Categorification of Some Integer Sequences and Its Applications

dc.contributor.advisorMoreno Cañadas, Agustín
dc.contributor.authorFernández Espinosa, Pedro Fernando
dc.contributor.researchgroupTERENUFIA-UNALspa
dc.date.accessioned2021-05-11T19:27:56Z
dc.date.available2021-05-11T19:27:56Z
dc.date.issued2020-07-30
dc.description.abstractCategorification of real valued sequences, and in particular of integer sequences is a novel line of investigation in the theory of representation of algebras. In this theory introduced by Ringel and Fahr, numbers of a sequence are interpreted as invariants of objects of a given category. The categorification of the Fibonacci numbers via the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver is an example of this kind of identifications. In this thesis, we follow the ideas of Ringel and Fahr to categorify several integer sequences but instead of using the 3-Kronecker quiver, we deal with a kind of algebras introduced recently by Green and Schroll called Brauer configuration algebras. Relationships between these algebras, some matrix problems and rational knots are used to interpret numbers in some integer sequences as invariants of indecomposable modules over path algebras of the 2-Kronecker quiver and the four subspace quiver. The results enable us to define the message of a Brauer Configuration and labeled Brauer configurations in order to give an interpretation of the number of perfect matchings of snake graphs, the number of homological ideals of some Nakayama algebras, and the number of k-paths linking two fixed points (associated to the Lindström problem) in a quiver as specializations of indecomposable modules over suitable Brauer configuration algebras. Actually, this setting can be also used to define the Gutman index of a tree (or the trace norm of a digraph, which is a fundamental notion in the topological index theory), magic squares, and different parameters of traffic flow models in terms of this kind of algebras. This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.eng
dc.description.abstractLa categorización de sucesiones de números reales, y en particular de sucesiones enteras es una nueva línea de investigación en la teoría de la representación de álgebras. En esta teoría introducida por Ringel y Fahr, los números de una sucesión se interpretan como invariantes de objetos de una categoría dada. La categorización de los números de Fibonacci vía la estructura del carcaj de Auslander-Reiten del carcaj 3-Kronecker es un ejemplo de este tipo de identificaciones. En esta tesis, seguimos las ideas de Ringel y Fahr para categorizar sucesiones de números enteros pero en lugar de utilizar el carcaj 3-Kronecker nosotros usamos un tipo de álgebras introducidas recientemente por Green y Schroll llamadas álgebras de configuración de Brauer. Las relaciones entre estas álgebras, algunos problemas matriciales y nudos racionales se utilizan para interpretar números en algunas secuencias enteras como invariantes de módulos indescomponibles sobre el álgebra de caminos del carcaj 2-Kronecker y el carcaj de los cuatro subespacios. Los resultados nos permiten definir el mensaje de una configuración de Brauer y configuraciones de Brauer etiquetadas para dar una interpretación del número de emparejamientos perfectos de los gráficos de serpientes, el número de ideales homológicos de algunas álgebras de Nakayama y el número de k-trayectorias que enlazan dos puntos fijos (asociados al problema de Lindström) en un carcaj como especializaciones de módulos indescomponibles sobre álgebras de configuración de Brauer adecuadas. En realidad, este tipo de configuraciones también se pueden utilizar para definir el índice de Gutman de un árbol (o la norma traza de un dígrafo, que es una noción fundamental en la teoría del índice topológico), cuadrados mágicos y diferentes parámetros de los modelos de flujo de tráfico en términos de este tipo de álgebras. Esta investigación fue apoyada parcialmente por COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaTeoría de representaciones de álgebras y sus aplicacionesspa
dc.format.extent1 recurso en línea (142 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79501
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[1] N. Agudelo, J.A. de la Peña, and J.P. Rada, Extremal values of the trace norm over oriented trees, Linear Algebra Appl 505 (2016), 261-268.spa
dc.relation.references[2] M. Ahmed, Algebraic Combinatorics of Magic Squares, California University, Dissertation, 2004. 1-92.spa
dc.relation.references[3] G. Andrews, The Theory of Partitions, Cambridge University. Press, Cambridge, 1998. 1-255.spa
dc.relation.references[4] M. Armenta, Homological Ideals of Finite Dimensional Algebras, CIMAT, Mexico, 2016. Master Thesis.spa
dc.relation.references[5] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006. 1-457.spa
dc.relation.references[6] M. Auslander, M. I. Platzeck, and G. Todorov, Homological Theory of Idempotent Ideals, Transactions of the American Mathematical Society 332 (1992), no. 2, 667-692.spa
dc.relation.references[7] M. Auslander, I. Reiten, and O. Smalo , Representation Theory of Artin Algebras, Cambridge University Press, Cambridge UK, 1997. 1-425.spa
dc.relation.references[8] D. J. Benson, Representations and cohomology of finite groups I, Vol. 30, Cambridge Studies in Advanced Mathematics, Cambridge, 1991. 1-246.spa
dc.relation.references[9] V.M. Bondarenko, Representations of bundles of semichained sets and their applications, Algebra i Analiz 3 (1991), no. 5, 38-61. English Translation; W. Crawley-Boevey, U. Hansper, I. Voulis, 2018.spa
dc.relation.references[10] S. Brenner, Endomorphism algebras of vector spaces with distinguished sets of subspaces, J. Algebra 6 (1967), 100-114.spa
dc.relation.references[11] S. Brenner, On four subspaces of a vector space, J. Algebra 29 (1974), 587-599.spa
dc.relation.references[12] N.D. Cahill, J.R. D'Errico, D.A. Narayan, and J.Y. Narayan, Fibonacci determinants, The college mathematics journal 33 (2002), no. 3, 221-225.spa
dc.relation.references[13] A. M. Cañadas, P.F.F. Espinosa, and I.D.M. Gaviria, Categorification of some integer sequences via Kronecker modules, JPANTA 38 (2016), no. 4, 339-347.spa
dc.relation.references[14] A. M. Cañadas, H. Giraldo, and G.B. Rios, An algebraic approach to the number of some antichains in the powerset 2n, JPANTA 38 (2016), no. 1, 45-62.spa
dc.relation.references[15] E. Chen, Topics in Combinatorics; Lecture Notes, MIT, Massachusetts, 2017. 1-40.spa
dc.relation.references[16] J.H. Conway, An enumeration of knots and links and some of their algebraic properties, Proceedings of the conference on Computational problems in Abstract Algebra held at Oxford in 1967, Pergamon Press, J. Leech ed. (1970), 329-358.spa
dc.relation.references[17] J. A. De la Peña and Changchang Xi, Hochschild Cohomology of Algebras with Homological Ideals, Tsukuba J. Math. 30 (2006), no. 1, 61-79.spa
dc.relation.references[18] D.Z. Djokovic, Classification of pairs consisting of a linear and a semi-linear map, Linear Algebra Appl. 20 (1978), 147-165.spa
dc.relation.references[19] P. Fahr and C. M. Ringel, A partition formula for Fibonacci numbers, J. Integer Seq. 11 (2008), no. 08.14, 1-9.spa
dc.relation.references[20] P. Fahr and C. M. Ringel, Categorification of the Fibonacci numbers using representations of quivers, J. Integer Seq. 15 (2012), no. 12.2.1, 1-12.spa
dc.relation.references[21] P. Fahr and C. M. Ringel, The Fibonacci triangles, Advances in Mathematics. 230 (2012), 2513-2535.spa
dc.relation.references[22] S. Fomin and A. Zelevinsky, Cluster Algebras I. Foundations, J. Amer. Math. Soc 15 (2002), no. 2, 497{529 (electronic). MR 1887642 (2003f:16050).spa
dc.relation.references[23] S. Fomin and A. Zelevinsky, Cluster Algebras II. Finite type classification, Invent. Math 154 (2003), no. 1, 63{121. MR 2004457 (2004m:17011).spa
dc.relation.references[24] P. Gabriel and J.A. Peña, Quotients of representation-finite algebras, Communications in Algebra 15 (1987), 279-307.spa
dc.relation.references[25] P. Gabriel and A.V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia of Math. Sc., vol. 73, Springer-Verlag, 1992. 1-177.spa
dc.relation.references[26] M.A. Gatica, M. Lanzilotta, and M.I. Platzeck, Idempotent Ideals and the Igusa-Todorov Functions, Algebra Represent Theory 20 (2017), 275-287.spa
dc.relation.references[27] I.D. M. Gaviria, The Auslander-Reiten Quiver of Equipped Posets of Finite Growth Representation Type, some Functorial Descriptions and Its Applications, (PhD. Thesis) Universidad Nacional de Colombia (2020), 1-164.spa
dc.relation.references[28] I.M. Gelfand and V.A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite dimensional vector space, Colloq. Math. Soc. Janos Bolyai, Hilbert Space Operators, Tihany 5 (1970), 163-237.spa
dc.relation.references[29] I. Gessel and X.G. Viennot, Determinants, paths and plane partitions, preprint (1989).spa
dc.relation.references[30] E.L. Green and S. Schroll, Almost gentle algebras and their trivial extensions, Proceedings of the Edinburgh Mathematical Society (2018), 1-16.spa
dc.relation.references[31] E.L. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math. 141 (2017), 539-572.spa
dc.relation.references[32] B. Guberfain, R. Nasser, M. Casanova, and H. Lopes, BusesInRio: buses as mobile traffic sensors Managing the bus GPS data in the City of Rio de Janeiro, 17th IEEE International Conference on Mobile Data Management (2016), 369-372.spa
dc.relation.references[33] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978), 1-22.spa
dc.relation.references[34] R.K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004. 1-161.spa
dc.relation.references[35] D. Happel and D. Zacharia, Algebras of finite global dimension, 8, Springer, Heidelberg, 2013. In: Algebras, quivers and representations, Abel Symp.spa
dc.relation.references[36] L. Hille and D. Ploog, Exceptional sequences and spherical modules for the Auslander algebra of k[x]=(x^t), arXiv 1709.03618v2 (2017), 1-19.spa
dc.relation.references[37] L. Hille and D. Ploog, Tilting chains of negative curves on rational surfaces, Nagoya Math Journal (2017), 1-16.spa
dc.relation.references[38] L. Hille and G. Röhrle, A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, Transform. Groups 4 (1999), 35-52.spa
dc.relation.references[39] A. Hubery and H. Krause, A categorification of non-crossing partitions and representations of quivers, arXiv 1310.1907 (2013), 1-34.spa
dc.relation.references[40] C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Comp. Math 145 (2009), 1533-1562.spa
dc.relation.references[41] L. H. Kauffman and S. Lambropoulou, Classifying and applying rational knots and rational tangles, 2002. 1-37.spa
dc.relation.references[42] D. Knuth, The Art of Computer Programming, Vol. 4, Addison-Wesley, 2004. 1-300.spa
dc.relation.references[43] G. Kreweras, Sur les partitions non croisées d. un cycle, Discrete Math 1 (1972), no. 4, 333-350.spa
dc.relation.references[44] P. Lampe, Cluster Algebras, Preprint (2013), 1-64.spa
dc.relation.references[45] R.B. Lin, On the applications of partition diagrams for integer partitioning, Proc. The 23rd workshop on combinatorial mathematics and computation theory (2006), 349-354.spa
dc.relation.references[46] P. Luschny, Counting with partitions, 2011. http://www.luschny.de/math/seq/CountingWithPartitions.html.spa
dc.relation.references[47] M.E. Mays and J. Wojciechowski, A determinant property of Catalan numbers, Discrete Mathematics, 211 (2000), 125-133.spa
dc.relation.references[48] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras, Adv. Math 227 (2011), 2241-2308.spa
dc.relation.references[49] L.A. Nazarova, Representations of a tetrad, Izv. AN SSSR Ser. Mat. 7 (1967), no. 4, 1361-1378 (in Russian). English transl. in: Math. USSR Izvestija 1 (1967) 1305-1321, 1969.spa
dc.relation.references[50] L.A. Nazarova, Representations of quivers of infinite type, Izv. AN SSSR Ser. Mat. 37 (1973), 752-791 (in Russian). English transl. in: Math. USSR Izvestija 7 (1973) 749-792.spa
dc.relation.references[51] L.A. Nazarova and A.V. Roiter, On the Problem of I.M. Gelfand, Funct. Anal. Appl. 31 (1973), no. 6, 54-69.spa
dc.relation.references[52] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian). English transl. in J. Sov. Math. 3 (1975) 585-606.spa
dc.relation.references[53] J. Prop, The combinatorics of frieze patterns and Markoff numbers, arXiv 4 (2008), no. math/0511633, 1-12.spa
dc.relation.references[54] C.M. Ringel, The Catalan combinatorics of the hereditary artin algebras, Contemporary Mathematics, 673 (2016), 51-177.spa
dc.relation.references[55] A. Ripatti, On the number of semi-magic squares of order 6, arXiv 1807.02983v1 (2017), 1-14.spa
dc.relation.references[56] R. Schiffler and I. Canackci, Snake graphs and continued fractions, European J. Combin. 86 (2020), 1-19.spa
dc.relation.references[57] R. Schiffler and I. Canackci, Snake graphs calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.spa
dc.relation.references[58] R. Schiffler and I. Canackci, Snake graphs calculus and cluster algebras from surfaces II: Self-crossings snake graphs, Math. Z. 281 (2015), no. 1, 55-102.spa
dc.relation.references[59] R. Schiffler and I. Canackci, Snake graphs calculus and cluster algebras from surfaces III: Band graphs and snake rings, Int. Math. Res. Not. (IMRN) 157 (2017), 1-82.spa
dc.relation.references[60] R. Schiffler and I. Canackci, Cluster algebras and continued fractions, Compositio Mathematica 154 (2018), no. 3, 565-593.spa
dc.relation.references[61] S. Schroll and I. Canackci, Lattice bijections for string modules snake graphs and the weak Bruhat order, arXiv 1 (2018), no. 1811.06064.spa
dc.relation.references[62] H. Schubert, Knoten mit zwei Brücken, Math. Zeitschrift 65 (1956), 133-170.spa
dc.relation.references[63] W. Shi, Q. Kong, and Y. Liu, A GPS/GIS Integrated System for Urban Traffic Flow Analysis, Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems (2008), 844-849.spa
dc.relation.references[64] A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.spa
dc.relation.references[65] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.spa
dc.relation.references[66] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation, Available at https://oeis.org.spa
dc.relation.references[67] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A033812, The OEIS Foundation.spa
dc.relation.references[68] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A080992, The OEIS Foundation.spa
dc.relation.references[69] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A006052, The OEIS Foundation.spa
dc.relation.references[70] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A100705, The OEIS Foundation.spa
dc.relation.references[71] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A052558, The OEIS Foundation.spa
dc.relation.references[72] R.P. Stanley, Magic labelings of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Mathematical Journal 43 (1976), no. 3, 511-531.spa
dc.relation.references[73] B.M. Stewart, Magic graphs, Canad, J. Math 18 (1966), 1031-1059.spa
dc.relation.references[74] A.G. Zavadskij and G. Medina, The four subspace problem; An elementary solution, Linear Algebra Appl. 392 (2004), 11-23.spa
dc.relation.references[75] A.V. Zabarilo and A.G. Zavadskij, One-Parameter Equipped Posets and Their Representations, Functional Analysis and Its Applications 34 (2000), no. 2, 138-140.spa
dc.relation.references[76] A.G. Zavadskij, On the Kronecker problem and related problems of linear algebra, Linear Algebra Appl. 425 (2007), 26-62.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalBrauer configurationseng
dc.subject.proposalBrauer configuration algebraeng
dc.subject.proposalCategorification of integer sequenceseng
dc.subject.proposalEnergy of a grapheng
dc.subject.proposalHomological idealseng
dc.subject.proposalPerfect matchingeng
dc.subject.proposalTheory of representation of algebraseng
dc.subject.proposalConfiguración de Brauerspa
dc.subject.proposalÁlgebra de configuración de Brauerspa
dc.subject.proposalCategorización algebraica de sucesiones enterasspa
dc.subject.proposalEnergía de un grafospa
dc.subject.proposalIdeales homologicosspa
dc.subject.proposalEmparejamientos perfectosspa
dc.subject.proposalTeoría de representaciones de álgebrasspa
dc.subject.unescoÁlgebra
dc.subject.unescoAlgebra
dc.subject.unescoMatemáticas
dc.subject.unescoMathematics
dc.titleCategorification of Some Integer Sequences and Its Applicationseng
dc.title.translatedCategorización algebraica de algunas sucesiones de números enteros y sus aplicacionesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCategorification of Some Integer Sequences and Its Applicationsspa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022993409.2020.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: