Análisis cristalográfico, eléctrico y magnético del material tipo perovskita doble Yb₂FeMnO₆
dc.contributor.advisor | Roa Rojas, Jairo | spa |
dc.contributor.author | Bohórquez Cruz, Óscar Iván | spa |
dc.contributor.researchgroup | Grupo de Física de Nuevos Materiales | spa |
dc.date.accessioned | 2025-04-09T22:05:34Z | |
dc.date.available | 2025-04-09T22:05:34Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Se ha realizado la síntesis y caracterización del material tipo perovskita YbFe₀.₅Mn₀.₅O₃, producido mediante dos métodos: reacción en estado sólido y Pechini modificado. A través de técnicas de difracción de rayos X (DRX) y refinamiento Rietveld, se determinó que el material cristaliza en dos fases: una fase hexagonal mayoritaria, que representa el 93.9% en el caso de la síntesis por reacción sólida y el 96.1% para Pechini modificado con grupo espacial P6₃/m (#185), y una fase ortorrómbica minoritaria, que constituye el 6.1% y 3.9%, respectivamente, en el grupo espacial Pnma (#62). La fase hexagonal exhibe una configuración bipiramidal, con inclinaciones de los cationes Fe y Mn respecto a los oxígenos O₃ y O₄ de aproximadamente 119°, mientras que la fase ortorrómbica presenta una configuración octaédrica con distorsiones. La microscopía electrónica de barrido (SEM) reveló que los tamaños de grano medio fueron de 0.746 μm para reacción sólida y 150 nm para Pechini modificado, observándose una baja porosidad en ambas muestras. Los análisis de dispersión de rayos X (EDX) confirmaron que la composición química utilizada para producir el material no contiene impurezas. Además, las mediciones de reflectancia bajo la técnica DRS permitieron establecer un band gap directo de 1.39 eV para reacción sólida y 1.42 eV para Pechini modificado, lo que corresponde a valores típicos de un material semiconductor. Por último, la caracterización magnética mostró que el material presenta un comportamiento débilmente ferromagnético, compitiendo con un ordenamiento antiferromagnético y mostrando una respuesta magnéticamente frustrada debido al desorden en los momentos magnéticos, evidenciada por el comportamiento irreversible de la magnetización en las curvas ZFC en comparación con FC. Se observó, además, que las muestras producidas mediante el método Pechini presentaron características no observadas en las de reacción sólida, como una tendencia superparamagnética y un efecto de exchange bias a bajas temperaturas, atribuibles a la interacción entre nanopartículas ferromagnéticas y antiferromagnéticas. (Texto tomado de la fuente). | spa |
dc.description.abstract | The synthesis and characterization of the perovskite-type material YbFe₀.₅Mn₀.₅O₃ were carried out, using two methods: solid-state reaction and modified Pechini. Through X-ray diffraction (XRD) techniques and Rietveld refinement, it was determined that the material crystallizes into two phases: a majority hexagonal phase, representing 93.9% in the case of the solid-state synthesis and 96.1% for the modified Pechini method with space group P6₃/m (#185), and a minority orthorhombic phase, constituting 6.1% and 3.9%, respectively, in the space group Pnma (#62). The hexagonal phase exhibits a bipyramidal configuration, with inclinations of the Fe and Mn cations relative to the O₃ and O₄ oxygens of approximately 119°, while the orthorhombic phase presents a distorted octahedral configuration. Scanning electron microscopy (SEM) revealed that the average grain sizes were 0.746 μm for solid-state reaction and 150 nm for modified Pechini, with low porosity observed in both samples. Energy-dispersive X-ray (EDX) analysis confirmed that the chemical composition used to produce the material was impurity-free. Additionally, reflectance measurements using the diffuse reflectance spectroscopy (DRS) technique allowed establishing a direct band gap of 1.39 eV for the solid-state reaction and 1.42 eV for modified Pechini, which are typical values for a semiconductor material. Finally, magnetic characterization showed that the material exhibits weak ferromagnetic behavior, competing with an antiferromagnetic ordering, and displaying a magnetically frustrated response due to the disorder in the magnetic moments, evidenced by the irreversible behavior of magnetization in the ZFC compared to the FC curves. It was also observed that the samples produced via the Pechini method presented features not observed in those synthesized by the solid-state reaction, such as a superparamagnetic tendency and an exchange bias effect at low temperatures, attributed to the interaction between ferromagnetic and antiferromagnetic nanoparticles. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Física de nuevos materiales | spa |
dc.format.extent | xiii, 66 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87917 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | M. M. Abdelkader and W. M. Gamal, “Some aspects of dimensionality and phase transitions of organic–inorganic hybrid perovskite (n-C14H29NH3)2ZnCl4,” Applied Physics A: Materials Science and Processing, vol. 123, no. 3, pp. 1–14, 2017. | spa |
dc.relation.references | Francis S. Galasso, “STRUCTURE, PROPERTIES AND PREPARATION OF PEROVSKITE-TYPE COMPOUNDS,” no. 5, p. 218, 1969. | spa |
dc.relation.references | J. McKelvey, “F´ısica del estado s´olido y semiconductores,” Editorial Limusa S.A, p. 536, 1996. | spa |
dc.relation.references | W. J. Herrera, Notas de Clase: Introducción al Estado Sólido, primera ed ed. Bogotá D.C: Universidad Nacional de Colombia Facultad de Ciencias, 2021. | spa |
dc.relation.references | Kittel Charles, “Introducción a la Física del Estado Sólido,” p. 782, 1997. | spa |
dc.relation.references | Callister W.D, Materials Science and Engineering An Introduction, seventh ed ed. Jhon Wiley & Sons Inc, 2007, vol. 26, no. 14. | spa |
dc.relation.references | S. Rod, “M. McElfresh, Quantum Design - Fundamentals of Magnetism and Magnetic Measurements – Featuring Quantum Design’s Magnetic Porperty Measurement System, 1994,” Quantum Design, 1994. [Online]. Available: https://www.qdusa.com/sitedocs/ appNotes/mpms/FundPrimer.pdf | spa |
dc.relation.references | Richard.J.D. Tilley., Understanding solids, the science of materials, 2nd ed. Wiley, 2013. | spa |
dc.relation.references | J. Ruzzante, P. Alonso Castillo, and R. Suárez- Ántola, Temas de Magnetismo y Superconductividad 1°Ed, 02 2021. | spa |
dc.relation.references | L. E. Zamora, “Study of the magnetic semiconductor of the Fe-doped ZnO system obtained by mechanical alloy,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 44, no. 172, pp. 716–728, sep 2020. | spa |
dc.relation.references | W. Smith and J. Hashemi, Fundamentos de la Ciencia e Ingeniería Materiales, 2014. | spa |
dc.relation.references | M. Ermrich and D. Opper, X-ray Powder Diffraction for the Analyst, 2011. | spa |
dc.relation.references | M. Raza, “Chimie des Interactions Plasma-Surface ( ChIPS ), Faculty of Sciences Ph . D . Thesis Oxygen vacancy stabilized zirconia ; synthesis and properties Mohsin Raza Chimie des Interactions Plasma-Surface ( ChIPS ) Chimie des Interactions Plasma- Surface ( ChIPS),” no. March, 2017. | spa |
dc.relation.references | A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy, 2018. | spa |
dc.relation.references | D. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM), 2008. | spa |
dc.relation.references | M. SEBASTIAN, Dielectric Materials For Wireless communications, first edit ed. ELSEVIER, 2008. | spa |
dc.relation.references | M. Bonilla, D. Land´ınez T´ellez, J. Arbey Rodr´ıguez, J. A. Aguiar, and J. Roa- Rojas, “Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio dft calculations,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 14, pp. e397–e399, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0304885308001911 | spa |
dc.relation.references | J. A. Cuervo Farfán, D. M. Aljure García, R. Cardona, J. Arbey Rodríguez, D. A. Landínez Téllez, and J. Roa-Rojas, “Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFe 2O 6 Material,” Journal of Low Temperature Physics, vol. 186, no. 5-6, pp. 295–315, 2017. | spa |
dc.relation.references | R. M. Hazen, S. S. American, and N. June, “Perovskites gives rise to materials that have a wide array of electrical properties,” Scientific American, vol. 258, no. 6, pp. 74–81, 1988. [Online]. Available: http://www.jstor.org/stable/24989124 | spa |
dc.relation.references | Y. Q. Zhai, Q. Jing, and Z. Zhang, “Magnetic and electrical transport properties of Double perovskite Sr2FeMoO6 prepared by Sol-Gel method,” E-Journal of Chemistry, vol. 8, no. SUPPL. 1, pp. 189–195, 2011. | spa |
dc.relation.references | T. Wolfram and S. Ellialtioglu, Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006. | spa |
dc.relation.references | J. Sarmiento, “EFECTO DEL Sm y Eu EN LAS CARACTERÍSTICAS ESTRUCTURALES, MAGNÉTICAS Y ELÉCTRICAS DE LA FERROCOBALTITA ( Sm , Eu ) 2 CoFeO 6,” Universidad Nacional de Colombia, p. 87, 2022. | spa |
dc.relation.references | X. A. Velásquez Moya, “Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6,” 2018. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/69641 | spa |
dc.relation.references | J. I. HERNÁNDEZ VILLA and T. d. D. e. C. Física, “ESTUDIO DE LAS PROPIEDADES ESTRUCTURALES, ELÉCTRICAS Y MAGNÉTICAS EN MATERIALES DE TIPO PEROVSKITA A2BB’O6,” Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Grupo de Física de Nuevos Materiales - GFNM, p. 141, 2020. | spa |
dc.relation.references | J. Alonso Cuervo Farfán and J. Roa Rojas, “UNIVERSIDAD NACIONAL DE COLOMBIA PROPIEDADES ESTRUCTURALES Y ESPECTROSCOPÍA DE IMPEDANCIA DEL ESTANATO TIPO PEROVSKITA (Ba,Sr)SnO 3 Tesis de Maestría,” Tech. Rep., 2011. | spa |
dc.relation.references | J. Andres and J. Palacio, “Síntesis y caracterización de las propiedades estructurales y magnéticas del nuevo material Síntesis y caracterización de las propiedades estructurales y magnéticas del nuevo material,” 2016. | spa |
dc.relation.references | X. Li, Y. Yun, A. S. Thind, Y. Yin, Q. Li, W. Wang, A. T. N. Diaye, C. Mellinger, X. Jiang, and R. Mishra, “Domain - wall magnetoelectric coupling in multiferroic hexagonal ,” Scientific Reports, pp. 1–9, 2023. [Online]. Available: https://doi.org/10.1038/s41598-023-28365-x | spa |
dc.relation.references | D. Rubi, S. Venkatesan, B. J. Kooi, B. Noheda, and T. Srtio, “Magnetic and dielectric properties of YbMnO 3 perovskite thin films,” pp. 1–5, 2008. | spa |
dc.relation.references | Z. Li, K. Abdulvakhidov, S. Soldatov, and A. Soldatov, “Nanostructured YbMn 1 2 [ Fe [ O 3 and its physical properties,” no. May, 2023. | spa |
dc.relation.references | K. Abdulvakhidov, Z. Li, B. Abdulvakhidov, A. Soldatov, S. Otajonov, R. Ergashev, D. Yuldashaliyev, B. Karimov, A. Nazarenko, P. Plyaka, S. Shapovalova, M. Vitchenko, I. Mardasova, E. Ubushaeva, and E. Sitalo, “Structure phase state and physical properties of YbMn 1 - x Fe x O 3 compositions,” Applied Physics A, no. February, 2023. [Online]. Available: https://doi.org/10.1007/s00339-023-06469-5 | spa |
dc.relation.references | D. J. W. Alexandra Navrotsky, “Perovskite: A Structure of Great Interest to Geophysics and Materials Science,” Geophysical Monograph Series, vol. 45, p. 45, 1873. | spa |
dc.relation.references | D. A. L. T. Q. MADUEÑO and J. ROA-ROJAS, “PRODUCTION AND CHARACTERIZATION OF Ba2NdSbO6 COMPLEX PEROVSKITE AS A SUBSTRATE FOR YBa2Cu3O7 – δ SUPERCONDUCTING FILMS,” vol. 20, no. 8, pp. 427–437, 2006. | spa |
dc.relation.references | Y. E. D. E. L. A. Doble, P. S. R. Timno, D. Landínez-téllez, G. Peña-rodríguez, and F. Fajardo, “Structural , Magnetic , Multiferroic , and Electronic Properties of Sr2TiMnO6 Double Perovskite Propiedades Estructurales , Magnéticas ,,” pp. 111–115, 2012. | spa |
dc.relation.references | J. Sánchez-Benítez, M. J. Martínez-Lope, J. A. Alonso, and J. L. García-Muoz, “Magnetic and structural features of the NdNi1 - XMn xO3 perovskite series investigated by neutron diffraction,” Journal of Physics Condensed Matter, vol. 23, no. 22, 2011. | spa |
dc.relation.references | I. Supelano García, A. Sarmiento Santos, C. A. Parra Vargas, D. Landínez Téllez, and J. Roa Rojas, “Síntesis y propiedades estructurales del sistema superconductor La1,5+xBa1,5+x-yCa yCu3Oz,” Ciencia en Desarrollo, vol. 4, no. 2, pp. 27–32, 2013. | spa |
dc.relation.references | A. Quesada, M. A. García, J. F. Fernández, and A. Hernando, “Semiconductores magnéticos diluidos : Materiales para la espintrónica,” 2007. | spa |
dc.relation.references | W.Greiner, Classical Electrodynamics., Springer, Ed., 1998. | spa |
dc.relation.references | Philippe Boch and N. Jean-Claude, Ceramic Materials. Processes,Properties and Aplications, 2001, vol. 6, no. 11. | spa |
dc.relation.references | Suk-Joong L. Kang, Sintering Densification, Grain Growth & Microstructure, 1st ed. Elsevier Butterworth-Heinemann, 2005. | spa |
dc.relation.references | L. Dimesso, “Handbook of Sol-Gel Science and Technology,” Handbook of Sol-Gel Science and Technology, 2016. | spa |
dc.relation.references | J. G. Ovejero, M. A. Garcia, and P. Herrasti, “Sol – Gel Pechini Method,” pp. 1–13, 2021. | spa |
dc.relation.references | A. M. Raba-Páez, D. N. Suarez-Ballesteros, J. J. Martínez-Zambrano, H. A. Rojas- Sarmiento, and M. Rincón-Joya, “Uso del método pechini en la obtención de nanopartículas semiconductoras a base de niobio,” DYNA (Colombia), vol. 82, no. 189, pp. 52–58, 2015. | spa |
dc.relation.references | T. Ref, P. Intel, T. Refundido, P. Intelectual, S. Consolidated, and C. Act, “Lanthanidebased dielectric nanoparticles for upconversion luminescence Elixir William Barrera Bello Nowadays special attention has been given to materials capable of Lanthanidebased dielectric nanoparticles for upconversion luminescence Elixir William B,” 2013. | spa |
dc.relation.references | P. Y. Pecharsky, Vitalij K. ; Zavalij, Fundamentals of Powder Diffraction ad Structural Characterization of Materials., second. ed., Springer, Ed., 2009. | spa |
dc.relation.references | Michael M Woolfson, An Introduction to X-ray Crystallography, second. ed., 1997. | spa |
dc.relation.references | M. F. C. Ladd and R. A. Palmer, Structure Determination by X-Ray Crystallography, 1985. | spa |
dc.relation.references | B. Cullity and S.R. Stock, Elements of X-Ray Difration, third edit ed. Pearson, 2014. | spa |
dc.relation.references | R. Rodríguez, “Síntesis y estudio del acoplamiento cristalográfico y estabilidad química en compósitos Sr2HoNbO6/ YBa2Cu3O7–δ,” Tech. Rep., 2015. | spa |
dc.relation.references | H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, no. 2, pp. 65–71, 1969. | spa |
dc.relation.references | R. A. Young, “The Rietveld Method,” p. 309, 1993. | spa |
dc.relation.references | M. L. Ramón García and M. Ramón, “Introducción al Método de Rietveld,” Centro de Investigación en Energía, Universidad Nacional Autónoma de México, p. 34, 2007. [Online]. Available: http://xml.ier.unam.mx/xml/ms/Doctos/Manual RietveldML1. pdf | spa |
dc.relation.references | L. B. Mccusker, R. B. Von Dreele, D. E. Cox, D. Lou¨er, and P. Scardi, “Rietveld refinement guidelines,” Journal of Applied Crystallography, vol. 32, no. 1, pp. 36–50, 1999. | spa |
dc.relation.references | W. J. Meredith, X-ray microscopy and x-ray microanalysis, 1961, vol. 3, no. 4. | spa |
dc.relation.references | Quantum Design, “PPMS ® Platform Measurement Options.” | spa |
dc.relation.references | “100/300/4000/5000/6000i spectrophotometer,” no. June, p. 46, 2002. | spa |
dc.relation.references | S. Manual, “Cary WinUV,” no. May, 1999. | spa |
dc.relation.references | V. Kumar, S. Kr, T. P. Sharma, and V. Singh, “Band gap determination in thick ®lms from refectance measurement.pdf,” vol. 12, pp. 115–119, 1999. | spa |
dc.relation.references | M. Soler and L. Paterno, “6 - magnetic nanomaterials,” in Nanostructures, A. L. Da R´oz, M. Ferreira, F. de Lima Leite, and O. N. Oliveira, Eds. William Andrew Publishing, 2017, pp. 147–186. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/B9780323497824000061 | spa |
dc.relation.references | H. Li, B. Guo, D. Xu, Z. Wang, W. Fan, and Y. Tian, “Antiferromagnetic semiconductor bamno3 hexagonal perovskite with a direct bandgap,” Inorganic Chemistry, vol. 63, no. 15, pp. 6813–6821, 2024, pMID: 38573325. [Online]. Available: https://doi.org/10.1021/acs.inorgchem.4c00249 | spa |
dc.relation.references | T.-t. Turap, T. B. Merupakan, T. B. Lebih, and T.-t. D. Turap, Magnetic Materials Fundamentals and Aplications, 2010. | spa |
dc.relation.references | S. Blundell, “Magnetism in Condensed Matter,” Magnetism in Condensed Matter, 2001. | spa |
dc.relation.references | J. Nogués and I. K. Schuller, “Exchange bias,” Journal of Magnetism and Magnetic Materials, vol. 192, no. 2, pp. 203–232, 1999. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física::538 - Magnetismo | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.proposal | Perovskita | spa |
dc.subject.proposal | Reacción sólida | spa |
dc.subject.proposal | Pechini modificado | spa |
dc.subject.proposal | Band gap | spa |
dc.subject.proposal | Semiconductor | spa |
dc.subject.proposal | Ferromagnético | spa |
dc.subject.proposal | Antiferromagnético | spa |
dc.subject.proposal | Perovskite | eng |
dc.subject.proposal | Solid-state reaction | eng |
dc.subject.proposal | Modified Pechini | eng |
dc.subject.proposal | Band gap | eng |
dc.subject.proposal | Semiconductor | fra |
dc.subject.proposal | Ferromagnetic | eng |
dc.subject.proposal | Antiferromagnetic | eng |
dc.subject.unesco | Tecnología de materiales | spa |
dc.subject.unesco | Materials engineering | eng |
dc.subject.wikidata | física aplicada | spa |
dc.subject.wikidata | applied physics | eng |
dc.subject.wikidata | Perovskita | spa |
dc.subject.wikidata | perovskite | eng |
dc.title | Análisis cristalográfico, eléctrico y magnético del material tipo perovskita doble Yb₂FeMnO₆ | spa |
dc.title.translated | Crystallographic, electrical, and magnetic analysis of the double perovskite material Yb₂FeMnO₆ | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 81740832.2025.pdf
- Tamaño:
- 10.9 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: