Ecología de la polinización de especies simpátricas del género Wettinia (Arecaceae) en el Chocó biogeográfico
dc.contributor.advisor | Zamora Abrego , Joan Gastón | |
dc.contributor.author | Borja Renteria , Jhoniel Javier | |
dc.contributor.cvlac | Borja Renteria, Jhoniel [0000183141] | |
dc.contributor.orcid | Borja Renteria, Jhoniel [0000-0003-4125-5395] | |
dc.contributor.orcid | Zamora Abrego, Joan [0000-0003-2904-4077] | |
dc.contributor.researchgate | Borja Renteria, Jhoniel [Jhoniel-Borja-Renteria] | |
dc.contributor.researchgroup | Ecología y Conservación de Fauna y Flora Silvestre | |
dc.coverage.region | Chocó (Colombia) | |
dc.date.accessioned | 2025-08-28T17:19:54Z | |
dc.date.available | 2025-08-28T17:19:54Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, fotografías, mapas | spa |
dc.description.abstract | Las palmas (Arecaceae) son clave para los ecosistemas tropicales, proporcionando recursos esenciales a los ecosistemas. El estudio de las interacciones planta-insectos permite comprender estrategias reproductivas y patrones fenológicos que presentan las especies. El Chocó biogeográfico, con su alta diversidad de palmas, ofrece un escenario idóneo para entender los mecanismos de polinización y estrategias reproductivas entre especies simpátricas como las del género Wettinia (W. aequalis, W. quinaria y W. radiata). Para comprender la ecología de la polinización en estas especies, la investigación se estructuró en tres capítulos, abordando la siguiente pregunta: Esta investigación abordó cómo los mecanismos de polinización y características florales favorecen la coexistencia de estas palmas. Se realizaron tres estudios: i) Se evaluó la fenología reproductiva y morfología floral, ii) identificación de compuestos volátiles florales y iii) análisis de visitantes florales y polinizadores potenciales. i) Se evaluó y comparó la fenología reproductiva (floración y fructificación) y morfología floral de Wettinia aequalis, W. quinaria y W. radiata simpátricas del bosque pluvial tropical (pb-T) de Quibdó, Chocó, Colombia, analizando sus patrones fenológicos en relación con la precipitación y temperatura. ii) Se identificó la composición química de los compuestos orgánicos volátiles (CVO) florales en tres especies iii) Se identificaron los visitantes florales y los potenciales polinizadores responsables del transporte de polen en W. aequalis, W. quinaria y W. radiata. Las tres poblaciones florecieron y fructificaron durante todo el año, con patrones asincrónicos. W. aequalis floreció principalmente en noviembre y enero, con fructificación entre enero-marzo y octubre-diciembre. W. quinaria floreció en noviembre-diciembre y marzo, con picos de fructificación en marzo-abril. W. radiata mostró floración en junio y fructificación en febrero, octubre y diciembre. La precipitación afectó negativamente la floración y fructificación (β = -0.0005, p < 0.05), mientras que la temperatura no tuvo un efecto significativo. La interacción entre precipitación y temperatura influyó en la floración (p = 0.002). Se observaron diferencias significativas entre las especies en el número de yemas por nudo y flores por inflorescencia. Las inflorescencias son infrafoliares, con sistema monoico dicógamo que favorece la polinización cruzada. La maduración de los frutos toma entre 8.5 y 9.2 meses. Se identificaron 14 COV, destacando los hidrocarburos saturados (8) e insaturados (3), sesquiterpenos (2) y Bencenoides. W. aequalis presentó el perfil más diverso con 11 compuestos, dominado por hidrocarburos saturados como Undecano (52,10%). W. quinaria tuvo un compuestos exclusivo 1,4-dimetoxibenceno (99,60%), un Bencenoides aromático. W. radiata exhibió un perfil intermedio, compartiendo hidrocarburos saturados con W. aequalis, pero en proporciones distintas. El análisis de componentes principales explicó el 94,37% de la varianza química, evidenciando segregación entre especies. Se registraron 75 especies de insectos y 3 arácnidos, agrupados en 5 órdenes. Coleoptera e Hymenoptera con mayor riqueza y Curculionidae y Nitidulidae con las especies más abundantes. La riqueza de visitantes florales fue mayor en W. quinaria (68 morfoespecies), seguida de W. radiata (54) y W. aequalis (53), W. quinaria presentó diferencias significativas (P = 0.0062) en riqueza y abundancia con respecto a las otras especies. W. quinaria con la mayor abundancia, en promedio con 10250, W. aequalis con 6542 y W. radiata con 5733 insectos por inflorescencia. Se identificaron cuatro grupos funcionales, los polinívoros el más dominante con 48.71 %. Los polinizadores principales para W. aequalis fueron Mystrops sp. nov. A, Trigona ferricauda, Trigona fulviventris, Phyllotrox sp4, Nitidulidae gen 3. en W. quinaria Phyllotrox sp1, Phyllotrox sp2, Mystrops sp. nov. A y Mystrops sp. nov. B. mientras que en W. radiata fueron Mystrops sp. nov. A, Mystrops sp. nov. B y Anthocorcina connelli. El análisis de la red de interacción entre visitantes florales y las palmas W. aequalis, W. quinaria y W. radiata revela alta conectividad (C = 0,763) y un equilibrio entre especialización y generalización (H2' = 0,68). Se identificaron 87 interacciones, con W. quinaria como la palma con más visitantes. Algunos insectos, como Mystrops sp. nov. A y Phyllotrox sp1, tienen un alto índice de importancia relativa (IRP), sugiriendo su papel clave en la polinización. La red muestra modularidad (Q = 0.419), indicando subgrupos de interacción, y cierto solapamiento entre polinizadores, lo que favorece la estabilidad del sistema. (Tomado de la fuente) | spa |
dc.description.abstract | Palms (Arecaceae) are key to tropical ecosystems, providing essential resources to ecosystems. The study of plant-insect interactions allows us to understand the reproductive strategies and phenological patterns of the species. The biogeographic Chocó, with its high diversity of palms, offers an ideal scenario to understand pollination mechanisms and reproductive strategies among sympatric species such as those of the genus Wettinia (W. aequalis, W. quinaria and W. radiata). To understand the pollination ecology of these species, the research was structured in three chapters, addressing the following question: This research addressed how pollination mechanisms and floral characteristics favor the coexistence of these palms. Three studies were conducted: i) reproductive phenology and floral morphology were evaluated, ii) identification of floral volatile compounds, and iii) analysis of floral visitors and potential pollinators. i) The reproductive phenology (flowering and fruiting) and floral morphology of sympatric Wettinia aequalis, W. quinaria, and W. radiata from the tropical rainforest (pb-T) of Quibdó, Chocó, Colombia, were evaluated, and compared by analyzing their phenological patterns about precipitation and temperature. ii) The chemical composition of floral volatile organic compounds (VOCs) was identified in three species iii) Floral visitors and potential pollinators responsible for pollen transport were identified in W. aequalis, W. quinaria and W. radiata. All three populations flowered and fructified throughout the year, with asynchronous patterns. W. aequalis flowered mainly in November and January, with fruiting between January-March and October-December. W. quinaria flowered in November-December and March, with peak fruiting in March-April. W. radiata showed flowering in June and fruiting in February, October and December. Precipitation negatively affected flowering and fruiting (β = -0.0005, p < 0.05), while temperature had no significant effect. The interaction between precipitation and temperature influenced flowering (p = 0.002). Significant differences between species were observed in the number of buds per node and flowers per inflorescence. Inflorescences are infrafoliar, with a monoecious dichogamous system that favors cross-pollination. Fruit ripening takes between 8.5 and 9.2 months. Fourteen VOCs were identified, highlighting saturated (8) and unsaturated (3) hydrocarbons, sesquiterpenes (2), and benzenoids. W. aequalis presented the most diverse profile with 11 compounds, dominated by saturated hydrocarbons such as Undecane (52.10%). W. quinaria had an exclusive 1,4-dimethoxybenzene compound (99.60%), an aromatic benzenoid. W. radiata exhibited an intermediate profile, sharing saturated hydrocarbons with W. aequalis, but in different proportions. Principal component analysis explained 94.37% of the chemical variance, showing segregation between species. Seventy-five species of insects and three arachnids were recorded, grouped into five orders. Coleoptera and Hymenoptera with the highest richness and Curculionidae and Nitidulidae with the most abundant species. The richness of floral visitors was higher in W. quinaria (68 morphospecies), followed by W. radiata (54) and W. aequalis (53), W. quinaria presented significant differences (P = 0.0062) in richness and abundance with respect to the other species. W. quinaria had the highest abundance, on average with 10250, W. aequalis with 6542, and W. radiata with 5733 insects per inflorescence. Four functional groups were identified, pollinivores being the most dominant with 48.71 %. The main pollinators for W. aequalis were Mystrops sp. nov. A, Trigona ferricauda, Trigona fulviventris, Phyllotrox sp4, Nitidulidae gen 3. in W. quinaria Phyllotrox sp1, Phyllotrox sp2, Mystrops sp. nov. A and Mystrops sp. nov. B. while in W. radiata they were Mystrops sp. nov. A, Mystrops sp. nov. B and Anthocorcina connelli. Analysis of the interaction network between floral visitors and the palms W. aequalis, W. quinaria and W. radiata reveals high connectivity (C = 0.763) and a balance between specialization and generalization (H2' = 0.68). Eighty-seven interactions were identified, with W. quinaria as the palm with the most visitors. Some insects, such as Mystrops sp. nov. A and Phyllotrox sp1, have a high relative importance index (RHI), suggesting their key role in pollination. The network shows modularity (Q = 0.419), indicating interaction subgroups, and some overlap between pollinators, which favors the stability of the system. | eng |
dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Bosques y Conservación Ambiental | |
dc.description.researcharea | Ecología de la polinización y biología reproductiva de plantas tropicales | |
dc.description.researcharea | Interacciones planta–animal y redes de polinización | |
dc.description.sponsorship | Convocatoria para la Formación de Capital Humano de Alto Nivel para los departamentos de Arauca, Bolívar, Boyacá, Chocó, Guainía, San Andrés, Tolima y Vaupés, en el marco de la celebración del Bicentenario y la Convocatoria 7 del Plan Bienal del FCTEI 2019-2020 | |
dc.format.extent | 113 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88500 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Aguado, D., Gutierrez-Chacón, C., & Muñoz, M. C. (2019). Estructura funcional y patrones de especialización en las relaciones planta-polinizador de un agroecosistema en el Valle del Cauca, Colombia. Acta Biológica Colombiana, 24(2), 331–342. https://doi.org/10.15446/abc.v24n2.73177 | |
dc.relation.references | Almeida-Neto, M., & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26(2), 173–178. https://doi.org/10.1016/j.envsoft.2010.08.003 | |
dc.relation.references | Arango, D. A., Duque, Á. J., & Muñoz, E. (2010). Dinámica poblacional de la palma Euterpe oleracea (Arecaceae) en bosques inundables del Chocó, Pacífico colombiano. In Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 58, Issue 1). | |
dc.relation.references | Askgaard, A., Stauffer, F. W., Hodel, D. R., Barfod, A. S., Askgaard, R., Stauffer, A., & Barfod, D. R. &. (2008). Floral structure in the neotropical palm genus Chamaedorea (Arecoideae, Arecaceae). Anales Del Jardín Botánico de Madrid, 65(2). | |
dc.relation.references | Ávila, M. A. de, Azevedo, I. F. P. de, Antunes, J. R., Souza, C. R. de, Santos, R. M. dos, Fonseca, R. S., & Nunes, Y. R. F. (2022). Temperature as the main factor affecting the reproductive phenology of the dioecious palm Mauritiella armata (Arecaceae). Acta Botanica Brasilica, 36, e2021abb0111. https://doi.org/10.1590/0102-33062021abb0111 | |
dc.relation.references | Bacon, C. D., Velásquez-Puentes, F., Flórez-Rodríguez, A., Balslev, H., Galeano, G., Bernal, R., & Antonelli, A. (2016). Phylogenetics of Iriarteeae (Arecaceae), cross-Andean disjunctions and convergence of clustered infructescence morphology in Wettinia. Botanical Journal of the Linnean Society, 182(2), 272–286. https://doi.org/10.1111/boj.12421 | |
dc.relation.references | Barbosa, C. M., Maia, A. C. D., Martel, C., Regueira, J. C. S., Navarro, D. M. do A. F., Raguso, R. A., Milet-Pinheiro, P., & Machado, I. C. (2021). Reproductive biology of Syagrus coronata (Arecaceae): sex-biased insect visitation and the unusual case of scent emission by peduncular bracts. Plant Biology, 23(1), 100–110. https://doi.org/10.1111/plb.13162 | |
dc.relation.references | Barfod, A. S., Hagen, M., & Borchsenius, F. (2011). Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). In Annals of Botany (Vol. 108, Issue 8, pp. 1503–1516). https://doi.org/10.1093/aob/mcr192 | |
dc.relation.references | Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383–9387. https://doi.org/10.1073/pnas.1633576100 | |
dc.relation.references | Benadi, G., & Pauw, A. (2018). Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. Journal of Ecology, 106(5), 1892–1901. https://doi.org/10.1111/1365-2745.13025 | |
dc.relation.references | Bencke, C. S. C., & Morellato, L. P. C. (2002). Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Revista Brasileira de Botânica, 25(3), 269–275. https://doi.org/10.1590/S0100-84042002000300003 | |
dc.relation.references | Bernal, R. (1995). Nuevas especies y combinaciones en la subtribu Wettiniinae (Palmae). Caldasia, 17(367–377), 82–85. | |
dc.relation.references | Bisrat, D., & Jung, C. (2022). Roles of flower scent in bee?flower mediations: a review. Journal of Ecology and Environment, 46, 3. https://doi.org/10.5141/jee.21.00075 | |
dc.relation.references | Blüthgen, N., & Klein, A.-M. (2011). Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic and Applied Ecology, 12(4), 282–291. https://doi.org/10.1016/j.baae.2010.11.001 | |
dc.relation.references | Borchsenius, F., Lozada, T., & Knudsen, J. T. (2016). Reproductive isolation of sympatric forms of the understorey palm Geonoma macrostachys in western Amazonia. https://academic.oup.com/botlinnean/article/182/2/398/2707822 | |
dc.relation.references | Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. The Plant Journal, 100(5), 892–907. https://doi.org/10.1111/tpj.14496 | |
dc.relation.references | Brieva-Oviedo, E., & Núñez-Avellaneda, L. (2020). Biología reproductiva de la palma amarga (Sabal mauritiiformis: Arecaceae): especie económicamente importante para la Costa Caribe colombiana. Caldasia, 42(2), 278–293. https://doi.org/10.15446/caldasia.v42n2.75595 | |
dc.relation.references | Brieva-Oviedo, E., Maia, A. C. D., & Núñez-Avellaneda, L. A. (2020). Pollination of Bactris guineensis (Arecaceae), a potential economically exploitable fruit palm from the Colombian Caribbean. Flora, 269, 151628. https://doi.org/10.1016/J.FLORA.2020.151628 | |
dc.relation.references | Bruno, M. M. A., Massi, K. G., Vidal, M. M., & Hay, J. du V. (2019). Reproductive phenology of three Syagrus species (Arecaceae) in a tropical savanna in Brazil. Flora, 252, 18–25. https://doi.org/10.1016/j.flora.2019.02.002 | |
dc.relation.references | Castillo, D. C. Z. J. A. (2012). Efecto de la humedad de suelo en los patrones fenológicos de tres especies de palmas en el Valle del Yeguare. | |
dc.relation.references | Cifuentes, L., Moreno, F., & Andrés Arango, D. (2013). Comportamiento fenológico de Euterpe oleracea (Arecaceae) en bosques inundables del Chocó biogeográfico. Revista Mexicana de Biodiversidad, 84(2), 591–599. https://doi.org/10.7550/rmb.30326 | |
dc.relation.references | Colwell, R. K. (2006). EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. | |
dc.relation.references | Copete, J. C., Flórez, D. M., & Núñez-Avellaneda, L. A. (2018). Pollination Ecology of the Manicaria saccifera (ARECACEAE): A Rare Case of Pollinator Exclusion. In Pollination in Plants. InTech. https://doi.org/10.5772/intechopen.76073 | |
dc.relation.references | Copete, J. C., Sanchez, M., Cámara-Leret, R., & Balslev, H. (2019). Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia, 41(2), 358–369. https://doi.org/10.15446/caldasia.v41n2.66576 | |
dc.relation.references | Cortés-Flores, J., Hernández-Esquivel, K., González-Rodríguez, A., & Ibarra-Manríquez, G. (2017). Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. American Journal of Botany, 104(1), 39–49. https://doi.org/10.3732/ajb.1600305 | |
dc.relation.references | Cuevas, E., Martínez-Díaz, Y., Montes, A. D., & Espinosa-García, F. J. (2023). Floral and leaf-trap volatiles and their relationship to pollinator and prey attraction in Pinguicula moranensis (Lentibulariaceae). Arthropod-Plant Interactions, 17(5), 687–694. https://doi.org/10.1007/s11829-023-09984-7 | |
dc.relation.references | Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90–98. https://doi.org/10.1111/2041-210X.12139 | |
dc.relation.references | Dransfield, John., Uhl, N. W., & Royal Botanic Gardens, Kew. (2008). Genera Palmarum: the evolution and classification of palms. Kew Pub. | |
dc.relation.references | Dupont, Y. L., Padrón, B., Olesen, J. M., & Petanidou, T. (2009). Spatio‐temporal variation in the structure of pollination networks. Oikos, 118(8), 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x | |
dc.relation.references | Eiserhardt, W. L., Svenning, J.-C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108(8), 1391–1416. https://doi.org/10.1093/aob/mcr146 | |
dc.relation.references | Fava, W. S., Covre, W. da S., & Sigrist, M. R. (2011). Attalea phalerata and Bactris glaucescens (Arecaceae, Arecoideae): Phenology and pollination ecology in the Pantanal, Brazil. Flora - Morphology, Distribution, Functional Ecology of Plants, 206(6), 575–584. https://doi.org/10.1016/J.FLORA.2011.02.001 | |
dc.relation.references | Fitter, A. H., & Fitter, R. S. R. (2002). Rapid Changes in Flowering Time in British Plants. Science, 296(5573), 1689–1691. https://doi.org/10.1126/science.1071617 | |
dc.relation.references | Friberg, M., Schwind, C., Roark, L. C., Raguso, R. A., & Thompson, J. N. (2014). Floral Scent Contributes to Interaction Specificity in Coevolving Plants and Their Insect Pollinators. Journal of Chemical Ecology, 40(9), 955–965. https://doi.org/10.1007/s10886-014-0497-y | |
dc.relation.references | Galeano, G., & Bernal, R. (2010). Palmas de Colombia Guía de campo. Editorial Universidad Nacional de Colombia. Instituto de Ciencias Naturales-Universidad Nacional de Colombia, 688. | |
dc.relation.references | Galeano, G., & Bernal, Rodrigo. G. (1983). Novedades de las palmas de Colombia. | |
dc.relation.references | García, Y., Dow, B., Vézina, L., & Parachnowitsch, A. (2024). Natural selection by pollinators on floral attractive and defensive traits did not translate into selection via fruits in common milkweed. Journal of Pollination Ecology, 35, 73–84. https://doi.org/10.26786/1920-7603(2024)758 | |
dc.relation.references | Gfrerer, E., Laina, D., Gibernau, M., Fuchs, R., Happ, M., Tolasch, T., Trutschnig, W., Hörger, A. C., Comes, H. P., & Dötterl, S. (2021). Floral Scents of a Deceptive Plant Are Hyperdiverse and Under Population-Specific Phenotypic Selection. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.719092 | |
dc.relation.references | Gottsberger, G. (2012). How diverse are Annonaceae with regard to pollination? Botanical Journal of the Linnean Society, 169(1), 245–261. https://doi.org/10.1111/j.1095-8339.2011.01209.x | |
dc.relation.references | Grajales-Conesa, J., Meléndez-Ramírez, V., & Cruz-López, L. (2011). Aromas florales y su interacción con los insectos polinizadores Floral scents and their interaction with insect pollinators. | |
dc.relation.references | Hammer, Ø., & Harper, D. (2006). Paleontological Data Analysis. – Oxford, Blackwell Publishing. Willey – Blackwell, 368. | |
dc.relation.references | Henderson, A. (2002). Evolution and ecology of palms. New York Botanical Garden Press. | |
dc.relation.references | Henderson, A. (2024). Pollination Systems of Palms (Arecaceae). Journal of Pollination Ecology, 35, 144–248. https://doi.org/10.26786/1920-7603(2024)782 | |
dc.relation.references | Henderson, A., Fischer, B., Scariot, A., Pacheco, M. A. W., & Pardini, R. (2000). Flowering Phenology of a Palm Community in a Central Amazon Forest. Brittonia, 52(2), 149. https://doi.org/10.2307/2666506 | |
dc.relation.references | Hentrich, H., Kaiser, R., & Gottsberger, G. (2009). Floral biology and reproductive isolation by floral scent in three sympatric aroid species in French Guiana. Plant Biology. https://doi.org/10.1111/j.1438-8677.2009.00256.x | |
dc.relation.references | Jiménez, P. D., Dötterl, S., Fuchs, R., Pérez‐Farrera, M. Á., & Aguilar‐Rodríguez, P. A. (2024). A new Spathiphyllum (Araceae) from Mexico segregated by its morphology and floral scent from closely related species. TAXON. https://doi.org/10.1002/tax.13147 | |
dc.relation.references | Jordano, P., Vásquez, D., & Bascompte, J. (2009). Redes complejas de interacciones planta-animal (R. Medel, A. Aizen, & R. Zamora, Eds.). Ecología y evolución de interacciones planta-animal . | |
dc.relation.references | Junker, R. R., & Parachnowitsch, A. L. (2015). Working towards a holistic view on flower traits-how floral scents mediate plant-animal interactions in concert with other floral characters. Journal of the Indian Institute of Science, 95(1), 43–67. | |
dc.relation.references | Jürgens, A., Bosch, S. R., Webber, A. C., Witt, T., Frame, D., & Gottsberger, G. (2009). Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: Effects of pollinator composition on reproductive success in different populations. Annals of Botany, 104(5), 897–912. https://doi.org/10.1093/aob/mcp191 | |
dc.relation.references | Kaiser-Bunbury, C. N., & Blüthgen, N. (2015). Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants, 7, plv076. https://doi.org/10.1093/aobpla/plv076 | |
dc.relation.references | Kevan, P. G., & Baker, H. G. (1983). Insects as Flower Visitors and Pollinators. Annual Review of Entomology, 28(1), 407–453. https://doi.org/10.1146/annurev.en.28.010183.002203 | |
dc.relation.references | Kidyoo, A. M., & McKey, D. (2012). Flowering phenology and mimicry of the rattan Calamus castaneus (Arecaceae) in southern Thailand. Botany, 90(9), 856–865. https://doi.org/10.1139/b2012-058 | |
dc.relation.references | Kirejtshuk, A. G., & Couturier, G. (2010). Sap beetles of the tribe Mystropini (Coleoptera: Nitidulidae) associated with South American palm inflorescences. Annales de La Société Entomologique de France (N.S.), 46(3–4), 367–421. https://doi.org/10.1080/00379271.2010.10697676 | |
dc.relation.references | Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B, 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 | |
dc.relation.references | Knudsen, J. T. (1999). Floral scent differentiation among coflowering, sympatric species of Geonoma (Arecaceae). Plant Species Biology, 14(2), 137–142. https://doi.org/10.1046/j.1442-1984.1999.00017.x | |
dc.relation.references | Knudsen, J. T. (2002). Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. American Journal of Botany, 89(11), 1772–1778. https://doi.org/10.3732/ajb.89.11.1772 | |
dc.relation.references | Knudsen, J. T., & Eriksson, R. (2006). Terms and conditions Privacy policy Diversity and distribution of floral scent. Botanical Review, 72(1), 1–120. https://doi.org/10.1663/0006-8101(2006)72[1 | |
dc.relation.references | Knudsen, J. T., Tollsten, L., & Ervik, F. (2001). Flower scent and pollination in selected neotropical palms. Plant Biology, 3(6), 642–653. https://doi.org/10.1055/s-2001-19366 | |
dc.relation.references | Knudsen, J. T., Tollsten, L., Groth, I., Bergström, G., & Raguso, R. A. (2004). Trends in floral scent chemistry in pollination syndromes: Floral scent composition in hummingbird-pollinated taxa. Botanical Journal of the Linnean Society, 146(2), 191–199. https://doi.org/10.1111/j.1095-8339.2004.00329.x | |
dc.relation.references | Koeduka, T. (2018). Functional evolution of biosynthetic enzymes that produce plant volatiles*. Bioscience, Biotechnology, and Biochemistry, 82(2), 192–199. https://doi.org/10.1080/09168451.2017.1422968 | |
dc.relation.references | Lara, C. E., Díez, M. C., Restrepo, Z., Núñez, L. A., & Moreno, F. (2017). Flowering phenology and flower visitors of the Macana Palm Wettinia kalbreyeri (Arecaceae) in an Andean montane forest. Revista Mexicana de Biodiversidad, 88(1), 106–112. https://doi.org/10.1016/j.rmb.2017.01.001 | |
dc.relation.references | Larios-Ulloa, M., Loza-Cornejo, S., Ramos, G. B., Arreola-Nava, H. J., Espinosa -Rojas, A. M., & Hernández -Paz, L. M. (2015). Biología reproductiva de tres especies de Mammillaria haw. (Cactaceae) endémicas del cerro “La mesa redonda”, Jalisco, México. Gaia Scientia, 9 (2)(147-154.). | |
dc.relation.references | Listabarth, Ch. (1993). Pollination in Geonoma macrostachys and Three Congeners, G. acaulis, G. gracilis, and G. interrupta interrupta. Botanica Acta, 106(6), 496–506. https://doi.org/10.1111/j.1438-8677.1993.tb00779.x | |
dc.relation.references | Llorens, L., Ferriol, P., Moreira, J. M., García, L. C., & Boira, H. (2023). Floral scent and pollinator interactions of three species in Isabela Island (Galapagos). Botany Letters. https://doi.org/10.1080/23818107.2023.2238037 | |
dc.relation.references | Lourdes, V., Arizpe, N., Orellana, R., Conde, C., & Hernández, J. (2009). Impactos del cambio climático en la floración y desarrollo del fruto del café en Veracruz, México. In Interciencia (Vol. 34, Issue 5). Asociación Interciencia. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009000500006&lng=es&nrm=iso&tlng=es | |
dc.relation.references | Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0 | |
dc.relation.references | Maia, A. C. D., do Amaral Ferraz Navarro, D. M., Núñez-Avellaneda, L. A., Carreño-Barrera, J., Iannuzzi, L., Cardona-Duque, J., & Nantes, W. A. G. (2021). Methyl acetate, a highly volatile floral semiochemical mediating specialized plant-beetle interactions. The Science of Nature, 108(3), 21. https://doi.org/10.1007/s00114-021-01731-3 | |
dc.relation.references | Maia, A. C. D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., Amaral Ferraz Navarro, D. M., Schlindwein, C., & Gottsberger, G. (2012). The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: a Unique Olfactory Floral Signal Shared by Annonaceae and Araceae. Journal of Chemical Ecology. https://doi.org/10.1007/s10886-012-0173-z | |
dc.relation.references | Martén, S., & Quesada, M. (2001). Phenology, Sexual Expression, and Reproductive Success of the Rare Neotropical Palm Geonoma epetiolata 1. Biotropica, 33(4), 596–605. https://doi.org/10.1111/j.1744-7429.2001.tb00218.x | |
dc.relation.references | Mazzei, M. P., Vesprini, J. L., & Galetto, L. (2020). Non-pollinating flower visitors in flowers of the genus Cucurbita and their relationship with the presence of pollinating bees. Acta Agronomica, 69(4), 256–265. https://doi.org/10.15446/acag.v69n4.87639 | |
dc.relation.references | McDowell, N. G., & Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5(7), 669–672. https://doi.org/10.1038/nclimate2641 | |
dc.relation.references | Mendel, R., Aizen, M. A., & Zamora, R. (2002). Ecología y evolución de las interacciones planta-animal. Editorial Universitaria, 05–44. | |
dc.relation.references | Mendoza, I., Peres, C. A., & Morellato, L. P. C. (2017). Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global and Planetary Change, 148, 227–241. https://doi.org/10.1016/j.gloplacha.2016.12.001 | |
dc.relation.references | Milet-Pinheiro, P., Gomes Gonçalves, E., do Amaral Ferraz Navarro, D. M., Nuñez-Avellaneda, L. A., & Maia, A. C. D. (2017). Floral scent chemistry and pollination in the Neotropical aroid genus Xanthosoma (Araceae). Flora, 231, 1–10. https://doi.org/10.1016/J.FLORA.2017.03.006 | |
dc.relation.references | Morel, M. (2006). Morfologia Floral y Fenologia de la Floracion de la Palma Butia capitata (Mart.) Becc. (Arecáceas). Universidad de La República, Montevideo. | |
dc.relation.references | Moreno-Betancur, D. J., Cuartas-Hernández, S. E., Moreno-Betancur, D. J., & Cuartas-Hernández, S. E. (2022). Divergencia en la estrategia reproductiva de dos especies simpátricas de <i>Anthurium</i> (Araceae) en un bosque andino tropical. Caldasia, 44(1), 54–68. https://doi.org/10.15446/caldasia.v44n1.89347 | |
dc.relation.references | Morrone, J. (1996). Clave ilustrada para la identificación de las familias sudamericanas de gorgojos (Coleoptera: Curculionoidea). Revista Chilena de Entomología, 23, 59–63. | |
dc.relation.references | Nates Parra, G., & Fernandez, F. (1992). Abejas de Colombia II claves preliminares para las familias, subfamilias y tribus (Hymenoptera: apoidea). Acta Biológica Colombiana, 2((7,8)), 55–89. | |
dc.relation.references | Nates-Parra, Guiomar. (ed. ). (2016). Iniciativa Colombiana de Polinizadores- Abejas- ICPA. Bogotá, D.C. Departamento de Biología, Universidad Nacional de Colombia. | |
dc.relation.references | Núñez, L. A. (2014). Patrones de asociación entre insectos polinizadores y palmas silvestres en Colombia con énfasis en palmas de importancia económica. Universidad Nacional de Colombia. | |
dc.relation.references | Núñez, L. A., & Rojas-Robles, R. (2008). Reproductive biology and pollination ecology of the milpesos palm Oenocarpus bataua in the Colombian Andes. Caldasia, 30(1), 101–125. | |
dc.relation.references | Núñez, L. A., Bernal, R., & Knudsen, J. T. (2005). Diurnal palm pollination by mystropine beetles: is it weather-related? Plant Systematics and Evolution, 254(3–4), 149–171. https://doi.org/10.1007/s00606-005-0340-6 | |
dc.relation.references | Núñez, L. A., Isaza, C., & Galeano, G. (2015). Ecología de la polinización de tres especies de Oenocarpus (Arecaceae) simpátricas en la Amazonia Colombiana. In Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 63, Issue 1). | |
dc.relation.references | Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104(50), 19891–19896. https://doi.org/10.1073/pnas.0706375104 | |
dc.relation.references | Oliveira, P. E., Tomé, C. E. R., Torezan-Silingardi, H. M., Dötterl, S., Silberbauer-Gottsberger, I., & Gottsberger, G. (2017). Differential pollination modes between distant populations of Unonopsis guatterioides (Annonaceae) in Minas Gerais and Amazonas, Brazil. Flora, 232, 39–46. https://doi.org/10.1016/j.flora.2016.07.014 | |
dc.relation.references | Ollerton, J. (2017). Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics, 48(1), 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 | |
dc.relation.references | Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x | |
dc.relation.references | Pazouki, L., & Niinemets, Ü. (2016). Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01019 | |
dc.relation.references | Pearse, I. S., Koenig, W. D., & Kelly, D. (2016). Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 212(3), 546–562. https://doi.org/10.1111/nph.14114 | |
dc.relation.references | Peñuela, M. C., Bustillos-Lema, M., Álvarez-Solas, S., & Núñez-Avellaneda, L. A. (2019). Reproductive phenology variation of the multiple inflorescence-palm tree Wettinia maynensis in relation to climate, in a Piedmont forest in western Amazonia. Trees, 33(3), 867–876. https://doi.org/10.1007/s00468-019-01824-7 | |
dc.relation.references | Pettersson, S., Ervik, F., & Knudsen, J. T. (2004). Floral scent of bat-pollinated species: West Africa vs. the New World. Biological Journal of the Linnean Society, 82(2), 161–168. https://doi.org/10.1111/j.1095-8312.2004.00317.x | |
dc.relation.references | Pichersky, E., & Dudareva, N. (2020). Biology of Plant Volatiles (E. Pichersky & N. Dudareva, Eds.; 2nd Edition). CRC Press. https://doi.org/10.1201/9780429455612 | |
dc.relation.references | Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science, 311(5762), 808–811. https://doi.org/10.1126/science.1118510 | |
dc.relation.references | Poveda, M. C., Rojas-P, C. A., Rudas-Ll, & Rangel-Ch, J. O. (2014). El Chocó biogeográfico: Ambiente Físico. | |
dc.relation.references | Raguso, R. A. (2008). Start making scents: the challenge of integrating chemistry into pollination ecology. Entomologia Experimentalis et Applicata, 128(1), 196–207. https://doi.org/10.1111/j.1570-7458.2008.00683.x | |
dc.relation.references | Restrepo, C. Z., Núñez, A. L. A., González-Caro, S., Velásquez-Puentes, F. J., & Bacon, C. D. (2016). Exploring palm–insect interactions across geographical and environmental gradients. Botanical Journal of the Linnean Society, 182(2), 389–397. https://doi.org/10.1111/boj.12443 | |
dc.relation.references | Rodrigo, J., & Herrero, M. (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae, 92(2), 125–135. https://doi.org/10.1016/S0304-4238(01)00289-8 | |
dc.relation.references | Rodriguez-Saona, C., Parra, L., Quiroz, A., & Isaacs, R. (2011). Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Annals of Botany, 107(8), 1377–1390. https://doi.org/10.1093/aob/mcr077 | |
dc.relation.references | Sargent, R. D., & Ackerly, D. D. (2008). Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution, 23(3), 123–130. https://doi.org/10.1016/j.tree.2007.11.003 | |
dc.relation.references | Schiestl, F. P. (2010). The evolution of floral scent and insect chemical communication. Ecology Letters, 13(5), 643–656. https://doi.org/10.1111/j.1461-0248.2010.01451.x | |
dc.relation.references | Schleuning, M., Fründ, J., Klein, A.-M., Abrahamczyk, S., Alarcón, R., Albrecht, M., Andersson, G. K. S., Bazarian, S., Böhning-Gaese, K., Bommarco, R., Dalsgaard, B., Dehling, D. M., Gotlieb, A., Hagen, M., Hickler, T., Holzschuh, A., Kaiser-Bunbury, C. N., Kreft, H., Morris, R. J., … Blüthgen, N. (2012). Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 22(20), 1925–1931. https://doi.org/10.1016/j.cub.2012.08.015 | |
dc.relation.references | Sun, H., Huang, B., Yu, X., Tian, C., Peng, Q., & An, D. (2018). Pollen limitation, reproductive success and flowering frequency in single‐flowered plants. Journal of Ecology, 106(1), 19–30. https://doi.org/10.1111/1365-2745.12834 | |
dc.relation.references | Tavera, A., De Santiago-Hernández, M. H., & Cuevas, E. (2023). Temporal variation of a plant-floral visitor network in a temperate forest in Michoacán, Mexico. Revista Mexicana de Biodiversidad, 94, e945139. https://doi.org/10.22201/ib.20078706e.2023.94.5139 | |
dc.relation.references | Thébault, E., & Fontaine, C. (2010). Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. Science, 329(5993), 853–856. https://doi.org/10.1126/science.1188321 | |
dc.relation.references | Torres-Salazar, F. de J., & Sosenski, P. (2022). Comunicación a través del olor: las plantas y sus secretos. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.3 | |
dc.relation.references | Valois-Cuesta, H., Martínez-Ruiz, C., Cuesta, R. Y. Y., & Hinestroza, P. M. (2013). Diversidad, patrones de uso y conservación de palmas (Arecacea) en bosques pluviales del Chocó, Colombia. Rev.Biol.Trop, 61(4). | |
dc.relation.references | Wei, N., Kaczorowski, R. L., Arceo-Gómez, G., O’Neill, E. M., Hayes, R. A., & Ashman, T.-L. (2021). Pollinators contribute to the maintenance of flowering plant diversity. Nature, 597(7878), 688–692. https://doi.org/10.1038/s41586-021-03890-9 | |
dc.relation.references | Zu, K., Chen, F., Li, Y., Shrestha, N., Fang, X., Ahmad, S., Nabi, G., & Wang, Z. (2023). Climate change impacts flowering phenology in Gongga Mountains, Southwest China. Plant Diversity. https://doi.org/10.1016/J.PLD.2023.07.007 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.lemb | Fecundación de las plantas | |
dc.subject.lemb | Ecosistemas - Chocó (Colombia) | |
dc.subject.lemb | Diversidad biológica - Chocó (Colombia) | |
dc.subject.lemb | Conservación del medio ambiente | |
dc.subject.proposal | Aislamiento reproductivo | spa |
dc.subject.proposal | Reproductive isolation | eng |
dc.subject.proposal | Aroma floral | spa |
dc.subject.proposal | Floral aroma | eng |
dc.subject.proposal | Chocó biogeográfico | spa |
dc.subject.proposal | Chocó biogeographic | eng |
dc.subject.proposal | Morfología floral | spa |
dc.subject.proposal | Floral morphology | eng |
dc.subject.proposal | Polinización | spa |
dc.subject.proposal | Pollination | eng |
dc.subject.proposal | Visitantes florales | spa |
dc.subject.proposal | Floral visitors | eng |
dc.subject.proposal | Wettinia | spa |
dc.title | Ecología de la polinización de especies simpátricas del género Wettinia (Arecaceae) en el Chocó biogeográfico | spa |
dc.title.translated | Pollination ecology of sympatric species of the genus wettinia (arecaceae) in the Chocó biogeographic region | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Convocatoria para la Formación de Capital Humano de Alto Nivel para los departamentos de Arauca, Bolívar, Boyacá, Chocó, Guainía, San Andrés, Tolima y Vaupés, en el marco de la celebración del Bicentenario y la Convocatoria 7 del Plan Bienal del FCTEI 2019-2020 | |
oaire.fundername | Sistema General de Regalias |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Bosques y Conservación Ambiental
- Tamaño:
- 1.1 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 4 de 4
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia de coautores para el capítulo 1.pdf
- Tamaño:
- 204.58 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- U.FT.09.006.004Licencia de coautores para el capítulo 2.pdf
- Tamaño:
- 207.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia de coautores para el capítulo 3.pdf
- Tamaño:
- 203.91 KB
- Formato:
- Adobe Portable Document Format
- Descripción: