Quantum classification strategy based on the Spin Paradigm

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorAlvarez-Meza, Andres
dc.contributor.authorRiascos Moreno, Carlos Alberto
dc.date.accessioned2025-02-17T19:07:46Z
dc.date.available2025-02-17T19:07:46Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractRecently, quantum computing (QC) has demonstrated, compared to classical computing, advantages in the speed of information processing. These advantages are due to the fact that QC allows information to be processed using superposition and entanglement, phenomena specific to the quantum regime. A QC sub-area that competes with its classic counterpart, showing better results in data processing, is quantum machine learning (QML). This subtype allows for the performance of machine learning (ML) tasks using quantum processors (QP), which improves speed and results compared to classical ML. Among the various tasks of QML is supervised learning, which allows for solving classification problems by involving classical data and enhancing it with QC. This enhancement lies in the ability to embed classical data within quantum spaces and process them. There are very popular platforms for QC, such as superconductors, trapped ions, and photons, among others. Additionally, there are other platforms still in an early stage, such as electronic spins. Despite this, electronic spins have demonstrated excellent capabilities in information processing and are being widely studied for QC. QML experiments have been conducted on each of these platforms, with surprising results. Although each platform has its advantages and disadvantages, performing QC (and therefore QML) with spines has some significant advantages, such as speed in processing, the support of the semiconductor industry that would allow scalable quantum computing, and the ability to implement surface codes for quantum error correction. However, the QC with spins is at an early stage, at which the amount of QC resources is limited. In addition, the noise and lack of isolation of qubits induce errors in the processing of information. For this reason, the study of QML algorithms for classification tasks using electronic spines as a platform should take into account coherent noise (noise from control signals) and quantum noises (interactions with the environment) to propose training conditions that enable the development of noise-resistant algorithms, delivering the best possible results with the minimum amount of computing resources. This study introduces a novel QML-based simulation framework that employs electronic spines as qubits to tackle classification tasks. It also uses the data re-uploading (DRU) method, which shows that it can universally approximate discrimination functions with just one qubit. This technique allows for the assessment of classification performance in non-ideal QC con ditions. For the study of spin classification using DRU, our approach is threefold. First, we propose a transitioning scheme from a gate (high) to a pulse (low) level within a spine-based classification task to transpile DRU’s original high-level compounds into native composites, e.g., x − z axis rotation and SWAP interactions. Second, we introduce an error simulation strategy, modeling both coherent and quantum-environmental noise interactions. Third, we conducted a loss-based comparison analysis of our approach implemented on a spin-based platform to test different training conditions and hyper-parameter variation regarding the attained classification performance. Experimental results using one, two, and four spin qubits demonstrate that our framework for simulating a quantum classifier using the DRU technique allows for achieving aceptable quantum fidelities. As far as we know, this is the first spine-based QML-classification simulation that looks at how external magnetic field pulses can be used to control each qubit and how the processor’s topology lets qubits close together interact with each other. Hence, a dynamic simulation is carried out, incorporating coherent noise (Gaussian noise in the control signals) and dissipation operators to illustrate the loss of coherence of qubits. The latter allows for more realistic classification performance studies, surpassing those conducted at the gate-level in the current state-of-the-art. Also, we utilize area under the curve (AUC)-based quantitative assessments to account for various loss functions during training. The results showed that losses based on Von Neumman and Renyi divergences achieve the most prominent performance in terms of spine QML classification capability and noise resistance. Future work aims to implement more realistic simulations that incorporate identity gates (I) using external magnetic pulses, allowing them to be placed in the algorithm locations where they are implicitly positioned at the gate level. Additionally, both coherent and quantum noise models that are more suitable for the spin platform will be developed, instead of the generic noise sources used in this work. Finally, it would be beneficial to propose training strategies that enable the system to learn the error conditions that the processor may encounter. For example, in training tests, using gates that cause random displacements or depolarizing channels could improve the ratings by accurately capturing the mistakes that the quantum processor would make after training (Texto tomado de la fuente).eng
dc.description.abstractRecientemente, la computación cuántica (QC) ha demostrado ventajas en la velocidad del procesamiento de información en comparación con la computación clásica. Estas ventajas se deben a que la QC permite procesar la información utilizando superposición y entrelazamiento, fenómenos específicos del régimen cuántico. Un área sub-disciplinaria de la QC que compite con su contraparte clásica, mostrando mejores resultados en el procesamiento de datos, es el aprendizaje automático cuántico (QML). Este subtipo permite realizar tareas de aprendizaje automático (ML) utilizando procesadores cuánticos (QP), lo que mejora la velocidad y los resultados en comparación con el ML clásico. Entre las diversas tareas del QML se encuentra el aprendizaje supervisado, que permite resolver problemas de clasificación involucrando datos clásicos y mejorándolos con QC. Esta mejora radica en la capacidad de incrustar datos clásicos dentro de espacios cuánticos y procesarlos. Existen plataformas muy populares para QC, como superconductores, iones atrapados y fotones, entre otras. Además, hay otras plataformas que aún están en una etapa temprana, como los espines electrónicos. A pesar de esto, los espines electrónicos han demostrado excelentes capacidades en el procesamiento de información y están siendo ampliamente estudiados para QC. Se han realizado experimentos de QML en cada una de estas plataformas, con resultados sorprendentes. Aunque cada plataforma tiene sus ventajas y desventajas, realizar QC (y por ende QML) con espines tiene algunas ventajas significativas, como la velocidad en el procesamiento, el apoyo de la industria de semiconductores que permitiría una computación cuántica escalable, y la capacidad de implementar códigos de superficie para la corrección de errores cuánticos. Sin embargo, la QC con espines está en una etapa temprana, en la que la cantidad de recursos de QC es limitada. Además, el ruido y la falta de aislamiento de los qubits inducen errores en el procesamiento de la información. Por esta razón, el estudio de algoritmos de QML para tareas de clasificación utilizando espines electrónicos como plataforma debe tener en cuenta el ruido coherente (ruido de señales de control) y los ruidos cuánticos (interacciones con el entorno) para proponer condiciones de entrenamiento que permitan el desarrollo de algoritmos resistentes al ruido, logrando los mejores resultados posibles con la menor cantidad de recursos computacionales. Este estudio introduce un nuevo marco de simulación basado en QML que emplea espines electrónicos como qubits para abordar tareas de clasificación. También utiliza el método de re-subida de datos (DRU), que muestra que puede aproximar universalmente funciones de discriminación con solo un qubit. Esta técnica permite evaluar el rendimiento de clasificación en condiciones de QC no ideales. Para el estudio de clasificación con espines utilizando DRU, nuestro enfoque es triple. Primero, proponemos un esquema de transición de un nivel de compuerta (alto) a un nivel de pulso (bajo) dentro de una tarea de clasificación basada en espines para transpilar los compuestos originales de alto nivel de DRU en compuestos nativos, como rotación en los ejes x − z e interacciones SWAP. Segundo, introducimos una estrategia de simulación de errores, modelando tanto interacciones de ruido coherente como ambiental. Tercero, realizamos un análisis comparativo basado en pérdidas de nuestro enfoque implementado en una plataforma basada en espines para probar diferentes condiciones de entrenamiento y variaciones de hiperparámetros respecto al rendimiento de clasificación alcanzado. Los resultados experimentales utilizando uno, dos y cuatro qubits de espines demuestran que nuestro marco para simular un clasificador cuántico utilizando la técnica DRU permite lograr fidelidades cuánticas aceptables. Hasta donde sabemos, esta es la primera simulación de clasificación basada en QML con espines que analiza cómo los pulsos de campo magnético externo pueden ser utilizados para controlar cada qubit y cómo la topología del procesador permite que los qubits cercanos interactúen entre sí. Por lo tanto, se lleva a cabo una simulación dinámica, incorporando ruido coherente (ruido gaussiano en las señales de control) y operadores de disipación para ilustrar la perdida de coherencia de los qubits. Esto ultimo permite estudios de rendimiento de clasificación más realistas, superando aquellos realizados a nivel de compuerta en el estado actual del arte. También utilizamos evaluaciones cuantitativas basadas en el área bajo la curva (AUC) para considerar varias funciones de pérdida durante el entrenamiento. Los resultados mostraron que las pérdidas basadas en las divergencias de Von Neumann y Rényi logran el rendimiento más destacado en términos de capacidad de clasificación de QML con espines y resistencia al ruido. El trabajo futuro tiene como objetivo implementar simulaciones más realistas que incorporen compuertas de identidad (I) utilizando pulsos magnéticos externos, permitiendo que se coloquen en los lugares del algoritmo donde se posicionan implícitamente a nivel de compuerta. Además, se desarrollarán modelos de ruido tanto coherente como cuántico más adecuados para la plataforma de espines, en lugar de las fuentes de ruido genéricas utilizadas en este trabajo. Finalmente, sería beneficioso proponer estrategias de entrenamiento que permitan al sistema aprender las condiciones de error que el procesador podría encontrar. Por ejemplo, en pruebas de entrenamiento, el uso de compuertas que causen desplazamientos aleatorios o canales despolarizantes podría mejorar las clasificaciones al capturar con precisión los errores que el procesador cuántico cometería después del entrenamiento.spa
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaQuantum Information Processingspa
dc.format.extentxviii, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87507
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesAlam, M. and Ghosh, S. (2022). Qnet: A scalable and noise-resilient quantum neural network architecture for noisy intermediate-scale quantum computers. Frontiers in Physics, 9:702.spa
dc.relation.referencesAlaminos, D., Salas, M. B., and Fern´andez-G´amez, M. A. (2022). Quantum computing and deep learning methods for gdp growth forecasting. Computational Economics, pages 1–27.spa
dc.relation.referencesAlexander, T., Kanazawa, N., Egger, D. J., Capelluto, L., Wood, C. J., Javadi-Abhari, A., and McKay, D. C. (2020). Qiskit pulse: programming quantum computers through the cloud with pulses. Quantum Science and Technology, 5(4):044006.spa
dc.relation.referencesArute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G., Buell, D. A., et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510.spa
dc.relation.referencesBairey, E., Guo, C., Poletti, D., Lindner, N. H., and Arad, I. (2020). Learning the dynamics of open quantum systems from their steady states. New Journal of Physics, 22(3):032001.spa
dc.relation.referencesBall, H., Biercuk, M. J., Carvalho, A. R., Chen, J., Hush, M., De Castro, L. A., Li, L., Liebermann, P. J., Slatyer, H. J., Edmunds, C., et al. (2021). Software tools for quantum control: Improving quantum computer performance through noise and error suppression. Quantum Science and Technology, 6(4):044011.spa
dc.relation.referencesBartkiewicz, K., Gneiting, C., ˇCernoch, A., Jir´akov´a, K., Lemr, K., and Nori, F. (2020). Experimental kernel-based quantum machine learning in finite feature space. Scientific Reports, 10(1):12356.spa
dc.relation.referencesBatra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., and Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of chemical information and modeling, 61(6):2641–2647.spa
dc.relation.referencesBeer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., and Wolf, R. (2020). Training deep quantum neural networks. Nature communications, 11(1):808.spa
dc.relation.referencesBerberich, J., Fink, D., Pranji´c, D., Tutschku, C., and Holm, C. (2023). Training robust and generalizable quantum models. arXiv preprint arXiv:2311.11871.spa
dc.relation.referencesBerdnikov, V., Kuznetsova, M., Kavokin, K., and Dzhioev, R. (2024). Dynamics of electronnuclear spin system in gaas: Mn epitaxial layers, st. Petersburg State Polytechnical University Journal. Physics and Mathematics, 17(1.1):31–36.spa
dc.relation.referencesBergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso- Linaje, G., AkashNarayanan, B., Asadi, A., et al. (2018). Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968.spa
dc.relation.referencesBoixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J., Martinis, J. M., and Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600.spa
dc.relation.referencesBoykin, P. O., Mor, T., Roychowdhury, V., Vatan, F., and Vrijen, R. (2002). Algorithmic cooling and scalable nmr quantum computers. Proceedings of the National Academy of Sciences, 99(6):3388–3393.spa
dc.relation.referencesBraccia, P., Banchi, L., and Caruso, F. (2022). Quantum noise sensing by generating fake noise. Physical Review Applied, 17(2):024002.spa
dc.relation.referencesBurkard, G., Ladd, T. D., Pan, A., Nichol, J. M., and Petta, J. R. (2023). Semiconductor spin qubits. Reviews of Modern Physics, 95(2):025003.spa
dc.relation.referencesCarretta, S., Zueco, D., Chiesa, A., G´omez-Le´on, ´A., and Luis, F. (2021). A perspective on scaling up quantum computation with molecular spins. Applied Physics Letters, 118(24).spa
dc.relation.referencesCerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., and Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science, 2(9):567–576.spa
dc.relation.referencesChan, K. W., Sahasrabudhe, H., Huang, W., Wang, Y., Yang, H. C., Veldhorst, M., Hwang, J. C., Mohiyaddin, F. A., Hudson, F. E., Itoh, K. M., et al. (2021). Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon. Nano Letters, 21(3):1517–1522.spa
dc.relation.referencesChehimi, M., Chen, S. Y.-C., Saad, W., Towsley, D., and Debbah, M. (2023). Foundations of quantum federated learning over classical and quantum networks. IEEE Network.spa
dc.relation.referencesC´orcoles, A. D., Kandala, A., Javadi-Abhari, A., McClure, D. T., Cross, A. W., Temme, K., Nation, P. D., Steffen, M., and Gambetta, J. M. (2019). Challenges and opportunities ofspa
dc.relation.referencesDe Keijzer, R., Tse, O., and Kokkelmans, S. (2023). Pulse based variational quantum optimal control for hybrid quantum computing. Quantum, 7:908.spa
dc.relation.referencesDe Leon, N. P., Itoh, K. M., Kim, D., Mehta, K. K., Northup, T. E., Paik, H., Palmer, B., Samarth, N., Sangtawesin, S., and Steuerman, D. W. (2021). Materials challenges and opportunities for quantum computing hardware. Science, 372(6539):eabb2823.spa
dc.relation.referencesDe Michielis, M., Ferraro, E., Prati, E., Hutin, L., Bertrand, B., Charbon, E., Ibberson, D. J., and Gonzalez-Zalba, M. F. (2023). Silicon spin qubits from laboratory to industry. Journal of Physics D: Applied Physics, 56(36):363001.spa
dc.relation.referencesDutta, T., P´erez-Salinas, A., Cheng, J. P. S., Latorre, J. I., and Mukherjee, M. (2022). Singlequbit universal classifier implemented on an ion-trap quantum device. Physical Review A, 106(1):012411.spa
dc.relation.referencesEasom-Mccaldin, P., Bouridane, A., Belatreche, A., and Jiang, R. (2021). On depth, robustness and performance using the data re-uploading single-qubit classifier. IEEE Access, 9:65127–65139.spa
dc.relation.referencesElsayed, N., Maida, A. S., and Bayoumi, M. (2019). A review of quantum computer energy efficiency. In 2019 IEEE Green Technologies Conference (GreenTech), pages 1–3. IEEE.spa
dc.relation.referencesEzratty, O. (2021). Understanding quantum technologies. le lab quantique.spa
dc.relation.referencesFingerhuth, M., Babej, T., and Wittek, P. (2018). Open source software in quantum computing. PloS one, 13(12):e0208561.spa
dc.relation.referencesGarmon, J., Pooser, R. C., and Dumitrescu, E. F. (2020). Benchmarking noise extrapolation with the openpulse control framework. Physical Review A, 101(4):042308.spa
dc.relation.referencesGokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y., and Chong, F. T. (2020). Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 186– 200. IEEE.spa
dc.relation.referencesGonz´alez, F. A., Ramos-Poll´an, R., and Gallego-Mejia, J. A. (2023). Quantum kernel mixtures for probabilistic deep learning. arXiv preprint arXiv:2305.18204.spa
dc.relation.referencesGonzalez-Zalba, M., De Franceschi, S., Charbon, E., Meunier, T., Vinet, M., and Dzurak, A. (2021). Scaling silicon-based quantum computing using cmos technology. Nature Electronics, 4(12):872–884.spa
dc.relation.referencesGranwehr, J. (2007). Multiplicative or t 1 noise in nmr spectroscopy. Applied Magnetic Resonance, 32(1-2):113–156.spa
dc.relation.referencesGuan, W., Perdue, G., Pesah, A., Schuld, M., Terashi, K., Vallecorsa, S., and Vlimant, J.-R. (2021). Quantum machine learning in high energy physics. Machine Learning: Science and Technology, 2(1):011003.spa
dc.relation.referencesG¨ung¨ord¨u, U. and Kestner, J. (2019). Indications of a soft cutoff frequency in the charge noise of a si/sige quantum dot spin qubit. Physical Review B, 99(8):081301.spa
dc.relation.referencesHerrmann, N., Akhtar, M., Arya, D., Doherty, M. W., Macha, P., Preis, F., Prestel, S., and Walker, M. L. (2023). First quantum machine learning applications on an on-site room-temperature quantum computer.spa
dc.relation.referencesHuang, B., Mohseni, B., and Boixo, N. (2021). Mcclean: Power of data in quantum machine learning. Nature Communications, 12(2631):2041–1723.spa
dc.relation.referencesHuang, B., Symonds, N. O., and von Lilienfeld, O. A. (2020). Quantum machine learning in chemistry and materials. Handbook of Materials Modeling: Methods: Theory and Modeling, pages 1883–1909.spa
dc.relation.referencesJain, S., Ziauddin, J., Leonchyk, P., Yenkanchi, S., and Geraci, J. (2020). Quantum and classical machine learning for the classification of non-small-cell lung cancer patients. SN Applied Sciences, 2:1–10.spa
dc.relation.referencesJerbi, S., Fiderer, L. J., Poulsen Nautrup, H., K¨ubler, J. M., Briegel, H. J., and Dunjko, V. (2023). Quantum machine learning beyond kernel methods. Nature Communications, 14(1):517.spa
dc.relation.referencesKoike-Akino, T., Wang, P., and Wang, Y. (2022). Autoqml: Automated quantum machine learning for wi-fi integrated sensing and communications. In 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 360–364. IEEE.spa
dc.relation.referencesKookani, A., Mafi, Y., Kazemikhah, P., Aghababa, H., Fouladi, K., and Barati, M. (2023). Spookynet: Advancement in quantum system analysis through convolutional neural networks for detection of entanglement. arXiv preprint arXiv:2309.03890.spa
dc.relation.referencesKrantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S., and Oliver, W. D. (2019). A quantum engineer’s guide to superconducting qubits. Applied physics reviews, 6(2).spa
dc.relation.referencesKrzywda, J. A. and Cywi´nski, L. (2024). Decoherence of electron spin qubit during transfer between two semiconductor quantum dots at low magnetic fields. arXiv preprint ar- Xiv:2405.12185spa
dc.relation.referencesLasek, A., Lepage, H. V., Zhang, K., Ferrus, T., and Barnes, C. H. (2023). Pulse-controlled qubit in semiconductor double quantum dots. arXiv preprint arXiv:2303.04823.spa
dc.relation.referencesLi, B., Ahmed, S., Saraogi, S., Lambert, N., Nori, F., Pitchford, A., and Shammah, N. (2022). Pulse-level noisy quantum circuits with qutip. Quantum, 6:630.spa
dc.relation.referencesLiu, Y., Arunachalam, S., and Temme, K. (2021). A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics, 17(9):1013–1017.spa
dc.relation.referencesLoss, D. and DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57(1):120.spa
dc.relation.referencesMartinez, J. E. (2022). Decoherence and quantum error correction for quantum computing and communications. arXiv preprint arXiv:2202.08600.spa
dc.relation.referencesMaslov, D. (2017). Basic circuit compilation techniques for an ion-trap quantum machine. New Journal of Physics, 19(2):023035.spa
dc.relation.referencesMastriani, M. (2024). Quantum splitting of multi-qubit gates. Optical and Quantum Electronics, 56(3):336.spa
dc.relation.referencesMills, A. R., Guinn, C. R., Gullans, M. J., Sigillito, A. J., Feldman, M. M., Nielsen, E., and Petta, J. R. (2022). Two-qubit silicon quantum processor with operation fidelity exceeding 99 %. Science Advances, 8(14):eabn5130.spa
dc.relation.referencesMiroszewski, A., Nalepa, J., Saux, B. L., and Mielczarek, J. (2023). Quantum machine learning for remote sensing: Exploring potential and challenges. arXiv preprint ar- Xiv:2311.07626.spa
dc.relation.referencesMolina, D. E. and Hamilton, K. (2023). Noise robustness of data re-uploading quantum classifiers. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), volume 2, pages 395–396. IEEE.spa
dc.relation.referencesMorton, J. J., McCamey, D. R., Eriksson, M. A., and Lyon, S. A. (2011). Embracing the quantum limit in silicon computing. Nature, 479(7373):345–353.spa
dc.relation.referencesMosca, M. and Piani, M. (2022). Quantum threat timeline research report 2022. EvolutionQ Research Reportspa
dc.relation.referencesMottonen1, M. and Vartiainen, J. J. (2006). Decompositions of general quantum gates. Trends in Quantum Computing Research, page 149.spa
dc.relation.referencesMuller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., and Tomamichel, M. (2013). On quantum r´enyi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54(12).spa
dc.relation.referencesNakajima, T., Noiri, A., Kawasaki, K., Yoneda, J., Stano, P., Amaha, S., Otsuka, T., Takeda, K., Delbecq, M. R., Allison, G., et al. (2020). Coherence of a driven electron spin qubit actively decoupled from quasistatic noise. Physical Review X, 10(1):011060.spa
dc.relation.referencesNguyen, H. N., Motzoi, F., Metcalf, M., Whaley, K. B., Bukov, M., and Schmitt, M. (2024). Reinforcement learning pulses for transmon qubit entangling gates. Machine Learning: Science and Technology, 5(2):025066.spa
dc.relation.referencesNielsen, M. A. and Chuang, I. L. (2001). Quantum computation and quantum information. Phys. Today, 54(2):60.spa
dc.relation.referencesOliveira, I., Sarthour Jr, R., Bonagamba, T., Azevedo, E., and Freitas, J. C. (2011). NMR quantum information processing. Elsevier.spa
dc.relation.referencesOno, T., Roga, W., Wakui, K., Fujiwara, M., Miki, S., Terai, H., and Takeoka, M. (2023). Demonstration of a bosonic quantum classifier with data reuploading. Physical Review Letters, 131(1).spa
dc.relation.referencesPalittapongarnpim, P., Wittek, P., and Sanders, B. C. (2016). Controlling adaptive quantum phase estimation with scalable reinforcement learning. In 24th European Symposium on Artificial Neural Networks, Bruges, April 27–29, 2016, pages 327–332.spa
dc.relation.referencesParkinson, J. B. and Farnell, D. J. (2010). An introduction to quantum spin systems, volume 816. Springer Science & Business Media.spa
dc.relation.referencesPCM-CA (2022). Pcm-ca github page.spa
dc.relation.referencesPennyLane (2024). PennyLane Documentation. https://docs.pennylane.ai/en/stable/ code/api/pennylane.AdamOptimizer.html. Consultado el 22 de febrero de 2024.spa
dc.relation.referencesPerez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., and Latorre, J. I. (2020). Data reuploading for a universal quantum classifier. Quantum, 4:226.spa
dc.relation.referencesPerez-Salinas, A., L´opez-N´u˜nez, D., Garc´ıa-S´aez, A., Forn-D´ıaz, P., and Latorre, J. I. (2021). One qubit as a universal approximant. Physical Review A, 104(1):012405.spa
dc.relation.referencesPhilips, S. G., Madzik, M. T., Amitonov, S. V., de Snoo, S. L., Russ, M., Kalhor, N., Volk, C., Lawrie, W. I., Brousse, D., Tryputen, L., et al. (2022). Universal control of a six-qubit quantum processor in silicon. Nature, 609(7929):919–924.spa
dc.relation.referencesPreskill, J. (2018). Quantum computing in the nisq era and beyond. Quantum, 2:79.spa
dc.relation.referencesQiu, P.-H., Chen, X.-G., and Shi, Y.-W. (2019). Detecting entanglement with deep quantum neural networks. IEEE Access, 7:94310–94320.spa
dc.relation.referencesQuTiP Development Team (2024). Time-dependent quantum dynamics. https://qutip. readthedocs.io/en/latest/guide/dynamics/dynamics-time.html. Accessed: 2024- 08-09.spa
dc.relation.referencesResch, S. and Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. ACM Computing Surveys (CSUR), 54(7):1–35.spa
dc.relation.referencesRey Ayala, A. M., Copete Villa, A. J., Younes Velosa, C., Duque Beltr´an, C., Torres Galindo, D. A., Mondrag´on P´erez, F., Arango, H., Rodr´ıguez L´opez, J. A., Trujillo, L., Polan´ıa, L., et al. (2020). Colombia construye sus cimientos: propuestas del foco de ciencias b´asicas y del espacio.spa
dc.relation.referencesSajjan, M., Li, J., Selvarajan, R., Sureshbabu, S. H., Kale, S. S., Gupta, R., Singh, V., and Kais, S. (2022). Quantum machine learning for chemistry and physics. Chemical Society Reviews.spa
dc.relation.referencesSangtawesin, S., Brundage, T. O., Atkins, Z. J., and Petta, J. R. (2014). Highly tunable formation of nitrogen-vacancy centers via ion implantation. Applied Physics Letters, 105(6):063107.spa
dc.relation.referencesSaxena, A., Mancilla, J., Montalban, I., and Pere, C. (2023). Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making. Packt Publishing Ltd.spa
dc.relation.referencesSchetakis, N., Aghamalyan, D., Boguslavsky, M., and Griffin, P. (2021). Binary classifiers for noisy datasets: a comparative study of existing quantum machine learning frameworks and some new approaches. arXiv preprint arXiv:2111.03372.spa
dc.relation.referencesSchetakis, N., Aghamalyan, D., Griffin, P., and Boguslavsky, M. (2022). Review of some existing qml frameworks and novel hybrid classical–quantum neural networks realising binary classification for the noisy datasets. Scientific Reports, 12(1):11927.spa
dc.relation.referencesSiderakis, A. (2024). Quantum entanglement measures.spa
dc.relation.referencesSmith, K. N., Ravi, G. S., Alexander, T., Bronn, N. T., Carvalho, A. R., Cervera-Lierta, A., Chong, F. T., Chow, J. M., Cubeddu, M., Hashim, A., et al. (2022). Programming physical quantum systems with pulse-level control. Frontiers in Physics, 10:900099.spa
dc.relation.referencesSmith, R. S., Curtis, M. J., and Zeng, W. J. (2016). A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355.spa
dc.relation.referencesSteiger, D. S., H¨aner, T., and Troyer, M. (2018). Projectq: an open source software framework for quantum computing. Quantum, 2:49.spa
dc.relation.referencesStokes, J., Izaac, J., Killoran, N., and Carleo, G. (2020). Quantum natural gradient. Quantum, 4:269.spa
dc.relation.referencesTolstobrov, A., Fedorov, G., Sanduleanu, S., Kadyrmetov, S., Vasenin, A., Bolgar, A., Kalacheva, D., Lubsanov, V., Dorogov, A., Zotova, J., Shlykov, P., Dmitriev, A., Tikhonov, K., and Astafiev, O. V. (2024). Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator. Physical Review A, 109(1).spa
dc.relation.referencesValverde-Albacete, F. J. and Pel´aez-Moreno, C. (2014). 100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradox. PloS one, 9(1):e84217.spa
dc.relation.referencesVan Der Wiel, W., Stopa, M., Kodera, T., Hatano, T., and Tarucha, S. (2006). Semiconductor quantum dots for electron spin qubits. New journal of physics, 8(2):28.spa
dc.relation.referencesVeldhorst, M., Hwang, J., Yang, C., Leenstra, A., de Ronde, B., Dehollain, J., Muhonen, J., Hudson, F., Itoh, K. M., Morello, A. t., et al. (2014). An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature nanotechnology, 9(12):981–985.spa
dc.relation.referencesWach, N. L., Rudolph, M. S., Jendrzejewski, F., and Schmitt, S. (2023). Data re-uploading with a single qudit. arXiv preprint arXiv:2302.13932.spa
dc.relation.referencesWatson, T., Philips, S., Kawakami, E., Ward, D., Scarlino, P., Veldhorst, M., Savage, D., Lagally, M., Friesen, M., Coppersmith, S., et al. (2018). A programmable two-qubit quantum processor in silicon. nature, 555(7698):633–637.spa
dc.relation.referencesWestermayr, J., Gastegger, M., Sch¨utt, K. T., and Maurer, R. J. (2021). Perspective on integrating machine learning into computational chemistry and materials science. The Journal of Chemical Physics, 154(23).spa
dc.relation.referencesWilliams, C. P. and Williams, C. P. (2011). Quantum gates. Explorations in Quantum Computing, pages 51–122.spa
dc.relation.referencesWolfowicz, G. and Morton, J. (2016). Pulse techniques for quantum information processing. EMagRes, 5(4):1515–1528.spa
dc.relation.referencesWootters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886):802–803.spa
dc.relation.referencesXia, Y., Li, W., Zhuang, Q., and Zhang, Z. (2021). Quantum-enhanced data classification with a variational entangled sensor network. Physical Review X, 11(2):021047.spa
dc.relation.referencesXu, Z., Yin, Z.-q., Han, Q., and Li, T. (2019). Quantum information processing with closelyspaced diamond color centers in strain and magnetic fields. Optical Materials Express, 9(12):4654–4668.spa
dc.relation.referencesYu, Z., Yao, H., Li, M., and Wang, X. (2022). Power and limitations of single-qubit native quantum neural networks. Advances in Neural Information Processing Systems, 35:27810– 27823.spa
dc.relation.referencesZaidenberg, D. A., Sebastianelli, A., Spiller, D., Le Saux, B., and Ullo, S. L. (2021). Advantages and bottlenecks of quantum machine learning for remote sensing. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pages 5680–5683. IEEE.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalQuantum machine learningeng
dc.subject.proposalQuantum computingeng
dc.subject.proposalQuantum information processingeng
dc.subject.proposalData Re uploadingeng
dc.subject.proposalMachine learningeng
dc.subject.proposalClassifiereng
dc.subject.proposalSpineng
dc.subject.proposalPulse leveleng
dc.subject.proposalAprendizaje automático cuánticospa
dc.subject.proposalComputación cuánticaspa
dc.subject.proposalProcesamiento de información cuánticaspa
dc.subject.proposalRe subida de datosspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalClasificadorspa
dc.subject.proposalEspínspa
dc.subject.proposalPulsospa
dc.subject.unescoComputación cuántica
dc.subject.unescoAprendizaje automático
dc.subject.unescoProcesamiento de datos
dc.titleQuantum classification strategy based on the Spin Paradigmeng
dc.title.translatedEstrategia de clasificación cuántica basada en el Paradigma del Espínspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053851812.2024.pdf
Tamaño:
5.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: