser. Tribology Series, D. Dowson, C. Taylor, M. Godet, and D. Berthe, Eds. Elsevier, 1989, vol. 14, pp. 317--322. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167892208702086
dc.relation.referencesR. Taylor, ‘‘The inclusion of lubricant shear thinning in journal bearing models,’’ in Lubrication at the Frontier, ser. Tribology Series, D. Dowson, M. Priest, C. Taylor, P. Ehret, T. Childs, G. Dalmaz, Y. Berthier, L. Flamand, J.-M. Georges, and A. Lubrecht, Eds. Elsevier, 1999, vol. 36, pp. 611--619. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167892299800819
dc.relation.referencesG. J. Schmitz and U. Prahl, Eds., Handbook of Software Solutions for ICME. Wiley, Sep. 2016. [Online]. Available: http://dx.doi.org/10.1002/9783527693566
dc.relation.referencesB. B. Michael Nosonovsky, Ed., Green Tribology: Biomimetics, Energy Conservation and Sustainability. Springer Berlin Heidelberg, 2012. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-23681-5
dc.relation.referencesQ. Xin, ‘‘10 - friction and lubrication in diesel engine system design,’’ in Diesel Engine System Design, Q. Xin, Ed. Woodhead Publishing, 2013, pp. 651--758. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9781845697150500108
dc.relation.referencesS. Ardah, F. J. Profito, and D. Dini, ‘‘A comprehensive review and trends in lubrication modelling,’’ Advances in Colloid and Interface Science, vol. 342, p. 103492, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0001868625001034
dc.relation.referencesC. Grente, J. Ligier, J. Toplosky, and D. Bonneau, ‘‘The consequence of performance increases of automotive engines on the modelisation of main and connecting-rod bearings,’’ in Tribology Research: From Model Experiment to Industrial Problem, ser. Tribology Series, G. Dalmaz, A. Lubrecht, D. Dowson, and M. Priest, Eds. Elsevier, 2001, vol. 39, pp. 839--850. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167892201801644
dc.relation.referencesI. Etsion and E. Sher, ‘‘Improving fuel efficiency with laser surface textured piston rings,’’ Tribology International, vol. 42, no. 4, pp. 542--547, 2009, tribology for engines and transmissions. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0301679X08000479
dc.relation.referencesG. Ryk and I. Etsion, ‘‘Testing piston rings with partial laser surface texturing for friction reduction,’’ Wear, vol. 261, no. 7, pp. 792--796, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164806000329
dc.relation.referencesA. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, ‘‘The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,’’ Tribology International, vol. 38, no. 3, p. 219–225, Mar. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.triboint.2004.08.004
dc.relation.referencesY. Kligerman, I. Etsion, and A. Shinkarenko, ‘‘Improving tribological performance of piston rings by partial surface texturing,’’ Journal of Tribology, vol. 127, no. 3, pp. 632--638, 06 2005. [Online]. Available: https://doi.org/10.1115/1.1866171
dc.relation.referencesH. Rahnejat, Ed., Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends. Woodhead Publishing, 2010.
dc.relation.referencesM. Wakuda, Y. Yamauchi, S. Kanzaki, and Y. Yasuda, ‘‘Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact,’’ Wear, vol. 254, no. 3, pp. 356--363, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164803000048
dc.relation.referencesM. Varenberg, G. Halperin, and I. Etsion, ‘‘Different aspects of the role of wear debris in fretting wear,’’ Wear, vol. 252, no. 11, pp. 902--910, 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164802000443
dc.relation.referencesH. Yamakiri, S. Sasaki, T. Kurita, and N. Kasashima, ‘‘Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water,’’ Tribology International, vol. 44, no. 5, pp. 579--584, 2011, special Issue: ECOTRIB 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X1000280X
dc.relation.referencesH. Costa and I. Hutchings, ‘‘Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions,’’ Tribology International, vol. 40, no. 8, pp. 1227--1238, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0301679X0700014X
dc.relation.referencesP. Cuervo, D. A. López, J. P. Cano, J. C. Sánchez, S. Rudas, H. Estupiñán, A. Toro, and H. A. Abdel-Aal, ‘‘Development of low friction snake-inspired deterministic textured surfaces,’’ Surface Topography: Metrology and Properties, vol. 4, no. 2, p. 024013, may 2016. [Online]. Available: https://dx.doi.org/10.1088/2051-672X/4/2/024013
dc.relation.referencesD. L. Hu, J. Nirody, T. Scott, and M. J. Shelley, ‘‘The mechanics of slithering locomotion,’’ Proceedings of the National Academy of Sciences, vol. 106, no. 25, pp. 10 081--10 085, 2009. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0812533106
dc.relation.referencesA.-A. Hisham A, ‘‘On surface structure and friction regulation in reptilian limbless locomotion,’’ Journal of the Mechanical Behavior of Biomedical Materials, vol. 22, pp. 115--135, 2013. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1751616112002585
dc.relation.referencesM. Sedlaček, P. Gregorčič, and B. P. and, ‘‘Use of the roughness parameters ssk and sku to control friction—a method for designing surface texturing,’’ Tribology Transactions, vol. 60, no. 2, pp. 260--266, 2017. [Online]. Available: https://doi.org/10.1080/10402004.2016.1159358
dc.relation.referencesD. K. Panigrahi and M. Sarangi, ‘‘Tribological performance of positive deterministic textured surfaces in parallel sliding lubricated contacts: Effect of texture size and height,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 234, no. 12, pp. 1908--1925, 2020. [Online]. Available: https://doi.org/10.1177/1350650119897479
dc.relation.referencesJ. Jin, X. Chen, Y. Fu, and Y. Chang, ‘‘Optimal design of the slip--texture on a journal-bearing surface,’’ Industrial Lubrication and Tribology, vol. 73, no. 2, pp. 230--237, Jan 2021. [Online]. Available: https://doi.org/10.1108/ILT-01-2020-0022
dc.relation.referencesN. Singh and R. Awasthi, ‘‘Theoretical investigation of surface texture effects on the performance characteristics of hydrodynamic two-lobe journal bearing,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 234, no. 11, pp. 1712--1725, 2020. [Online]. Available: https://doi.org/10.1177/1350650120915053
dc.relation.referencesM. S. Uddin, T. Ibatan, and S. Shankar, ‘‘Influence of surface texture shape, geometry and orientation on hydrodynamic lubrication performance of plane-to-plane slider surfaces,’’ Lubrication Science, vol. 29, no. 3, pp. 153--181, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ls.1362
dc.relation.referencesC. Ma, J. Sun, Y. Wang, B. Yu, Q. Yu, and Q. Tu, ‘‘On the optimum dimple depth-over-diameter ratio for textured surfaces,’’ Advances in Mechanical Engineering, vol. 9, no. 9, p. 1687814017720085, 2017. [Online]. Available: https://doi.org/10.1177/1687814017720085
dc.relation.referencesN. Tala-Ighil, P. Maspeyrot, M. Fillon, and A. Bounif, ‘‘Effects of surface texture on journal-bearing characteristics under steady-state operating conditions,’’ Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 221, no. 6, pp. 623--633, 2007. [Online]. Available: https://doi.org/10.1243/13506501JET287
dc.relation.referencesN. Tala-Ighil, M. Fillon, and P. Maspeyrot, ‘‘Effect of textured area on the performances of a hydrodynamic journal bearing,’’ Tribology International, vol. 44, no. 3, pp. 211--219, 2011. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0301679X10002379
dc.relation.referencesV. Brizmer and Y. Kligerman, ‘‘A laser surface textured journal bearing,’’ Journal of Tribology, vol. 134, no. 3, p. 031702, 06 2012. [Online]. Available: https://doi.org/10.1115/1.4006511
dc.relation.referencesS. Cupillard, M. Cervantes, and S. Glavatskih, ‘‘A cfd study of a finite textured journal bearing,’’ in Hydro technology and the evironment for the new century : 24th IAHR Symposium on Hydraulic Machinery and Systems, 2008, qC 20120510. [Online]. Available: http://pure.ltu.se/portal/sv/publications/ a-cfdstudy-of-a-finite-textured-journal-bearing(0d536f40-b010-11dd-b677-000ea68e967b).html
dc.relation.referencesS. Cupillard, S. Glavatskih, and M. J. Cervantes, ‘‘Computational fluid dynamics analysis of a journal bearing with surface texturing,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 222, no. 2, pp. 97--107, 2008. [Online]. Available: https://doi.org/10.1243/13506501JET319
dc.relation.referencesS. Kango, R. Sharma, and R. Pandey, ‘‘Thermal analysis of microtextured journal bearing using non-newtonian rheology of lubricant and jfo boundary conditions,’’ Tribology International, vol. 69, pp. 19--29, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X13002909
dc.relation.references------, ‘‘Comparative analysis of textured and grooved hydrodynamic journal bearing,’’ Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 228, no. 1, pp. 82--95, 2014. [Online]. Available: https://doi.org/10.1177/1350650113499742
dc.relation.referencesH. Zhang, G. Dong, M. Hua, F. Guo, and K. S. Chin, ‘‘Parametric design of surface textures on journal bearing,’’ Industrial Lubrication and Tribology, vol. 67, no. 4, pp. 359--369, Jan 2015. [Online]. Available: https://doi.org/10.1108/ILT-08-2013-0089
dc.relation.referencesB. Manser, I. Belaidi, A. Hamrani, S. Khelladi, and F. Bakir, ‘‘Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey,’’ Comptes Rendus. Mécanique, vol. 347, no. 2, pp. 141--165, 2019.
dc.relation.referencesB. Manser, I. Belaidi, A. Hamrani, S. Khelladi, and F. B. and, ‘‘Texture shape effects on hydrodynamic journal bearing performances using mass-conserving numerical approach,’’ Tribology - Materials, Surfaces & Interfaces, vol. 14, no. 1, pp. 33--50, 2020. [Online]. Available: https://doi.org/10.1080/17515831.2019.1666232
dc.relation.referencesS.-C. Vlădescu, M. Fowell, L. Mattsson, and T. Reddyhoff, ‘‘The effects of laser surface texture applied to internal combustion engine journal bearing shells – an experimental study,’’ Tribology International, vol. 134, pp. 317--327, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X19300726
dc.relation.referencesP. G. Grützmacher, F. J. Profito, and A. Rosenkranz, ‘‘Multi-scale surface texturing in tribology—current knowledge and future perspectives,’’ Lubricants, vol. 7, no. 11, 2019. [Online]. Available: https://www.mdpi.com/2075-4442/7/11/95
dc.relation.referencesH. Costa and I. Hutchings, ‘‘Some innovative surface texturing techniques for tribological purposes,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 229, no. 4, pp. 429--448, 2015. [Online]. Available: https://doi.org/10.1177/1350650114539936
dc.relation.referencesA. Ahmed, H. H. Masjuki, M. Varman, M. A. Kalam, M. Habibullah, and K. A. H. Al Mahmud, ‘‘An overview of geometrical parameters of surface texturing for piston/cylinder assembly and mechanical seals,’’ Meccanica, vol. 51, no. 1, pp. 9--23, Jan 2016. [Online]. Available: https://doi.org/10.1007/s11012-015-0180-6
dc.relation.referencesD. G. Coblas, A. Fatu, A. Maoui, and M. Hajjam, ‘‘Manufacturing textured surfaces: State of art and recent developments,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 229, no. 1, pp. 3--29, 2015. [Online]. Available: https://doi.org/10.1177/1350650114542242
dc.relation.referencesS. Bhaumik, D. Chowdhury, A. Batham, U. Sehgal, C. Ghosh, B. Bhattacharya, and S. Datta, ‘‘Analysing the frictional properties of micro dimpled surface created by milling machine under lubricated condition,’’ Tribology International, vol. 146, p. 106260, Jun. 2020. [Online]. Available: http://dx.doi.org/10.1016/j.triboint.2020.106260
dc.relation.referencesX. Wang, K. Kato, K. Adachi, and K. Aizawa, ‘‘Loads carrying capacity map for the surface texture design of sic thrust bearing sliding in water,’’ Tribology International, vol. 36, no. 3, pp. 189--197, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X02001457
dc.relation.referencesX. Wang, J. Wang, B. Zhang, and W. Huang, ‘‘Design principles for the area density of dimple patterns,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 229, no. 4, pp. 538--546, 2015. [Online]. Available: https://doi.org/10.1177/1350650114531939
dc.relation.referencesI. Etsion and G. Halperin, ‘‘A laser surface textured hydrostatic mechanical seal,’’ Sealing Technology, vol. 2003, no. 3, pp. 6--10, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1350478903030186
dc.relation.referencesM. Qiu, A. Delic, and B. Raeymaekers, ‘‘The effect of texture shape on the load-carrying capacity of gaslubricated parallel slider bearings,’’ Tribology Letters, vol. 48, no. 3, pp. 315--327, Dec 2012. [Online]. Available: https://doi.org/10.1007/s11249-012-0027-4
dc.relation.referencesM. Qiu, B. R. Minson, and B. Raeymaekers, ‘‘The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings,’’ Tribology International, vol. 67, pp. 278--288, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X13002855
dc.relation.referencesH. Christensen and K. Tonder, ‘‘The hydrodynamic lubrication of rough bearing surfaces of finite width,’’ Journal of Lubrication Technology, vol. 93, no. 3, pp. 324--329, 07 1971. [Online]. Available: https://doi.org/10.1115/1.3451579
dc.relation.referencesS. Kumar, ‘‘Stochastic models with variable viscosity for hydrodynamic lubrication of rough surfaces,’’ Wear, vol. 62, no. 2, p. 329–336, Aug. 1980. [Online]. Available: http://dx.doi.org/10.1016/0043-1648(80)90177-5
dc.relation.referencesA. Gherca, A. Fatu, M. Hajjam, and P. Maspeyrot, ‘‘Effects of surface texturing in steady-state and transient flow conditions: Two-dimensional numerical simulation using a mass-conserving cavitation model,’’ Proceedings of the Institution of Mechanical Engineers, Part J, vol. 229, no. 4, pp. 505--522, 2015. [Online]. Available: https://doi.org/10.1177/1350650114546432
dc.relation.referencesM. Arghir, A. Alsayed, and D. Nicolas, ‘‘The finite volume solution of the reynolds equation of lubrication with film discontinuities,’’ International Journal of Mechanical Sciences, vol. 44, no. 10, p. 2119–2132, Oct. 2002. [Online]. Available: http://dx.doi.org/10.1016/S0020-7403(02)00166-2
dc.relation.referencesM. DOBRICA and M. F. and, ‘‘Reynolds’ model suitability in simulating rayleigh step bearing thermohydrodynamic problems,’’ Tribology Transactions, vol. 48, no. 4, pp. 522--530, 2005. [Online]. Available: https://doi.org/10.1080/05698190500385088
dc.relation.referencesC. Knauder, H. Allmaier, D. E. Sander, and T. Sams, ‘‘Investigations of the friction losses of different engine concepts. part 1: A combined approach for applying subassembly-resolved friction loss analysis on a modern passenger-car diesel engine,’’ Lubricants, vol. 7, no. 5, 2019. [Online]. Available: https://www.mdpi.com/2075-4442/7/5/39
dc.relation.referencesT. Woloszynski, P. Podsiadlo, and G. W. Stachowiak, ‘‘Efficient solution to the cavitation problem in hydrodynamic lubrication,’’ Tribology Letters, vol. 58, no. 1, p. 18, Mar 2015. [Online]. Available: https://doi.org/10.1007/s11249-015-0487-4
dc.relation.referencesF. A. Suárez-Bustamante, F. M. Toro-Botero, and J. M. Vélez-Restrepo, ‘‘Efecto de la textura superficial en el desempeño a fricción de cojinetes de empuje,’’ Ingeniería, investigación y tecnología, vol. 13, no. 1, p. 97–103, Jan. 2012. [Online]. Available: http://dx.doi.org/10.22201/fi.25940732e.2012.13n1.010
dc.relation.referencesF. Suárez-Bustamante, F. Toro-Botero, and J. Vélez-Restrepo, ‘‘Influencia de texturas superficiales acondicionadas en el desempeño de cojinetes planos operando en condiciones hl,’’ Ingeniería Investigación y Tecnología, vol. XIII, no. 3, pp. 365--374, 2012. [Online]. Available: https://www.scielo.org.mx/pdf/iit/v13n3/v13n3a10.pdf
dc.relation.referencesH. Yu, X. Wang, and F. Zhou, ‘‘Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces,’’ Tribology Letters, vol. 37, no. 2, pp. 123--130, Feb 2010. [Online]. Available: https://doi.org/10.1007/s11249-009-9497-4
dc.relation.referencesK. Holmberg, P. Andersson, N.-O. Nylund, K. Mäkelä, and A. Erdemir, ‘‘Global energy consumption due to friction in trucks and buses,’’ Tribology International, vol. 78, pp. 94--114, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X14001820
dc.relation.referencesN. Tala-Ighil and M. Fillon, ‘‘A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics,’’ Tribology International, vol. 90, pp. 228--239, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X1500184X
dc.relation.referencesR. Ausas, P. Ragot, J. Leiva, M. Jai, G. Bayada, and G. C. Buscaglia, ‘‘The impact of the cavitation model in the analysis of microtextured lubricated journal bearings,’’ Journal of Tribology, vol. 129, no. 4, pp. 868--875, 04 2007. [Online]. Available: https://doi.org/10.1115/1.2768088
dc.relation.referencesI. Etsion, ‘‘State of the art in laser surface texturing,’’ Journal of Tribology, vol. 127, no. 1, pp. 248--253, 02 2005. [Online]. Available: https://doi.org/10.1115/1.1828070
dc.relation.referencesA. V. Olver, M. T. Fowell, H. A. Spikes, and I. G. Pegg, ‘‘‘inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings,’’ Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 220, no. 2, pp. 105--108, 2006. [Online]. Available: https://doi.org/10.1243/13506501JET168
dc.relation.referencesK. Yagi and J. Sugimura, ‘‘Balancing wedge action: A contribution of textured surface to hydrodynamic pressure generation,’’ Tribology Letters, vol. 50, no. 3, pp. 349--364, Jun 2013. [Online]. Available: https://doi.org/10.1007/s11249-013-0132-z
dc.relation.referencesZ. Wang, R. Ye, and J. Xiang, ‘‘The performance of textured surface in friction reducing: A review,’’ Tribology International, vol. 177, p. 108010, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X22005813
dc.relation.referencesY. Wang, G. Jacobs, F. König, S. Zhang, and S. von Goeldel, ‘‘Investigation of microflow effects in textures on hydrodynamic performance of journal bearings using cfd simulations,’’ Lubricants, vol. 11, no. 1, 2023. [Online]. Available: https://www.mdpi.com/2075-4442/11/1/20
dc.relation.referencesR. Yu, W. Chen, and P. Li, ‘‘The analysis of elastohydrodynamic lubrication in the textured journal bearing,’’ Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 230, no. 10, pp. 1197--1208, 2016. [Online]. Available: https://doi.org/10.1177/1350650116630207
dc.relation.referencesM. Rom and S. Müller, ‘‘A new model for textured surface lubrication based on a modified reynolds equation including inertia effects,’’ Tribology International, vol. 133, pp. 55--66, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0301679X18306091
dc.relation.referencesD. Dhande and D. Pande, ‘‘Multiphase flow analysis of hydrodynamic journal bearing using cfd coupled fluid structure interaction considering cavitation,’’ Journal of King Saud University - Engineering Sciences, vol. 30, no. 4, pp. 345--354, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1018363916300320
dc.relation.referencesC. Gu, Y. Cui, and D. Zhang, ‘‘Research on the optimal design approach of the surface texture for journal bearings,’’ Lubricants, vol. 12, no. 4, 2024. [Online]. Available: https://www.mdpi.com/2075-4442/12/4/111
dc.relation.referencesO. Pinkus and B. Sternlicht, Theory of Hydrodynamic Lubrication. McGraw-Hill, 1961. [Online]. Available: https://books.google.com.co/books?id=BuVSAAAAMAAJ
dc.relation.referencesJ. Frêne, D. Nicolas, B. Degueurce, D. Berthe, and M. Godet, Eds., Hydrodynamic Lubrication - Bearings and Thrust Bearings, ser. Tribology Series. Elsevier, 1990, vol. 33.
dc.relation.referencesS. Mishra and S. Aggarwal, ‘‘A review of performance of textured journal bearing,’’ Tribology Online, vol. 18, no. 7, pp. 494--507, 2023.
dc.relation.referencesQ. Guo, Z. Liu, Z. Yang, Y. Jiang, Y. Sun, J. Xu, W. Zhao, W. Wang, W. Wang, Q. Ren, and C. Shu, ‘‘Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology,’’ Journal of Manufacturing Processes, vol. 126, pp. 285--331, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612524007679
dc.relation.referencesN. Szpisják-Gulyás, A. N. Al-Tayawi, Z. H. Horváth, Z. László, S. Kertész, and C. Hodúr, ‘‘Methods for experimental design, central composite design and the box–behnken design, to optimise operational parameters: A review,’’ Acta Alimentaria, vol. 52, no. 4, pp. 521 -- 537, 2023. [Online]. Available: https://akjournals.com/view/journals/066/52/4/article-p521.xml
dc.relation.referencesM. Prölß, H. Schwarze, T. Hagemann, P. Zemella, and P. Winking, ‘‘Theoretical and experimental investigations on transient run-up procedures of journal bearings including mixed friction conditions,’’ Lubricants, vol. 6, no. 4, 2018. [Online]. Available: https://www.mdpi.com/2075-4442/6/4/105
dc.relation.referencesR. Rahmani, I. Mirzaee, A. Shirvani, and H. Shirvani, ‘‘An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures,’’ Tribology International, vol. 43, no. 8, pp. 1551--1565, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X10000629
dc.relation.referencesB. Bhasker, N. Seetharamaiah, P. R. Babu, and S. K. Gugulothu, ‘‘Hydrodynamic bearing performance trade-off study and fuzzy-based multi-objective optimization on an offset surface textured journal bearing,’’ Journal of Bio- and Tribo-Corrosion, vol. 7, no. 1, p. 17, Nov 2020. [Online]. Available: https://doi.org/10.1007/s40735-020-00453-9
dc.relation.referencesR. B. P. Bhasker B, Seetharamaiah N and S. Gugulothu, ‘‘Hydrodynamic bearing performance trade-off study and fuzzy based multi-objective optimisation on a offset surface textured journal bearing,’’ Advances in Materials and Processing Technologies, vol. 8, no. 1, pp. 989--1006, 2022. [Online]. Available: https://doi.org/10.1080/2374068X.2020.1835021
dc.relation.referencesD. Ramos and G. Daniel, ‘‘Microgroove optimization to improve hydrodynamic bearing performance,’’ Tribology International, vol. 174, p. 107667, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X22002407
dc.relation.referencesM. Fesanghary and M. Khonsari, ‘‘Topological and shape optimization of thrust bearings for enhanced load-carrying capacity,’’ Tribology International, vol. 53, pp. 12--21, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0301679X12001156
dc.relation.referencesV. Mourya, S. P. Bhore, and P. G. Wandale, ‘‘Comparative investigation on wear properties of 3d-printed textured journal bearings,’’ Journal of Manufacturing Processes, vol. 103, pp. 337--353, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612523008290
dc.relation.referencesV. Mourya and S. P. Bhore, ‘‘Comparative study on tribological behavior of foil journal bearings with micro pocket,’’ Surface Topography: Metrology and Properties, vol. 12, no. 1, p. 015020, mar 2024. [Online]. Available: https://dx.doi.org/10.1088/2051-672X/ad221b
dc.relation.referencesM. Tauviqirrahman, R. Ismail, Jamari, and D. Schipper, ‘‘Optimization of the complex slip surface and its effect on the hydrodynamic performance of two-dimensional lubricated contacts,’’ Computers & Fluids, vol. 79, pp. 27--43, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045793013000832
dc.relation.referencesZhang, Xiangyuan, Liu, Chongpei, and Zhao, Bin, ‘‘An optimization research on groove textures of a journal bearing using particle swarm optimization algorithm,’’ Mechanics & Industry, vol. 22, p. 1, 2021. [Online]. Available: https://doi.org/10.1051/meca/2020099
dc.relation.referencesA. B. Shinde and P. M. Pawar, ‘‘Multi-objective optimization of surface textured journal bearing by taguchi based grey relational analysis,’’ Tribology International, vol. 114, pp. 349--357, 2017. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0301679X17302165
dc.relation.referencesA. B. Shinde, P. Pawar, P. S. Daingade, and S. P. Chavan, ‘‘Optimal design of surface texturing parameters for improving the performance of journal bearing,’’ AIP Conference Proceedings, vol. 2200, no. 1, p. 020032, 12 2019. [Online]. Available: https://doi.org/10.1063/1.5141202
dc.relation.referencesC. Shen and M. Khonsari, ‘‘Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding,’’ Tribology International, vol. 82, pp. 1--11, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0301679X14003466
dc.relation.referencesQ. Lin, Q. Bao, K. Li, M. Khonsari, and H. Zhao, ‘‘An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach,’’ Tribology International, vol. 118, pp. 246--255, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X17304413
dc.relation.referencesN. D. Hingawe and S. P. Bhore, ‘‘Multi-objective optimization of the design parameters of texture bottom profiles in a parallel slider,’’ Friction, vol. 8, no. 4, pp. 726--745, Aug 2020. [Online]. Available: https://doi.org/10.1007/s40544-017-0299-x
dc.relation.referencesLiu, Chongpei, Zhong, Ning, Lu, Xiqun, and Zhao, Bin, ‘‘A multiobjective optimization of journal bearing with double parabolic profiles and groove textures under steady operating conditions,’’ Mechanics & Industry, vol. 21, no. 3, p. 305, 2020. [Online]. Available: https://doi.org/10.1051/meca/2020017
dc.relation.referencesA. Bharatish, G. Rajkumar, P. Gurav, G. Satheesh Babu, H. Narasimha Murthy, and M. Roy, ‘‘Optimization of laser texture geometry and resulting functionality of nickel aluminium bronze for landing gear applications,’’ International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 346--357, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2588840421000172
dc.relation.referencesM. K. A. Ali, H. Xianjun, R. F. Turkson, and M. Ezzat, ‘‘An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines,’’ Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 230, no. 4, pp. 329--349, 2016. [Online]. Available: https://doi.org/10.1177/1464419315605922
dc.relation.referencesZ. Wang, S. Shuai, Z. Li, and W. Yu, ‘‘A review of energy loss reduction technologies for internal combustion engines to improve brake thermal efficiency,’’ Energies, vol. 14, no. 20, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/20/6656
dc.relation.referencesV. W. WONG and S. C. TUNG, ‘‘Overview of automotive engine friction and reduction trends– effects of surface, material, and lubricant-additive technologies,’’ Friction, vol. 4, no. 1, pp. 1--28, 2016. [Online]. Available: https://www.sciopen.com/article/10.1007/s40544-016-0107-9
dc.relation.referencesS. Zhang, Y. Zhou, H. Zhang, Z. Xiong, and S. To, ‘‘Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications,’’ International Journal of Machine Tools and Manufacture, vol. 142, pp. 16--41, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0890695519301014
dc.relation.referencesM. J. Valdes, J. G. A. Marín, M. A. Rodríguez-Cabal, and J. D. T. Betancur, ‘‘Tribometry: How is friction research quantified? a review,’’ International Journal of Engineering Research and Technology, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:243254744
dc.relation.referencesG. W. Stachowiak, A. W. Batchelor, and G. B. Stachowiak, ‘‘3 - tribometers,’’ in Experimental Methods in Tribology, ser. Tribology Series, G. W. Stachowiak, A. W. Batchelor, and G. B. Stachowiak, Eds. Elsevier, 2004, vol. 44, pp. 25--78. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167892204800191
dc.relation.referencesB. Song, D. Zhang, X. Jing, B. Shi, F. Wang, and H. Li, ‘‘Cleaner production of multi-scale surface textures using integrated ball-end and vibration-assisted milling,’’ Journal of Cleaner Production, vol. 484, p. 144316, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095965262403765X
dc.relation.referencesP. J. Landrigan, R. Fuller, N. J. R. Acosta, O. Adeyi, R. Arnold, N. N. Basu, A. B. Baldé, R. Bertollini, S. Bose-O’Reilly, J. I. Boufford, P. N. Breysse, T. Chiles, C. Mahidol, A. M. Coll-Seck, M. L. Cropper, J. Fobil, V. Fuster, M. Greenstone, A. Haines, D. Hanrahan, D. Hunter, M. Khare, A. Krupnick, B. Lanphear, B. Lohani, K. Martin, K. V. Mathiasen, M. A. McTeer, C. J. L. Murray, J. D. Ndahimananjara, F. Perera, J. Potočnik, A. S. Preker, J. Ramesh, J. Rockström, C. Salinas, L. D. Samson, K. Sandilya, P. D. Sly, K. R. Smith, A. Steiner, R. B. Stewart, W. A. Suk, O. C. P. van Schayck, G. N. Yadama, K. Yumkella, and M. Zhong, ‘‘The lancet commission on pollution and health,’’ Lancet, vol. 391, no. 10119, pp. 462--512, Oct. 2017.
dc.relation.referencesDepartamento Nacional de Planeación (DNP), ‘‘Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones,’’ 2017, [En línea]. Disponible en: https://www.dnp.gov.co/Paginas/ Los-costos-en-la-salud-asociados-a-la-degradaci{ó}nambiental-en-Colombia-ascienden-a-\protect\T1\textdollar20,7-billones-. aspx. [Accedido: 21-Abr-2019].
dc.relation.referencesL. F. Mejía, ‘‘Calidad del aire: una prioridad de política pública en Colombia,’’ Medellín, 2018.
dc.relation.referencesE. Ravigné and P. Da Costa, ‘‘Economic and environmental performances of natural gas for heavy trucks: A case study on the french automotive industry supply chain,’’ Energy Policy, vol. 149, p. 112019, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301421520307308
dc.relation.referencesK. Holmberg and A. Erdemir, ‘‘The impact of tribology on energy use and co2 emission globally and in combustion engine and electric cars,’’ Tribology International, vol. 135, pp. 389--396, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X19301446
dc.relation.referencesM. Kalin, J. Kogovšek, and M. Remškar, ‘‘Mechanisms and improvements in the friction and wear behavior using mos2 nanotubes as potential oil additives,’’ Wear, vol. 280-281, pp. 36--45, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164812000129
dc.relation.referencesJ. Xu and J. Li, ‘‘New achievements in superlubricity from international workshop on superlubricity: fundamental and applications,’’ Friction, vol. 3, no. 4, pp. 344--351, Dec 2015. [Online]. Available: https://doi.org/10.1007/s40544-015-0100-8
dc.relation.referencesA. Erdemir, G. Ramirez, O. L. Eryilmaz, B. Narayanan, Y. Liao, G. Kamath, and S. K. R. S. Sankaranarayanan, ‘‘Carbon-based tribofilms from lubricating oils,’’ Nature, vol. 536, no. 7614, pp. 67--71, Aug 2016. [Online]. Available: https://doi.org/10.1038/nature18948
dc.relation.referencesM. Scherge, R. Böttcher, D. Kürten, and D. Linsler, ‘‘Multi-phase friction and wear reduction by copper nanopartices,’’ Lubricants, vol. 4, no. 4, 2016. [Online]. Available: https://www.mdpi.com/2075-4442/4/4/36
dc.relation.referencesX. Ge, Y. Xia, Z. Shu, and X. Zhao, ‘‘Conductive grease synthesized using nanometer ato as an additive,’’ Friction, vol. 3, no. 1, pp. 56--64, Mar 2015. [Online]. Available: https://doi.org/10.1007/s40544-015-0073-7
dc.relation.referencesS. Hsu and M. Shen, ‘‘Wear prediction of ceramics,’’ Wear, vol. 256, no. 9, pp. 867--878, 2004, special issue on Wear Modelling. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0043164803006343
dc.relation.referencesS. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano, Severe Shot Peening to Obtain Nanostructured Surfaces: Process and Properties of the Treated Surfaces. John Wiley & Sons, Ltd, 2015, ch. 14, pp. 299--323. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527674947.ch14
dc.relation.referencesO. Unal, R. Varol, A. Erdogan, and M. S. G. and, ‘‘Wear behaviour of low carbon steel after severe shot peening,’’ Materials Research Innovations, vol. 17, no. 7, pp. 519--523, 2013. [Online]. Available: https://doi.org/10.1179/1433075X13Y.0000000106
dc.relation.referencesM. K. B. Givi and P. Asadi, Advances in Friction-Stir Welding and Processing. Elsevier, 2015. [Online]. Available: http://dx.doi.org/10.1016/C2013-0-16268-X
dc.relation.referencesT. D. B. Jacobs and R. W. Carpick, ‘‘Nanoscale wear as a stress-assisted chemical reaction,’’ Nature Nanotechnology, vol. 8, no. 2, pp. 108--112, Feb 2013. [Online]. Available: https://doi.org/10.1038/nnano.2012.255
dc.relation.referencesY. Qiu and M. M. Khonsari, ‘‘On the prediction of cavitation in dimples using a mass-conservative algorithm,’’ Journal of Tribology, vol. 131, no. 4, p. 041702, 09 2009. [Online]. Available: https://doi.org/10.1115/1.3176994
dc.relation.referencesA. Bianco, ‘‘Mesh quality effects on the simulated flow around a square cylinder: a computational study,’’ Master’s thesis, Politecnico di Torino, 2018. [Online]. Available: http://webthesis.biblio.polito.it/id/eprint/7664
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.lembTribología
dc.subject.lembMotores de combustión interna
dc.subject.lembEsfuerzo de Reynolds
dc.subject.lembMotores diesel
dc.subject.lembFricción (mecánica)
dc.subject.proposalTexturizado superficialspa
dc.subject.proposalLubricación hidrodinámicaspa
dc.subject.proposalCojinetes de bielaspa
dc.subject.proposalAnálisis Relacional Grisspa
dc.subject.proposalReducción de fricciónspa
dc.subject.proposalMicromecanizadospa
dc.subject.proposalEficiencia en motores diéselspa
dc.subject.proposalOptimización tribológicaspa
dc.subject.proposalSurface texturingeng
dc.subject.proposalHydrodynamic lubricationeng
dc.subject.proposalConnecting rod bearingseng
dc.subject.proposalGrey Relational Analysiseng
dc.subject.proposalFriction reductioneng
dc.subject.proposalMicromachiningeng
dc.subject.proposalDiesel engine efficiencyeng
dc.subject.proposalTribological optimizationeng
dc.titleNumerical and experimental evaluation of surfaces with deterministic textures in connecting rod bearings of a single-cylinder diesel enginespa
dc.title.translatedEvaluación numérica y experimental de superficies con texturas determinísticas en cojinetes del cigüeñal de un motor mono cilíndrico diéseleng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Tamaño:
24.76 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: