Análisis cristalográfico, eléctrico y magnético del material tipo perovskita doble Yb₂FeMnO₆

dc.contributor.advisorRoa Rojas, Jairospa
dc.contributor.authorBohórquez Cruz, Óscar Ivánspa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2025-04-09T22:05:34Z
dc.date.available2025-04-09T22:05:34Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSe ha realizado la síntesis y caracterización del material tipo perovskita YbFe₀.₅Mn₀.₅O₃, producido mediante dos métodos: reacción en estado sólido y Pechini modificado. A través de técnicas de difracción de rayos X (DRX) y refinamiento Rietveld, se determinó que el material cristaliza en dos fases: una fase hexagonal mayoritaria, que representa el 93.9% en el caso de la síntesis por reacción sólida y el 96.1% para Pechini modificado con grupo espacial P6₃/m (#185), y una fase ortorrómbica minoritaria, que constituye el 6.1% y 3.9%, respectivamente, en el grupo espacial Pnma (#62). La fase hexagonal exhibe una configuración bipiramidal, con inclinaciones de los cationes Fe y Mn respecto a los oxígenos O₃ y O₄ de aproximadamente 119°, mientras que la fase ortorrómbica presenta una configuración octaédrica con distorsiones. La microscopía electrónica de barrido (SEM) reveló que los tamaños de grano medio fueron de 0.746 μm para reacción sólida y 150 nm para Pechini modificado, observándose una baja porosidad en ambas muestras. Los análisis de dispersión de rayos X (EDX) confirmaron que la composición química utilizada para producir el material no contiene impurezas. Además, las mediciones de reflectancia bajo la técnica DRS permitieron establecer un band gap directo de 1.39 eV para reacción sólida y 1.42 eV para Pechini modificado, lo que corresponde a valores típicos de un material semiconductor. Por último, la caracterización magnética mostró que el material presenta un comportamiento débilmente ferromagnético, compitiendo con un ordenamiento antiferromagnético y mostrando una respuesta magnéticamente frustrada debido al desorden en los momentos magnéticos, evidenciada por el comportamiento irreversible de la magnetización en las curvas ZFC en comparación con FC. Se observó, además, que las muestras producidas mediante el método Pechini presentaron características no observadas en las de reacción sólida, como una tendencia superparamagnética y un efecto de exchange bias a bajas temperaturas, atribuibles a la interacción entre nanopartículas ferromagnéticas y antiferromagnéticas. (Texto tomado de la fuente).spa
dc.description.abstractThe synthesis and characterization of the perovskite-type material YbFe₀.₅Mn₀.₅O₃ were carried out, using two methods: solid-state reaction and modified Pechini. Through X-ray diffraction (XRD) techniques and Rietveld refinement, it was determined that the material crystallizes into two phases: a majority hexagonal phase, representing 93.9% in the case of the solid-state synthesis and 96.1% for the modified Pechini method with space group P6₃/m (#185), and a minority orthorhombic phase, constituting 6.1% and 3.9%, respectively, in the space group Pnma (#62). The hexagonal phase exhibits a bipyramidal configuration, with inclinations of the Fe and Mn cations relative to the O₃ and O₄ oxygens of approximately 119°, while the orthorhombic phase presents a distorted octahedral configuration. Scanning electron microscopy (SEM) revealed that the average grain sizes were 0.746 μm for solid-state reaction and 150 nm for modified Pechini, with low porosity observed in both samples. Energy-dispersive X-ray (EDX) analysis confirmed that the chemical composition used to produce the material was impurity-free. Additionally, reflectance measurements using the diffuse reflectance spectroscopy (DRS) technique allowed establishing a direct band gap of 1.39 eV for the solid-state reaction and 1.42 eV for modified Pechini, which are typical values for a semiconductor material. Finally, magnetic characterization showed that the material exhibits weak ferromagnetic behavior, competing with an antiferromagnetic ordering, and displaying a magnetically frustrated response due to the disorder in the magnetic moments, evidenced by the irreversible behavior of magnetization in the ZFC compared to the FC curves. It was also observed that the samples produced via the Pechini method presented features not observed in those synthesized by the solid-state reaction, such as a superparamagnetic tendency and an exchange bias effect at low temperatures, attributed to the interaction between ferromagnetic and antiferromagnetic nanoparticles.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFísica de nuevos materialesspa
dc.format.extentxiii, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87917
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesM. M. Abdelkader and W. M. Gamal, “Some aspects of dimensionality and phase transitions of organic–inorganic hybrid perovskite (n-C14H29NH3)2ZnCl4,” Applied Physics A: Materials Science and Processing, vol. 123, no. 3, pp. 1–14, 2017.spa
dc.relation.referencesFrancis S. Galasso, “STRUCTURE, PROPERTIES AND PREPARATION OF PEROVSKITE-TYPE COMPOUNDS,” no. 5, p. 218, 1969.spa
dc.relation.referencesJ. McKelvey, “F´ısica del estado s´olido y semiconductores,” Editorial Limusa S.A, p. 536, 1996.spa
dc.relation.referencesW. J. Herrera, Notas de Clase: Introducción al Estado Sólido, primera ed ed. Bogotá D.C: Universidad Nacional de Colombia Facultad de Ciencias, 2021.spa
dc.relation.referencesKittel Charles, “Introducción a la Física del Estado Sólido,” p. 782, 1997.spa
dc.relation.referencesCallister W.D, Materials Science and Engineering An Introduction, seventh ed ed. Jhon Wiley & Sons Inc, 2007, vol. 26, no. 14.spa
dc.relation.referencesS. Rod, “M. McElfresh, Quantum Design - Fundamentals of Magnetism and Magnetic Measurements – Featuring Quantum Design’s Magnetic Porperty Measurement System, 1994,” Quantum Design, 1994. [Online]. Available: https://www.qdusa.com/sitedocs/ appNotes/mpms/FundPrimer.pdfspa
dc.relation.referencesRichard.J.D. Tilley., Understanding solids, the science of materials, 2nd ed. Wiley, 2013.spa
dc.relation.referencesJ. Ruzzante, P. Alonso Castillo, and R. Suárez- Ántola, Temas de Magnetismo y Superconductividad 1°Ed, 02 2021.spa
dc.relation.referencesL. E. Zamora, “Study of the magnetic semiconductor of the Fe-doped ZnO system obtained by mechanical alloy,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 44, no. 172, pp. 716–728, sep 2020.spa
dc.relation.referencesW. Smith and J. Hashemi, Fundamentos de la Ciencia e Ingeniería Materiales, 2014.spa
dc.relation.referencesM. Ermrich and D. Opper, X-ray Powder Diffraction for the Analyst, 2011.spa
dc.relation.referencesM. Raza, “Chimie des Interactions Plasma-Surface ( ChIPS ), Faculty of Sciences Ph . D . Thesis Oxygen vacancy stabilized zirconia ; synthesis and properties Mohsin Raza Chimie des Interactions Plasma-Surface ( ChIPS ) Chimie des Interactions Plasma- Surface ( ChIPS),” no. March, 2017.spa
dc.relation.referencesA. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy, 2018.spa
dc.relation.referencesD. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM), 2008.spa
dc.relation.referencesM. SEBASTIAN, Dielectric Materials For Wireless communications, first edit ed. ELSEVIER, 2008.spa
dc.relation.referencesM. Bonilla, D. Land´ınez T´ellez, J. Arbey Rodr´ıguez, J. A. Aguiar, and J. Roa- Rojas, “Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio dft calculations,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 14, pp. e397–e399, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0304885308001911spa
dc.relation.referencesJ. A. Cuervo Farfán, D. M. Aljure García, R. Cardona, J. Arbey Rodríguez, D. A. Landínez Téllez, and J. Roa-Rojas, “Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFe 2O 6 Material,” Journal of Low Temperature Physics, vol. 186, no. 5-6, pp. 295–315, 2017.spa
dc.relation.referencesR. M. Hazen, S. S. American, and N. June, “Perovskites gives rise to materials that have a wide array of electrical properties,” Scientific American, vol. 258, no. 6, pp. 74–81, 1988. [Online]. Available: http://www.jstor.org/stable/24989124spa
dc.relation.referencesY. Q. Zhai, Q. Jing, and Z. Zhang, “Magnetic and electrical transport properties of Double perovskite Sr2FeMoO6 prepared by Sol-Gel method,” E-Journal of Chemistry, vol. 8, no. SUPPL. 1, pp. 189–195, 2011.spa
dc.relation.referencesT. Wolfram and S. Ellialtioglu, Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.spa
dc.relation.referencesJ. Sarmiento, “EFECTO DEL Sm y Eu EN LAS CARACTERÍSTICAS ESTRUCTURALES, MAGNÉTICAS Y ELÉCTRICAS DE LA FERROCOBALTITA ( Sm , Eu ) 2 CoFeO 6,” Universidad Nacional de Colombia, p. 87, 2022.spa
dc.relation.referencesX. A. Velásquez Moya, “Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6,” 2018. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/69641spa
dc.relation.referencesJ. I. HERNÁNDEZ VILLA and T. d. D. e. C. Física, “ESTUDIO DE LAS PROPIEDADES ESTRUCTURALES, ELÉCTRICAS Y MAGNÉTICAS EN MATERIALES DE TIPO PEROVSKITA A2BB’O6,” Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Grupo de Física de Nuevos Materiales - GFNM, p. 141, 2020.spa
dc.relation.referencesJ. Alonso Cuervo Farfán and J. Roa Rojas, “UNIVERSIDAD NACIONAL DE COLOMBIA PROPIEDADES ESTRUCTURALES Y ESPECTROSCOPÍA DE IMPEDANCIA DEL ESTANATO TIPO PEROVSKITA (Ba,Sr)SnO 3 Tesis de Maestría,” Tech. Rep., 2011.spa
dc.relation.referencesJ. Andres and J. Palacio, “Síntesis y caracterización de las propiedades estructurales y magnéticas del nuevo material Síntesis y caracterización de las propiedades estructurales y magnéticas del nuevo material,” 2016.spa
dc.relation.referencesX. Li, Y. Yun, A. S. Thind, Y. Yin, Q. Li, W. Wang, A. T. N. Diaye, C. Mellinger, X. Jiang, and R. Mishra, “Domain - wall magnetoelectric coupling in multiferroic hexagonal ,” Scientific Reports, pp. 1–9, 2023. [Online]. Available: https://doi.org/10.1038/s41598-023-28365-xspa
dc.relation.referencesD. Rubi, S. Venkatesan, B. J. Kooi, B. Noheda, and T. Srtio, “Magnetic and dielectric properties of YbMnO 3 perovskite thin films,” pp. 1–5, 2008.spa
dc.relation.referencesZ. Li, K. Abdulvakhidov, S. Soldatov, and A. Soldatov, “Nanostructured YbMn 1 2 [ Fe [ O 3 and its physical properties,” no. May, 2023.spa
dc.relation.referencesK. Abdulvakhidov, Z. Li, B. Abdulvakhidov, A. Soldatov, S. Otajonov, R. Ergashev, D. Yuldashaliyev, B. Karimov, A. Nazarenko, P. Plyaka, S. Shapovalova, M. Vitchenko, I. Mardasova, E. Ubushaeva, and E. Sitalo, “Structure phase state and physical properties of YbMn 1 - x Fe x O 3 compositions,” Applied Physics A, no. February, 2023. [Online]. Available: https://doi.org/10.1007/s00339-023-06469-5spa
dc.relation.referencesD. J. W. Alexandra Navrotsky, “Perovskite: A Structure of Great Interest to Geophysics and Materials Science,” Geophysical Monograph Series, vol. 45, p. 45, 1873.spa
dc.relation.referencesD. A. L. T. Q. MADUEÑO and J. ROA-ROJAS, “PRODUCTION AND CHARACTERIZATION OF Ba2NdSbO6 COMPLEX PEROVSKITE AS A SUBSTRATE FOR YBa2Cu3O7 – δ SUPERCONDUCTING FILMS,” vol. 20, no. 8, pp. 427–437, 2006.spa
dc.relation.referencesY. E. D. E. L. A. Doble, P. S. R. Timno, D. Landínez-téllez, G. Peña-rodríguez, and F. Fajardo, “Structural , Magnetic , Multiferroic , and Electronic Properties of Sr2TiMnO6 Double Perovskite Propiedades Estructurales , Magnéticas ,,” pp. 111–115, 2012.spa
dc.relation.referencesJ. Sánchez-Benítez, M. J. Martínez-Lope, J. A. Alonso, and J. L. García-Muoz, “Magnetic and structural features of the NdNi1 - XMn xO3 perovskite series investigated by neutron diffraction,” Journal of Physics Condensed Matter, vol. 23, no. 22, 2011.spa
dc.relation.referencesI. Supelano García, A. Sarmiento Santos, C. A. Parra Vargas, D. Landínez Téllez, and J. Roa Rojas, “Síntesis y propiedades estructurales del sistema superconductor La1,5+xBa1,5+x-yCa yCu3Oz,” Ciencia en Desarrollo, vol. 4, no. 2, pp. 27–32, 2013.spa
dc.relation.referencesA. Quesada, M. A. García, J. F. Fernández, and A. Hernando, “Semiconductores magnéticos diluidos : Materiales para la espintrónica,” 2007.spa
dc.relation.referencesW.Greiner, Classical Electrodynamics., Springer, Ed., 1998.spa
dc.relation.referencesPhilippe Boch and N. Jean-Claude, Ceramic Materials. Processes,Properties and Aplications, 2001, vol. 6, no. 11.spa
dc.relation.referencesSuk-Joong L. Kang, Sintering Densification, Grain Growth & Microstructure, 1st ed. Elsevier Butterworth-Heinemann, 2005.spa
dc.relation.referencesL. Dimesso, “Handbook of Sol-Gel Science and Technology,” Handbook of Sol-Gel Science and Technology, 2016.spa
dc.relation.referencesJ. G. Ovejero, M. A. Garcia, and P. Herrasti, “Sol – Gel Pechini Method,” pp. 1–13, 2021.spa
dc.relation.referencesA. M. Raba-Páez, D. N. Suarez-Ballesteros, J. J. Martínez-Zambrano, H. A. Rojas- Sarmiento, and M. Rincón-Joya, “Uso del método pechini en la obtención de nanopartículas semiconductoras a base de niobio,” DYNA (Colombia), vol. 82, no. 189, pp. 52–58, 2015.spa
dc.relation.referencesT. Ref, P. Intel, T. Refundido, P. Intelectual, S. Consolidated, and C. Act, “Lanthanidebased dielectric nanoparticles for upconversion luminescence Elixir William Barrera Bello Nowadays special attention has been given to materials capable of Lanthanidebased dielectric nanoparticles for upconversion luminescence Elixir William B,” 2013.spa
dc.relation.referencesP. Y. Pecharsky, Vitalij K. ; Zavalij, Fundamentals of Powder Diffraction ad Structural Characterization of Materials., second. ed., Springer, Ed., 2009.spa
dc.relation.referencesMichael M Woolfson, An Introduction to X-ray Crystallography, second. ed., 1997.spa
dc.relation.referencesM. F. C. Ladd and R. A. Palmer, Structure Determination by X-Ray Crystallography, 1985.spa
dc.relation.referencesB. Cullity and S.R. Stock, Elements of X-Ray Difration, third edit ed. Pearson, 2014.spa
dc.relation.referencesR. Rodríguez, “Síntesis y estudio del acoplamiento cristalográfico y estabilidad química en compósitos Sr2HoNbO6/ YBa2Cu3O7–δ,” Tech. Rep., 2015.spa
dc.relation.referencesH. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, no. 2, pp. 65–71, 1969.spa
dc.relation.referencesR. A. Young, “The Rietveld Method,” p. 309, 1993.spa
dc.relation.referencesM. L. Ramón García and M. Ramón, “Introducción al Método de Rietveld,” Centro de Investigación en Energía, Universidad Nacional Autónoma de México, p. 34, 2007. [Online]. Available: http://xml.ier.unam.mx/xml/ms/Doctos/Manual RietveldML1. pdfspa
dc.relation.referencesL. B. Mccusker, R. B. Von Dreele, D. E. Cox, D. Lou¨er, and P. Scardi, “Rietveld refinement guidelines,” Journal of Applied Crystallography, vol. 32, no. 1, pp. 36–50, 1999.spa
dc.relation.referencesW. J. Meredith, X-ray microscopy and x-ray microanalysis, 1961, vol. 3, no. 4.spa
dc.relation.referencesQuantum Design, “PPMS ® Platform Measurement Options.”spa
dc.relation.references“100/300/4000/5000/6000i spectrophotometer,” no. June, p. 46, 2002.spa
dc.relation.referencesS. Manual, “Cary WinUV,” no. May, 1999.spa
dc.relation.referencesV. Kumar, S. Kr, T. P. Sharma, and V. Singh, “Band gap determination in thick ®lms from refectance measurement.pdf,” vol. 12, pp. 115–119, 1999.spa
dc.relation.referencesM. Soler and L. Paterno, “6 - magnetic nanomaterials,” in Nanostructures, A. L. Da R´oz, M. Ferreira, F. de Lima Leite, and O. N. Oliveira, Eds. William Andrew Publishing, 2017, pp. 147–186. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/B9780323497824000061spa
dc.relation.referencesH. Li, B. Guo, D. Xu, Z. Wang, W. Fan, and Y. Tian, “Antiferromagnetic semiconductor bamno3 hexagonal perovskite with a direct bandgap,” Inorganic Chemistry, vol. 63, no. 15, pp. 6813–6821, 2024, pMID: 38573325. [Online]. Available: https://doi.org/10.1021/acs.inorgchem.4c00249spa
dc.relation.referencesT.-t. Turap, T. B. Merupakan, T. B. Lebih, and T.-t. D. Turap, Magnetic Materials Fundamentals and Aplications, 2010.spa
dc.relation.referencesS. Blundell, “Magnetism in Condensed Matter,” Magnetism in Condensed Matter, 2001.spa
dc.relation.referencesJ. Nogués and I. K. Schuller, “Exchange bias,” Journal of Magnetism and Magnetic Materials, vol. 192, no. 2, pp. 203–232, 1999.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalReacción sólidaspa
dc.subject.proposalPechini modificadospa
dc.subject.proposalBand gapspa
dc.subject.proposalSemiconductorspa
dc.subject.proposalFerromagnéticospa
dc.subject.proposalAntiferromagnéticospa
dc.subject.proposalPerovskiteeng
dc.subject.proposalSolid-state reactioneng
dc.subject.proposalModified Pechinieng
dc.subject.proposalBand gapeng
dc.subject.proposalSemiconductorfra
dc.subject.proposalFerromagneticeng
dc.subject.proposalAntiferromagneticeng
dc.subject.unescoTecnología de materialesspa
dc.subject.unescoMaterials engineeringeng
dc.subject.wikidatafísica aplicadaspa
dc.subject.wikidataapplied physicseng
dc.subject.wikidataPerovskitaspa
dc.subject.wikidataperovskiteeng
dc.titleAnálisis cristalográfico, eléctrico y magnético del material tipo perovskita doble Yb₂FeMnO₆spa
dc.title.translatedCrystallographic, electrical, and magnetic analysis of the double perovskite material Yb₂FeMnO₆eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
81740832.2025.pdf
Tamaño:
10.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: