Desarrollo de material híbrido a partir de fibras de Estropajo (Luffa cylindrica spp.) como soporte para metales de transición en la remoción de contaminantes emergentes en aguas

dc.contributor.advisorBastidas Gómez, Karen Giovannaspa
dc.contributor.advisorZea Ramírez, Hugo Ricardospa
dc.contributor.authorArdila González, Cindy Katherinespa
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.date.accessioned2025-03-05T13:25:53Z
dc.date.available2025-03-05T13:25:53Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías a color, tablasspa
dc.description.abstractLas actividades industriales han incrementado la presencia de contaminantes emergentes en el agua, los cuales generan afectación al ser humano y medio ambiente. Por lo tanto, se han estudiado alternativas para erradicarlos a través de métodos como la adsorción, el cual utiliza un material adsorbente como materiales lignocelulósicos para remover metales pesados del agua. En este trabajo de investigación se empleó la Luffa cylindrica spp, la cual fue sometida a un pre-tratamiento denominado organosolv y un tratamiento químico de oxidación selectiva por el sistema NaBr/TEMPO/NaOCl para la conversión de los grupos OH a grupos COOH en el C6 de la glucosa. Posterior, se depositó Cu y Zn sobre la superficie de la Luffa a través de métodos de impregnación en húmedo de tipo monometálicas y bimetálicas, obteniendo 5 materiales impregnados. A partir de esto, se evaluaron todos los materiales en la remoción de Pb (II) variando el tiempo de contacto, velocidad de agitación, masa del adsorbente, pH de la solución y concentración de la solución de Pb (II), obteniendo una capacidad de adsorción de 6.27 mg/L y un porcentaje de remoción de 99.38 % a un pH 6 y una concentración inicial de 10.5 mg/L utilizando el material denominado F-Zn/Cu. Esto sugiere que el pre-tratamiento, el tratamiento químico y las impregnaciones mejoraron la interacción entre el material híbrido y el contaminante. Así mismo, se realizaron caracterización química, de superficie, estructural, morfológica y térmica a través de técnicas como FTIR, pHpzc, DRX, SEM y TGA, verificado las modificaciones realizadas en cada uno de los materiales sintetizados (Texto tomado de la fuente).spa
dc.description.abstractIndustrial activities have increased the presence of emerging contaminants, which affect human beings and the environment. Therefore, alternatives have been studied to reduce them through methods such as adsorption, which uses lignocellulosic materials to remove heavy metals from water. In this research work, Luffa cylindrica spp. was used, which was subjected to an Organosolv pre-treatment and a chemical treatment of selective oxidation by the NaBr/TEMPO/NaOCl system for the conversion of OH groups to COOH groups in the C6 of glucose. Subsequently, Cu and Zn were deposited on the Luffa surface through monometallic and bimetallic wet impregnation methods, obtaining 5 impregnated materials. All the materials were evaluated in the removal of Pb (II) changing the contact time, agitation speed, adsorbent mass, solution pH and concentration of the Pb (II) solution, resulting in an adsorption capacity of 6.27 mg/L and percentage removal of 99.38 % at pH 6 and an initial concentration of 10.5 mg/L using the material called F-Zn/Cu. This suggests that the pre-treatment, chemical treatment and impregnations improved the interaction between the hybrid material and the contaminant. In addition, chemical, surface, structural, morphological and thermal characterization was carried out through techniques such as FTIR, pHpzc, XRD, SEM and TGA to verify the modifications made in each of the synthesized materials.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería – Ingeniería Químicaspa
dc.description.methodsA partir de las metodologías del Laboratorio Nacional de Energías Renovables (NREL, por sus siglas en inglés)85–88, se determinó la composición química de las fibras de la Luffa. En este análisis se incluyó la cuantificación del contenido de humedad, celulosa, hemicelulosa, lignina, extractivos y cenizas. El contenido de humedad de las fibras de la Luffa se determinó de acuerdo con la metodología NREL85. Este método emplea una técnica gravimétrica, en la cual se registró el peso inicial de las fibras de la Luffa, posteriormente se ingresaron en un horno a 105 ± 3 °C durante 4 horas. Después de esto, las fibras fueron transferidas a un desecador por 1 hora, este paso permite alcanzar el equilibrio en la humedad. En las muestras se registró el peso final y por último este proceso se realizó hasta obtener un peso constante.spa
dc.description.researchareaMateriales y tratamiento de residuos acuososspa
dc.format.extentxv, 155 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87600
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesMasindi, V. & Muedi, K. L. Environmental Contamination by Heavy Metals. in Heavy Metals (2018). doi:10.5772/intechopen.76082.spa
dc.relation.referencesOMS. Organizacion mundial de salud. Orientaciones para el publico sobre el Covid 19 Preprint at (2020).spa
dc.relation.referencesHasan, Z. & Jhung, S. H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials vol. 283 Preprint at https://doi.org/10.1016/j.jhazmat.2014.09.046 (2015).spa
dc.relation.referencesSauvé, S. & Desrosiers, M. A review of what is an emerging contaminant. Chemistry Central Journal vol. 8 Preprint at https://doi.org/10.1186/1752-153X-8-15 (2014).spa
dc.relation.referencesYee-Batista, C. Un 70% de las aguas residuales de Latinoamérica vuelven a los ríos sin ser tratadas. El Banco Mundial (2013).spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. Estudio Nacional Del Agua 2022. Ministerio de Medio Ambiente (2023).spa
dc.relation.referencesEPA. Basic Information about Lead in Drinking Water | US EPA. United States Environmental Protection Agency Preprint at (2021).spa
dc.relation.referencesMinisterio de Ambiente. Resolución 631 De 2015. Diario Oficial No. 49.486 de 18 de abril de 2015 RESOLUCIÓN, (2015).spa
dc.relation.referencesZhang, Q. et al. Covalent Construction of Sustainable Hybrid UiO-66-NH2@Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustain Chem Eng 7, (2019).spa
dc.relation.referencesGuevara, A., Quishpe, Á. & Torre, E. de la. Tratamiento de efluentes líquidos de la industria de curtido mediante precipitación química, adsorción con carbón activado y rizofiltración. Revista Politécnica 31, (2012).spa
dc.relation.referencesBravo Gallardo, M. A. Coagulantes Y Floculantes Naturales Usados En La Reducción De Turbidez, Sólidos Suspendidos, Colorantes Y Metales Pesados En Aguas Residuales. J Chem Inf Model 53, (2017).spa
dc.relation.referencesNevárez-Martínez, M. C., Espinoza-Montero, P. J., Quiroz-Chávez Francisco J & Ohtani, B. Fotocatálisis: inicio, actualidad y perspectivas a través del TiO 2 Photocatalysis: beginning, present and trends through TiO 2. Avances en Química 12, (2017).spa
dc.relation.referencesSolís, C., Vélez, C. & Ramírez-Navas, J. S. Tecnología de membranas: desarrollo histórico. Entre Ciencia e Ingeniería 19, (2016).spa
dc.relation.referencesKim, E. J., Lee, C. S., Chang, Y. Y. & Chang, Y. S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5, (2013).spa
dc.relation.referencesTuranov, A. N. et al. Sorption of U(VI) from Aqueous Solutions by Chemically Modified Luffa cylindrica Fibers. Russian Journal of Physical Chemistry A 94, (2020).spa
dc.relation.referencesHu, F. & Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. Bioenergy Res 5, 1043–1066 (2012).spa
dc.relation.referencesCai, J. et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. (2017) doi:10.1016/j.rser.2017.03.072.spa
dc.relation.referencesThoresen, P. P., Matsakas, L., Rova, U. & Christakopoulos, P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology vol. 306 Preprint at https://doi.org/10.1016/j.biortech.2020.123189 (2020).spa
dc.relation.referencesPierre, G. et al. TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydrate Polymers vol. 165 Preprint at https://doi.org/10.1016/j.carbpol.2017.02.028 (2017).spa
dc.relation.referencesJain, S. et al. Enhancing adsorption of nitrate using metal impregnated alumina. J Environ Chem Eng 3, (2015).spa
dc.relation.referencesGirish, C. R. Various impregnation methods used for the surface modification of the adsorbent: A review. International Journal of Engineering and Technology(UAE) 7, (2018).spa
dc.relation.referencesSophia A., C. & Lima, E. C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150, (2018).spa
dc.relation.referencesKaur, Y., Bhatia, Y., Chaudhary, S. & Chaudhary, G. R. Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. J Mol Liq 234, (2017).spa
dc.relation.referencesDe la Cruz, N. et al. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46, (2012).spa
dc.relation.referencesLei, M. et al. Overview of emerging contaminants and associated human health effects. BioMed Research International vol. 2015 Preprint at https://doi.org/10.1155/2015/404796 (2015).spa
dc.relation.referencesJan-Roblero, J. & Cruz-Maya, J. A. Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules vol. 28 Preprint at https://doi.org/10.3390/molecules28052097 (2023).spa
dc.relation.referencesGil, M. J., Soto, A. M., Usma, J. I. & Gutiérrez, O. D. Contaminantes emergentes en aguas, efectos y posibles tratamientos. (Spanish). Emerging contaminants in waters: effects and possible treatments. (English) 7, (2012).spa
dc.relation.referencesKhan, N. A. et al. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. Chemosphere 344, (2023).spa
dc.relation.referencesPetrie, B., Barden, R. & Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res 72, (2015).spa
dc.relation.referencesEuropea, C. Decisión de Ejecución (UE) 2015/495 de la comisión de 20 de marzo de 2015. Diario Oficial de la Unión Europea vol. 78 (2015).spa
dc.relation.referencesMinambiente. Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible. Departamento Administrativo de la Función Pública. República de Colombia. Preprint at (2020).spa
dc.relation.referencesLizarazo, M. F. et al. Contamination of staple crops by heavy metals in Sibaté, Colombia. Heliyon 6, (2020).spa
dc.relation.referencesSenanu, L. D., Kranjac-Berisavljevic, G. & Cobbina, S. J. The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology and Innovation vol. 29 Preprint at https://doi.org/10.1016/j.eti.2023.103005 (2023).spa
dc.relation.referencesChaudhary, S., Kumar, M., Ahmed, S. & Kaushik, M. Detection and Removal of Heavy Metals from Wastewater Using Nanomaterials. in Pollutants and Water Management: Resources, Strategies and Scarcity (2021). doi:10.1002/9781119693635.ch10.spa
dc.relation.referencesAgarwal, A., Upadhyay, U., Sreedhar, I., Singh, S. A. & Patel, C. M. A review on valorization of biomass in heavy metal removal from wastewater. Journal of Water Process Engineering vol. 38 Preprint at https://doi.org/10.1016/j.jwpe.2020.101602 (2020).spa
dc.relation.referencesmalik, B. & kaur sandhu, K. Occurrence and impact of heavy metals on environment. Mater Today Proc (2023) doi:10.1016/j.matpr.2023.01.317.spa
dc.relation.referencesBriffa, J., Sinagra, E. & Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon vol. 6 Preprint at https://doi.org/10.1016/j.heliyon.2020.e04691 (2020).spa
dc.relation.referencesPalacio, D. & Lozano, J. Ministerio de aa Protección Social Ministerio de Ambiente, Vivienda y Desarrollo Territorial Resolución Número 2115. 2007 (2007).spa
dc.relation.referencesEndale, Y. T., Ambelu, A., Sahilu, G. G., Mees, B. & Laing, G. Du. Exposure and health risk assessment from consumption of Pb contaminated water in Addis Ababa, Ethiopia. Heliyon 7, (2021).spa
dc.relation.referencesSocha, C. M., Colmenares, M. G. & Chaparros, P. Determinación electroquímica de plomo y cadmio en aguas superficiales. Revista Luna Azul 44, (2017).spa
dc.relation.referencesDoria, C. & Gómez Jaiker. Niveles de Metales Pesados En El Río Ranchería . (Universidad de la Guajira, La Guajira, 2019).spa
dc.relation.referencesRazali, M. C., Wahab, N. A., Sunar, N. & Shamsudin, N. H. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. Membranes vol. 13 Preprint at https://doi.org/10.3390/membranes13030285 (2023).spa
dc.relation.referencesRanjit, P., Jhansi, V. & Reddy, K. V. Conventional Wastewater Treatment Processes. in (2021). doi:10.1007/978-981-15-8999-7_17.spa
dc.relation.referencesFu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management vol. 92 Preprint at https://doi.org/10.1016/j.jenvman.2010.11.011 (2011).spa
dc.relation.referencesQasem, N. A. A., Mohammed, R. H. & Lawal, D. U. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water vol. 4 Preprint at https://doi.org/10.1038/s41545-021-00127-0 (2021).spa
dc.relation.referencesChakraborty, R., Asthana, A., Singh, A. K., Jain, B. & Susan, A. B. H. Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry vol. 102 Preprint at https://doi.org/10.1080/03067319.2020.1722811 (2022).spa
dc.relation.referencesAtif, M. et al. Physisorption and chemisorption trends in surface modification of carbon black. Surfaces and Interfaces vol. 31 Preprint at https://doi.org/10.1016/j.surfin.2022.102080 (2022).spa
dc.relation.referencesSomashekara, D. & Mulky, L. Sequestration of Contaminants from Wastewater: A Review of Adsorption Processes. ChemBioEng Reviews vol. 10 Preprint at https://doi.org/10.1002/cben.202200050 (2023).spa
dc.relation.referencesRaji, Z., Karim, A., Karam, A. & Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 1, (2023).spa
dc.relation.referencesZheng, B., Yu, S., Chen, Z. & Huo, Y. X. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Frontiers in Microbiology vol. 13 Preprint at https://doi.org/10.3389/fmicb.2022.933882 (2022).spa
dc.relation.referencesLindino, C. A., Marciniak, A. A., Gonçalves Junior, A. C. & Strey, L. Adsorption of cadmium in vegetable sponge (Luffa cylindrica). Ambiente e Agua - An Interdisciplinary Journal of Applied Science 9, (2014).spa
dc.relation.referencesTajmirriahi, M., Momayez, F. & Karimi, K. The critical impact of rice straw extractives on biogas and bioethanol production. Bioresour Technol 319, (2021).spa
dc.relation.referencesKarimah, A. et al. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology vol. 13 Preprint at https://doi.org/10.1016/j.jmrt.2021.06.014 (2021).spa
dc.relation.referencesJawaid, M. & Abdul Khalil, H. P. S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers vol. 86 Preprint at https://doi.org/10.1016/j.carbpol.2011.04.043 (2011).spa
dc.relation.referencesMaran, M. et al. Suitability Evaluation of Sida mysorensis Plant Fiber as Reinforcement in Polymer Composite. Journal of Natural Fibers (2020) doi:10.1080/15440478.2020.1787920.spa
dc.relation.referencesRowell, R. M. The use of biomass to produce bio-based composites and building materials. in Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation (2014). doi:10.1533/9780857097385.2.803.spa
dc.relation.referencesKhan, A. et al. Extraction and Characterization of Cellulose Fibers from the Stem of Momordica Charantia. Journal of Natural Fibers 19, (2022).spa
dc.relation.referencesBalasundar, P. et al. Physico-chemical study of pistachio (Pistacia vera) nutshell particles as a bio-filler for eco-friendly composites. Mater Res Express 6, (2019).spa
dc.relation.referencesKhan, A. et al. Extraction and Characterization of Natural Fibers from Citrullus lanatus Climber. Journal of Natural Fibers 19, (2022).spa
dc.relation.referencesFerdous, T., Quaiyyum, M. A., Bashar, S. & Jahan, M. S. Anatomical, morphological and chemical characteristics of kaun straw (Seetaria-ltalika). Nord Pulp Paper Res J 35, (2020).spa
dc.relation.referencesOladoja, N. A., Aboluwoye, C. O. & Akinkugbe, A. O. Evaluation of loofah as a sorbent in the decolorization of basic dye contaminated aqueous system. Ind Eng Chem Res 48, (2009).spa
dc.relation.referencesPereira-Martínez, R. I., Muñoz-Paredes, J. F. & Peluffo-Ordoñez, D. H. Empleo del estropajo común (Luffa cylindrica) en la remoción de contaminantes. Revista de Investigación Agraria y Ambiental 8, (2017).spa
dc.relation.referencesKesraoui, A., Moussa, A., Ali, G. Ben & Seffen, M. Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environmental Science and Pollution Research 23, (2016).spa
dc.relation.referencesLeón-Cristancho, A. P., Roa-Higuera, K. A., Meneses-Marentes, N. & Tarazona-Díaz, M. Quantification of potencial bioactive compounds in Citrullus lanatus, Luffa cylindrica and Sicana odorifera. Revista U.D.C.A Actualidad and Divulgacion Cientifica 25, (2022).spa
dc.relation.referencesAnastopoulos, I. & Pashalidis, I. Environmental applications of Luffa cylindrica-based adsorbents. Journal of Molecular Liquids vol. 319 Preprint at https://doi.org/10.1016/j.molliq.2020.114127 (2020).spa
dc.relation.referencesCaicedo, O., Devia-Ramirez, J. & Malagón, A. Adsorption of Common Laboratory Dyes Using Natural Fibers from Luffa cylindrica. J Chem Educ 95, (2018).spa
dc.relation.referencesNagarajaGanesh, B. & Muralikannan, R. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. International Journal of Polymer Analysis and Characterization 21, (2016).spa
dc.relation.referencesMorão, L. G., Dilarri, G. & Corso, C. R. Immobilization of Saccharomyces cerevisiae Cells on Luffa cylindrica: a Study of a Novel Material for the Adsorption of Textile Dye. Water Air Soil Pollut 228, (2017).spa
dc.relation.referencesAgbor, V. B., Cicek, N., Sparling, R., Berlin, A. & Levin, D. B. Biomass pretreatment: Fundamentals toward application. (2011) doi:10.1016/j.biotechadv.2011.05.005.spa
dc.relation.referencesWang, S., Dai, G., Yang, H. & Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science vol. 62 Preprint at https://doi.org/10.1016/j.pecs.2017.05.004 (2017).spa
dc.relation.referencesBussemaker, M. J. & Zhang, D. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial and Engineering Chemistry Research vol. 52 Preprint at https://doi.org/10.1021/ie3022785 (2013).spa
dc.relation.referencesLorenci Woiciechowski, A. et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology vol. 304 Preprint at https://doi.org/10.1016/j.biortech.2020.122848 (2020).spa
dc.relation.referencesRabelo, S. C. et al. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. Bioresource Technology vol. 369 Preprint at https://doi.org/10.1016/j.biortech.2022.128331 (2023).spa
dc.relation.referencesRana, A. K., Frollini, E. & Thakur, V. K. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules vol. 182 Preprint at https://doi.org/10.1016/j.ijbiomac.2021.05.119 (2021).spa
dc.relation.referencesShetty, A., Molahalli, V., Sharma, A. & Hegde, G. Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future. Catalysts vol. 13 Preprint at https://doi.org/10.3390/catal13010020 (2023).spa
dc.relation.referencesDeraz, N. M. The comparative jurisprudence of catalysts preparation methods: I. precipitation and impregnation methods. Journal of Industrial and Environmental Chemistry 2, (2018).spa
dc.relation.referencesDin, I. U. et al. A Review of Preparation Methods for Heterogeneous Catalysts. Mini-Reviews in Organic Chemistry vol. 19 Preprint at https://doi.org/10.2174/1570193X18666210308151136 (2022).spa
dc.relation.referencesMehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D. & Regalbuto, J. R. A Review of Preparation Methods for Supported Metal Catalysts. in Advances in Catalysis vol. 61 (2017).spa
dc.relation.referencesNugrahaningtyas, K. D. et al. Synthesis of the supported catalysts by co-impregnation and sequential impregnation methods. in IOP Conference Series: Materials Science and Engineering vol. 176 (2017).spa
dc.relation.referencesCastellanos, L. J., Blanco-Tirado, C., Hinestroza, J. P. & Combariza, M. Y. In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19, (2012).spa
dc.relation.referencesAli, A. et al. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications. Journal of Physics and Chemistry of Solids 98, (2016).spa
dc.relation.referencesThotagamuge, R. et al. Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environ Nanotechnol Monit Manag 16, (2021).spa
dc.relation.referencesZhang, W., Zou, L. & Wang, L. Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General vol. 371 Preprint at https://doi.org/10.1016/j.apcata.2009.09.038 (2009).spa
dc.relation.referencesNoreen, S. et al. ZnO, CuO and Fe2O3green synthesis for the adsorptive removal of direct golden yellow dye adsorption: Kinetics, equilibrium and thermodynamics studies. Zeitschrift fur Physikalische Chemie 235, (2021).spa
dc.relation.referencesSluiter, A. et al. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory (NREL) (2008).spa
dc.relation.referencesSluiter, A. et al. Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618. National Renewable Energy Laboratory (2008).spa
dc.relation.referencesSluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. Determination of Extractives in Biomass-NREL/TP-510-42619. Laboratory Analytical Procedure (LAP) (2008).spa
dc.relation.referencesSluiter, A. et al. Determination of Ash in Biomass. NREL Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory (2008).spa
dc.relation.referencesLataye, D. H., Mishra, I. M. & Mall, I. D. Removal of pyridine from aqueous solution by adsorption on bagasse fly ash. Ind Eng Chem Res 45, (2006).spa
dc.relation.referencesBoehm, H. P. Chemical Identification of Surface Groups. Advances in Catalysis 16, (1966).spa
dc.relation.referencesVaidya, A. A., Murton, K. D., Smith, D. A. & Dedual, G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conversion and Biorefinery vol. 12 Preprint at https://doi.org/10.1007/s13399-022-02373-9 (2022).spa
dc.relation.referencesSun, C. et al. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology vol. 368 Preprint at https://doi.org/10.1016/j.biortech.2022.128356 (2023).spa
dc.relation.referencesTang, Z. et al. TEMPO-Oxidized cellulose with high degree of oxidation. Polymers (Basel) 9, (2017).spa
dc.relation.referencesCao, X., Ding, B., Yu, J. & Al-Deyab, S. S. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90, (2012).spa
dc.relation.referencesAli, A. M. et al. Sequential and/or Simultaneous Wet-Impregnation Impact on the Mesoporous Pt/Sn/Zn/ γ -Al2O3Catalysts for the Direct Ethane Dehydrogenation. J Nanomater 2022, (2022).spa
dc.relation.referencesU.S. EPA. METHOD 3051A - MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS United States Environmental Protection Agency. Revision 1. Washington, DC. vol. 3 Preprint at (2007).spa
dc.relation.referencesEPA. EPA Method 200.7, Revision 4.4: Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Application Notes - iCAP 19, (1994).spa
dc.relation.referencesArana, J., González, S., Navarrete, L. & Caicedo, O. Luffa cylindrica as a natural adsorbent of cyanide ion in aqueous medium. Dyna (Medellin) 84, (2017).spa
dc.relation.referencesNavarrete, L. F., Martínez, D. & Duarte, E. Caracterización preliminar del estropajo"Luffa cylindrica" como posible materia prima para construcción. Avances investigación en ingeniería (2009).spa
dc.relation.referencesAhmed, S. & Janaswamy, S. Strong and biodegradable films from avocado peel fiber. Ind Crops Prod 201, (2023).spa
dc.relation.referencesOthmani, A., Kesraoui, A. & Seffen, M. Removal of phenol from aqueous solution by coupling alternating current with biosorption. Environmental Science and Pollution Research 28, 46488–46503 (2021).spa
dc.relation.referencesTanobe, V. O. A., Sydenstricker, T. H. D., Munaro, M. & Amico, S. C. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Test 24, (2005).spa
dc.relation.referencesZhang, Y. et al. Characterization of H3PO4-Treated Rice Husk Adsorbent and Adsorption of Copper(II) from Aqueous Solution. Biomed Res Int 2014, 1–8 (2014).spa
dc.relation.referencesBastidas, K. G., Pereira, M. F. R., Sierra, C. A. & Zea, H. R. Study and characterization of the lignocellulosic Fique (Furcraea Andina spp.) fiber. Cellulose 29, 2187–2198 (2022).spa
dc.relation.referencesRezende, C. A. et al. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4, (2011).spa
dc.relation.referencesKoruk, H. & Genc, G. Acoustic and mechanical properties of luffa fiber-reinforced biocomposites. in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites 325–341 (Elsevier, 2019). doi:10.1016/B978-0-08-102292-4.00017-5.spa
dc.relation.referencesRao, J., Lv, Z., Chen, G. & Peng, F. Hemicellulose: Structure, chemical modification, and application. Progress in Polymer Science vol. 140 Preprint at https://doi.org/10.1016/j.progpolymsci.2023.101675 (2023).spa
dc.relation.referencesFerraz, P. F. P. et al. Agricultural residues of lignocellulosic materials in cement composites. Applied Sciences (Switzerland) 10, (2020).spa
dc.relation.referencesGuerrero, J., Omaña, B. & Rodríguez-Acosta, A. Sobre un caso de intoxicación por el uso de la planta de estropajo o tusa (Luffa cylindrica) en Venezuela. Archivos Venezolanos de Farmacología y Terapéutica 34, 58–61 (2015).spa
dc.relation.referencesNanda, S. et al. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Res 6, 663–677 (2013).spa
dc.relation.referencesAdewuyi, A. & Pereira, F. V. Isolation and surface modification of cellulose from underutilized Luffa cylindrica sponge: A potential feed stock for local polymer industry in Africa. Journal of the Association of Arab Universities for Basic and Applied Sciences 24, (2017).spa
dc.relation.referencesKhadir, A., Motamedi, M., Pakzad, E., Sillanpää, M. & Mahajan, S. The prospective utilization of Luffa fibres as a lignocellulosic bio-material for environmental remediation of aqueous media: A review. Journal of Environmental Chemical Engineering vol. 9 Preprint at https://doi.org/10.1016/j.jece.2020.104691 (2021).spa
dc.relation.referencesMartinez-Pavetti, M. B., Medina, L., Espínola, M. & Monteiro, M. Study on two eco-friendly surface treatments on Luffa cylindrica for development of reinforcement and processing materials. Journal of Materials Research and Technology 14, (2021).spa
dc.relation.referencesKesraoui, A., Bouzaabia, S. & Seffen, M. The combination of Luffa cylindrical fibers and metal oxides offers a highly performing hybrid fiber material in water decontamination. Environmental Science and Pollution Research 26, (2019).spa
dc.relation.referencesBoudechiche, N., Mokaddem, H., Sadaoui, Z. & Trari, M. Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): characterization, equilibrium, kinetic and thermodynamic studies. International Journal of Industrial Chemistry 7, (2016).spa
dc.relation.referencesKasbaji, M. et al. Bio-adsorption performances of methylene blue (MB) dye on terrestrial and marine natural fibers: Effect of physicochemical properties, kinetic models and thermodynamic parameters. Separation Science and Technology (Philadelphia) 58, (2023).spa
dc.relation.referencesBounaas, M., Bouguettoucha, A., Chebli, D., Gatica, J. M. & Vidal, H. Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arab J Sci Eng 46, (2021).spa
dc.relation.referencesMontoya-Escobar, N. et al. Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources. Polymers (Basel) 14, (2022).spa
dc.relation.referencesPremalatha, N., Saravanakumar, S. S., Sanjay, M. R., Siengchin, S. & Khan, A. Structural and Thermal Properties of Chemically Modified Luffa Cylindrica Fibers. Journal of Natural Fibers 18, (2021).spa
dc.relation.referencesChen, Y. et al. In-depth analysis of the structure and properties of two varieties of natural luffa sponge fibers. Materials 10, (2017).spa
dc.relation.referencesOrnaghi, H. L., Ornaghi, F. G., Neves, R. M., Monticeli, F. & Bianchi, O. Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose 27, (2020).spa
dc.relation.referencesHeidari, M. K., Fouladi, M., Sooreh, H. A. & Tavakoli, O. Superhydrophobic and super-oleophilic natural sponge sorbent for crude oil/water separation. Journal of Water Process Engineering 48, (2022).spa
dc.relation.referencesKasbaji, M. et al. Implementation and physico-chemical characterization of new alkali-modified bio-sorbents for cadmium removal from industrial discharges: Adsorption isotherms and kinetic approaches. Process Biochemistry 120, (2022).spa
dc.relation.referencesIvanovski, M., Goricanec, D., Krope, J. & Urbancl, D. Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production. Energy 240, (2022).spa
dc.relation.referencesQuesada, L., Pérez, A., Calero, M., Blázquez, G. & Martín-Lara, M. A. Kinetic study of thermal degradation of olive cake based on a scheme of fractionation and its behavior impregnated of metals. Bioresour Technol 261, (2018).spa
dc.relation.referencesBarneto, A. G., Carmona, J. A., Conesa Ferrer, J. A. & Díaz Blanco, M. J. Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production. Fuel 89, (2010).spa
dc.relation.referencesGalbe, M. & Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels vol. 12 Preprint at https://doi.org/10.1186/s13068-019-1634-1 (2019).spa
dc.relation.referencesVaidya, A. A., Murton, K. D., Smith, D. A. & Dedual, G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conversion and Biorefinery vol. 12 Preprint at https://doi.org/10.1007/s13399-022-02373-9 (2022).spa
dc.relation.referencesLang, J. et al. Applications of the Hansen Solubility Parameter for Cellulose. Bioresources 16, (2021).spa
dc.relation.referencesJiang, J. et al. Influence of Chemical and Enzymatic TEMPO-Mediated Oxidation on Chemical Structure and Nanofibrillation of Lignocellulose. ACS Sustain Chem Eng 8, (2020).spa
dc.relation.referencesIsogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Progress in Polymer Science vol. 86 Preprint at https://doi.org/10.1016/j.progpolymsci.2018.07.007 (2018).spa
dc.relation.referencesDuceac, I. A., Tanasa, F. & Coseri, S. Selective Oxidation of Cellulose—A Multitask Platform with Significant Environmental Impact. Materials vol. 15 Preprint at https://doi.org/10.3390/ma15145076 (2022).spa
dc.relation.referencesSbiai, A., Kaddami, H., Sautereau, H., Maazouz, A. & Fleury, E. TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr Polym 86, (2011).spa
dc.relation.referencesHao, J. et al. Impact of degree of oxidation on the physicochemical properties of microcrystalline cellulose. Carbohydr Polym 155, (2017).spa
dc.relation.referencesKhadraoui, M., Khiari, R., Brosse, N., Bergaoui, L. & Mauret, E. Combination of Steam Explosion and TEMPO-mediated Oxidation as Pretreatments to Produce Nanofibril of Cellulose from Posidonia oceanica Bleached Fibres. Bioresources 17, (2022).spa
dc.relation.referencesSaito, T. & Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, (2004).spa
dc.relation.referencesMohanty, A. K., Misra, M. & Drzal, L. T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos Interfaces 8, 313–343 (2001).spa
dc.relation.referencesHasan, A., Rabbi, M. S. & Maruf Billah, M. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials 4, 100078 (2022).spa
dc.relation.referencesGandolfi, S., Ottolina, G., Riva, S., Fantoni, G. P. & Patel, I. Complete chemical analysis of carmagnola hemp hurds and structural features of its components. Bioresources 8, (2013).spa
dc.relation.referencesXiao, W. D. et al. Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue. Int J Biol Macromol 218, (2022).spa
dc.relation.referencesGoertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C. & Andreas, H. A. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon N Y 48, (2010).spa
dc.relation.referencesSaha, N. & Reza, M. T. Effect of pyrolysis on basic functional groups of hydrochars. Biomass Convers Biorefin 11, (2021).spa
dc.relation.referencesKim, U. J., Eom, S. H. & Wada, M. Thermal decomposition of native cellulose: Influence on crystallite size. Polym Degrad Stab 95, (2010).spa
dc.relation.referencesAlvarado Flores, J. J. & Rutiaga Quiñones, J. G. Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos. Maderas. Ciencia y tecnología (2018) doi:10.4067/s0718-221x2018005002601.spa
dc.relation.referencesDas, S. & Srivastava, V. C. An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnology Reviews vol. 7 Preprint at https://doi.org/10.1515/ntrev-2017-0144 (2018).spa
dc.relation.referencesNedjimi, B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni-Suef University Journal of Basic and Applied Sciences vol. 10 Preprint at https://doi.org/10.1186/s43088-021-00123-w (2021).spa
dc.relation.referencesAssaf, E. M., Jesus, L. C. & Assaf, J. M. The active phase distribution in Ni/Al2O3 catalysts and mathematical modeling of the impregnation process. Chemical Engineering Journal 94, (2003).spa
dc.relation.referencesBeverskog, B. & Puigdomenech, I. Revised Pourbaix Diagrams for Copper at 25 to 300°C. J Electrochem Soc 144, (1997).spa
dc.relation.referencesGonzalez-Romero, E., Gonzalez-Costas, J. M., Magallanes-Chapela, M. & García, J. Capítulo 4. Electroanálisis simultáneo de Cu, Pb, Cd y Zn en muestras de agua de diferente procedencia Red Gallega de Bioremediación y Energía del Agua. in BIOAGUA Red Gallega de Bioremedación y Energía del Agua (eds. Riádigos, M. & Torres, J.) 45–66 (2019).spa
dc.relation.referencesJankovic, A., Chaudhary, G. & Goia, F. Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build 250, (2021).spa
dc.relation.referencesFukuda, I. M., Pinto, C. F. F., Moreira, C. D. S., Saviano, A. M. & Lourenço, F. R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazilian Journal of Pharmaceutical Sciences vol. 54 Preprint at https://doi.org/10.1590/s2175-97902018000001006 (2018).spa
dc.relation.referencesEl-Trass, A., Elshamy, H., El-Mehasseb, I. & El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci 258, (2012).spa
dc.relation.referencesHabibi, M. H. & Karimi, B. Nanostructure Cu-Zn mixed-oxide supported photocatalyst fabricated by impregnation method for the photocatalytic degradation of C.I. Reactive Orange 16 (V3R) in water. Spectrochim Acta A Mol Biomol Spectrosc 124, (2014).spa
dc.relation.referencesAli Redha, A. Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences vol. 27 Preprint at https://doi.org/10.1080/25765299.2020.1756177 (2020).spa
dc.relation.referencesLiu, H. et al. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J Hazard Mater 185, (2011).spa
dc.relation.referencesShah, S. A. et al. Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. J Organomet Chem 938, (2021).spa
dc.relation.referencesNavarro Santos, D. et al. ADSORCIÓN DE AZUL DE METILENO EN MEDIO ACUOSO EMPLEANDO CARBONES ACTIVADOS Y CARBONES ACTIVADOS MODIFICADOS CON NANOPARTÍCULAS DE ZnO. Revista de la Sociedad Química del Perú 82, (2016).spa
dc.relation.referencesGuo, F. et al. Influence of impregnated copper and zinc on the pyrolysis of rice husk in a micro-fluidized bed reactor: Characterization and kinetics. Int J Hydrogen Energy (2018) doi:10.1016/j.ijhydene.2018.10.013.spa
dc.relation.referencesKiani, S. S. et al. Investigation of Cu/Zn/Ag/Mo-based impregnated activated carbon for the removal of toxic gases, synthesized in aqueous media. Diam Relat Mater 111, (2021).spa
dc.relation.referencesSoliman, A. M., Elsuccary, S. A. A., Ali, I. M. & Ayesh, A. I. Photocatalytic activity of transition metal ions-loaded activated carbon: Degradation of crystal violet dye under solar radiation. Journal of Water Process Engineering 17, (2017).spa
dc.relation.referencesEmam, H. E. et al. Copper(I)oxide surface modified cellulose fibers-Synthesis, characterization and antimicrobial properties. Surf Coat Technol 254, (2014).spa
dc.relation.referencesThue, P. S. et al. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J Colloid Interface Sci 486, (2017).spa
dc.relation.referencesDada, T. K., Islam, M. A., Duan, A. X. & Antunes, E. Catalytic co-pyrolysis of ironbark and waste cooking oil using X-strontium /Y-zeolite (X= Ni, Cu, Zn, Ag, and Fe). Journal of the Energy Institute 104, (2022).spa
dc.relation.referencesZhang, S., Wang, R., Zhang, X. & Zhao, H. Recent advances in single-atom alloys: preparation methods and applications in heterogeneous catalysis. RSC Advances vol. 14 Preprint at https://doi.org/10.1039/d3ra07029h (2024).spa
dc.relation.referencesOseke, G. G., Atta, A. Y., Mukhtar, B., El-Yakubu, B. J. & Aderemi, B. O. Increasing the catalytic stability of microporous Zn/ZSM-5 with copper for enhanced propane aromatization. Journal of King Saud University - Engineering Sciences 33, (2021).spa
dc.relation.referencesChuang, K. H., Lu, C. Y., Wey, M. Y. & Huang, Y. N. NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Appl Catal A Gen 397, (2011).spa
dc.relation.referencesEscalante, Y., Gomez, M. F. & Barroso, M. N. Study of the impregnation sequence of active phase and effect of cobalt content over Co-CeO2/MgΑl2O4 catalysts in ethanol steam reforming. Int J Hydrogen Energy 48, (2023).spa
dc.relation.referencesJaimes, O. D., Rincón, I. C. & Peña-Pedraza, H. Método de la correlación en un cristal de ZnO. Ciencia en Desarrollo 9, (2018).spa
dc.relation.referencesArmelao, L. et al. A sol-gel approach to nanophasic copper oxide thin films. in Thin Solid Films vol. 442 (2003).spa
dc.relation.referencesKhadir, A., Negarestani, M. & Mollahosseini, A. Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: Study of parameters, kinetics, and equilibrium. J Environ Chem Eng 8, (2020).spa
dc.relation.referencesAdewuyi, A. & Pereira, F. V. Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb(II) pollutant from water system. Beni Suef Univ J Basic Appl Sci 6, (2017).spa
dc.relation.referencesMashkoor, F. & Nasar, A. Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J Mol Liq 274, (2019).spa
dc.relation.referencesSasan Narkesabad, Z., Rafiee, R. & Jalilnejad, E. Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Sci Rep 13, (2023).spa
dc.relation.referencesShahidi, A., Jalilnejad, N. & Jalilnejad, E. A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica. Desalination Water Treat 53, (2015).spa
dc.relation.referencesFlora, G., Gupta, D. & Tiwari, A. Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology vol. 5 Preprint at https://doi.org/10.2478/v10102-012-0009-2 (2012).spa
dc.relation.referencesChowdhury, I. R., Chowdhury, S., Mazumder, M. A. J. & Al-Ahmed, A. Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents. Applied Water Science vol. 12 Preprint at https://doi.org/10.1007/s13201-022-01703-6 (2022).spa
dc.relation.referencesAbbar, B. et al. Experimental investigation on removal of heavy metals (Cu2+, Pb2+, and Zn2+) from aqueous solution by flax fibres. Process Safety and Environmental Protection 109, (2017).spa
dc.relation.referencesGhodbane, I., Nouri, L., Hamdaoui, O. & Chiha, M. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J Hazard Mater 152, (2008).spa
dc.relation.referencesAl-Ghouti, M. A., Khraisheh, M. A. M., Ahmad, M. N. M. & Allen, S. Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. J Hazard Mater 165, (2009).spa
dc.relation.referencesIbrahim, H. S., Ammar, N. S., Soylak, M. & Ibrahim, M. Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta A Mol Biomol Spectrosc 96, (2012).spa
dc.relation.referencesThakur, V., Sharma, E., Guleria, A., Sangar, S. & Singh, K. Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. in Materials Today: Proceedings vol. 32 (2020).spa
dc.relation.referencesNadaroglu, H., Cicek, S. & Gungor, A. A. Removing Trypan blue dye using nano-Zn modified Luffa sponge. Spectrochim Acta A Mol Biomol Spectrosc 172, (2017).spa
dc.relation.referencesSingh, S., Kapoor, D., Khasnabis, S., Singh, J. & Ramamurthy, P. C. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environmental Chemistry Letters vol. 19 Preprint at https://doi.org/10.1007/s10311-021-01196-w (2021).spa
dc.relation.referencesKumar, R. et al. Biosorption of copper and lead ions onto treated biomass Myrica esculenta: Isotherms and kinetics studies. Environ Nanotechnol Monit Manag 19, (2023).spa
dc.relation.referencesChwastowski, J., Bradło, D. & Żukowski, W. Adsorption of cadmium, manganese and lead ions from aqueous solutions using spent coffee grounds and biochar produced by its pyrolysis in the fluidized bed reactor. Materials 13, (2020).spa
dc.relation.referencesTejada-Tovar, C., Villabona-Ortíz, A., Ortega-Toro, R., Mancilla-Bonilla, H. & Espinoza-León, F. Potential use of residual sawdust of Eucalyptus Globulus Labill in Pb (II) adsorption: Modelling of the kinetics and equilibrium. Applied Sciences (Switzerland) 11, (2021).spa
dc.relation.referencesHachemaoui, M. et al. Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: Effect of metal and calcination treatment. Mater Chem Phys 256, (2020).spa
dc.relation.referencesMusah, M. et al. Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology 4, (2022).spa
dc.relation.referencesMohamed Nasser, S., Abbas, M. & Trari, M. Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Progress in Reaction Kinetics and Mechanism vol. 49 Preprint at https://doi.org/10.1177/14686783241226858 (2024).spa
dc.relation.referencesLargitte, L. & Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design 109, (2016).spa
dc.relation.referencesChen, X. et al. Isotherm models for adsorption of heavy metals from water - A review. Chemosphere vol. 307 Preprint at https://doi.org/10.1016/j.chemosphere.2022.135545 (2022).spa
dc.relation.referencesAl-Ghouti, M. A. & Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials vol. 393 Preprint at https://doi.org/10.1016/j.jhazmat.2020.122383 (2020).spa
dc.relation.referencesEbelegi, A. N., Ayawei, N. & Wankasi, D. Interpretation of Adsorption Thermodynamics and Kinetics. Open J Phys Chem 10, (2020).spa
dc.relation.referencesHubbe, M. A., Azizian, S. & Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources vol. 14 Preprint at https://doi.org/10.15376/biores.14.3.hubbe (2019).spa
dc.relation.referencesNatarajan, R. & Manivasagan, R. Biosorptive Removal of Heavy Metal onto Raw Activated Sludge: Parametric, Equilibrium, and Kinetic Studies. Journal of Environmental Engineering 142, (2016).spa
dc.relation.referencesAbdolali, A. et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour Technol 160, (2014).spa
dc.relation.referencesAl-Senani, G. M. & Al-Fawzan, F. F. Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt J Aquat Res 44, (2018).spa
dc.relation.referencesAraújo, C. S. T. et al. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal 137, (2018).spa
dc.relation.referencesKayalvizhi, K. et al. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study. Environ Res 203, (2022).spa
dc.relation.referencesTejada-Tovar, C., Bonilla-Mancilla, H., Toro, R. O., Villabona-Ortíz, A. & Díaz-Illanes, M. The elimination of lead(II) ions in a solution by bio-adsorption: Kinetics, equilibrium, and thermodynamics. Journal of Water and Land Development 53, (2022).spa
dc.relation.referencesSheikh, Z. et al. Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere 279, (2021).spa
dc.relation.referencesVareda, J. P. On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. Journal of Molecular Liquids vol. 376 Preprint at https://doi.org/10.1016/j.molliq.2023.121416 (2023).spa
dc.relation.referencesWu, F. C., Tseng, R. L. & Juang, R. S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal 150, (2009).spa
dc.relation.referencesSellaoui, L. et al. Understanding the adsorption of Pb2+, Hg2+ and Zn2+ from aqueous solution on a lignocellulosic biomass char using advanced statistical physics models and density functional theory simulations. Chemical Engineering Journal 365, (2019).spa
dc.relation.referencesO., I., O., E. & K. Audu, T. O. Application of Luffa Cylindrica in Natural form as Biosorbent to Removal of Divalent Metals from Aqueous Solutions - Kinetic and Equilibrium Study. in Waste Water - Treatment and Reutilization (2011). doi:10.5772/16150.spa
dc.relation.referencesTejada-Tovar, C., Villabona-Ortíz, Á. & Gonzalez-Delgado, A. D. The kinetics, thermodynamics and equilibrium study of nickel and lead uptake using corn residues as adsorbent. Journal of Water and Land Development 48, (2021).spa
dc.relation.referencesBULUT, Y. & TEZ, Z. Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences 19, (2007).spa
dc.relation.referencesBoudrahem, F., Aissani-Benissad, F. & Aït-Amar, H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manage 90, (2009).spa
dc.relation.referencesLiang, X. et al. Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals. Chem Geol 470, (2017).spa
dc.relation.referencesLaidani, Y., Hanini, S. & Henini, G. Use of fiber Luffa cylindrica for waters traitement charged in copper. Study of the possibility of its regeneration by desorption chemical. in Energy Procedia vol. 6 (2011).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembCONTAMINACION INDUSTRIALspa
dc.subject.lembContamination (technology)eng
dc.subject.lembCONTAMINACION QUIMICAspa
dc.subject.lembChemical pollutioneng
dc.subject.lembCONTAMINACION DEL AGUAspa
dc.subject.lembWater - pollutioneng
dc.subject.lembSorbentseng
dc.subject.lembMetallic pollutantseng
dc.subject.lembPURIFICACION DE AGUAS RESIDUALES-OXIDACIONspa
dc.subject.lembSewage - purification - oxidationeng
dc.subject.lembFIBRAS VEGETALESspa
dc.subject.lembPlant fiberseng
dc.subject.lembADSORBENTESspa
dc.subject.lembCONTAMINANTES METALICOSspa
dc.subject.proposalLuffa cylindricaspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalMateriales híbridosspa
dc.subject.proposalRemociónspa
dc.subject.proposalLuffa cylindricaeng
dc.subject.proposalHeavy metalseng
dc.subject.proposalAdsorptioneng
dc.subject.proposalHybrid materialseng
dc.subject.proposalRemovaleng
dc.titleDesarrollo de material híbrido a partir de fibras de Estropajo (Luffa cylindrica spp.) como soporte para metales de transición en la remoción de contaminantes emergentes en aguasspa
dc.title.translatedDevelopment of a hybrid material based on Loofah fibers (Luffa cylindrica spp.) as a support for transition metals in the removal of emerging pollutants in watereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentDatasetspa
dc.type.contentTextspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022404855.2024.pdf
Tamaño:
3.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: