Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico

dc.contributor.advisorBarragán Quijano, Eduardospa
dc.contributor.advisorMoreno Fonseca, Liz Patriciaspa
dc.contributor.authorQuevedo Amaya, Yeison Mauriciospa
dc.date.accessioned2020-06-01T17:48:39Zspa
dc.date.available2020-06-01T17:48:39Zspa
dc.date.issued2020-05-27spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl déficit hídrico es limitante de la productividad del cultivo de algodón. Para mitigar el efecto del estrés es necesario el desarrollo de variedades con tolerancia al estrés. El déficit hídrico afecta el estado hídrico, esto reduce la fotosíntesis y el crecimiento y desarrollo. Las plantas de algodón hacen frente al estrés mediante el crecimiento radical, síntesis de antioxidantes y osmolitos. El objetivo de este trabajo fue la caracterización fisiológica y bioquímica de cuatro variedades de algodón en condiciones de déficit hídrico durante la floración. Se evaluó el estado hídrico, intercambio de gases, pigmentos fotosintéticos, fluorescencia de la clorofila, acumulación de masa seca, absición de estructuras reproductivas, perdida de electrolitos y malondialdehido, contenido de potasio, azúcares, prolina y carotenoides. Además, se evaluó el rendimiento y calidad. Mediante el análisis de índices de tolerancia y análisis multivariado se identificaron variables altamente relacionadas con la tolerancia al déficit hídrico. Los datos mostraron que el déficit hídrico causó reducción del estado hídrico, esto genero una limitación estomática de la fotosíntesis, y reducción de la discriminación del carbono 13. La limitación estomática generó estrés oxidativo que fue mitigado con la acumulación de prolina y carotenoides. También se observó un aumento en la acumulación de osmolitos como potasio, azúcares y prolina. Sin embargo, no mejoró sustancialmente el estado hídrico. Se observó una traslocación de asimilados hacia la raíz durante el periodo de estrés. Después de la rehidratación en la variedad 159 una compensación del crecimiento radical fue observada. El déficit hídrico genero reducción del índice de área foliar y absición de estructuras reproductivas. Pero después de la rehidratación se observó una rápida recuperación del índice de área foliar y una emisión de nuevas estructuras reproductivas y de ramas monopodiales en 123,159 y 168. La variedad más tolerante al déficit hídrico fue 129 debido a su alto índice de tolerancia al estrés, dado por una alta acumulación de prolina, bajo malondialdehido y alto peso de cápsula. Las variedades 159 y 168 presentaron estabilidad en el rendimiento entre plantas estresadas y bien regadas, este comportamiento se relacionó con el contenido de azúcares totales y la relación clorofila a/b. Por tanto, el diferencial en la magnitud de la expresión de moléculas protectoras fue el factor determinante en el nivel de tolerancia al déficit hídrico. (Texto tomado de la fuente).spa
dc.description.abstractThe drought stress is an abiotic stress limiting the productivity of cotton crop. To mitigate the effect of stress is necessary, the development of varieties with stress tolerance. drought stress affects the hydric status, this reduces photosynthesis and growth and development. Cotton plants cope with stress through radical growth, synthesis of antioxidants and osmolytes. The aim of this work was the physiological and biochemical characterization of four varieties of cotton under drought stress conditions during flowering. Hydric status gas exchange, photosynthetic pigments, chlorophyll fluorescence, accumulation of dry mass, abscission of reproductive structures, electrolyte leakage and malondialdehyde, potassium content, sugars, proline and carotenoids were evaluated. In addition, yield and quality were evaluated. Through of the analysis of tolerance indices and multivariate analysis, variables highly related to drought stress tolerance are identified. The data’s shows that affect the drought stress cause the reduction of the hydric status, this generates a stomatic limitation of photosynthesis, and the reduction of carbon discrimination 13. The drought stress generates oxidative stress that is mitigated with the accumulation of proline and carotenoids. An increase in the accumulation of osmolytes such as potassium, sugars and proline were also increased. However, the water status did not improve. It is a translocation of assimilates to the root during the period of stress. After rehydration in variety 159 compensation for radical growth was observed. The drought stress generated a reduction in the leaf area index and the abscission of reproductive structures. After rehydration there was a rapid recovery of the leaf area index and an emission of new reproductive structures and monopodial branches in 123,159 and 168. The variety most tolerant to drought stress was 129 due to its high stress tolerance index, given by a high accumulation of proline, low malondialdehyde and high capsule weight. Varieties 159 and 168 characteristics yield stability between stressed and well-watered plants, this behavior was related to the total sugar content and the chlorophyll a / b ratio.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFisiología de cultivosspa
dc.format.extent113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77580
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAdhikari, P., Ale, S., Bordovsky, J. P., Thorp, K. R., Modala, N. R., Rajan, N. and Barnes, E. M. (2016). Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agricultural Water Management, 164, 317–330. https://doi.org/10.1016/j.agwat.2015.10.011spa
dc.relation.referencesAllen, R. G., Pereira, L. S., Raes, D. and Smith, M. (2006). Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. Estudio Fao Riego Y Drenaje.spa
dc.relation.referencesAranjuelo, I., Erice, G., Nogués, S., Morales, F., Irigoyen, J. J. and Sánchez-Díaz, M. (2008). The mechanism(s) involved in the photoprotection of PSII at elevated CO2 in nodulated alfalfa plants. Environmental and Experimental Botany, 64(3), 295–306. https://doi.org/https://doi.org/10.1016/j.envexpbot.2008.01.002spa
dc.relation.referencesArgentel, L., González, M., Ávila, C. and Aguilera, R. (2006). Comportamiento del contenido relativo de agua y la concentración de pigmentos fotosintéticos de variedades de trigo cultivadas en condiciones de salinidad. Cultivos Tropicales, 27(3), 49–53.spa
dc.relation.referencesAshraf, M. and Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006spa
dc.relation.referencesBalaguer, L., Pugnaire, F. I., Martínez-Ferri, E., Armas, C., Valladares, F. and Manrique, E. (2002). Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240(2), 343–352. https://doi.org/10.1023/A:1015745118689spa
dc.relation.referencesBasu, S., and Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/j.plgene.2017.04.008spa
dc.relation.referencesBates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060spa
dc.relation.referencesBatra, N. G., Sharma, V., and Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9(1), 712–721. https://doi.org/10.1080/17429145.2014.905801spa
dc.relation.referencesBen Rejeb, I., Pastor, V. and Mauch-Mani, B. (2014a). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. (S. Renault & G. A. Sakar, Eds.), Plants. https://doi.org/10.3390/plants3040458spa
dc.relation.referencesBen Rejeb, K., Abdelly, C. and Savouré, A. (2014b). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284. https://doi.org/10.1016/j.plaphy.2014.04.007spa
dc.relation.referencesBlum, A. (2011). Drought resistance and its improvement. In Plant Breeding for Water-Limited Environments (1st ed., pp. 53–152). https://doi.org/Doi 10.1007/978-1-4419-7491-4_3spa
dc.relation.referencesBourland, F. M., and Hornbeck, J. M. (2007). Variation in marginal bract trichome density in upland cotton. The Journal of Cotton Science, 11, 242–251.spa
dc.relation.referencesBoyer, J. S. (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annual Review of Phytopathology, 33, 251–274. https://doi.org/10.1146/annurev.py.33.090195.001343spa
dc.relation.referencesBrito, G. G. de, Sofiatti, V., Lima, M. M. de A., Carvalho, L. P. and Silva Filho, J. L. da. (2011). Physiological traits for drought phenotyping in cotton. Acta Scientiarum. Agronomy, 33(1). https://doi.org/10.4025/actasciagron.v33i1.9839spa
dc.relation.referencesBrito, G. G., Suassuna, N. D., Silva, V. N., Sofiatti, V., Diola, V. and Morello, C. L. (2014). Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions. Acta Scientiarum Agronomy, 36(3), 335–345. https://doi.org/10.4025/actasciagron.v36i3.17986spa
dc.relation.referencesBurbano, O., Montes-Mercado, K. S., Pastrana-Vargas, I. J. and Cadena-Torres, J. (2017). Introducción y desarrollo de variedades de algodón Upland en el sistema productivo colombiano: Una revisión. Ciencia y Agricultura, 15(1), 29–44. https://doi.org/10.19053/01228420.v15.n1.2018.7754spa
dc.relation.referencesCalle, K. and Proaño, J. (2006). Determinación de la curva de retención de humedad para los principales tipos de suelo de la península de Santa Helena, provincia del Guayas. In X Congreso ecuatoriano de la ciencia del suelo (pp. 1–25). Guayaquil.spa
dc.relation.referencesCampbell, G. S., and Norman, J. M. (1998). Wind. In An Introduction to Environmental Biophysics (pp. 63–75). https://doi.org/10.1007/978-1-4612-1626-1_5spa
dc.relation.referencesCarmody, M., Waszczak, C., Idänheimo, N., Saarinen, T. and Kangasjärvi, J. (2016). ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 203, 69–83. https://doi.org/10.1016/j.jplph.2016.06.008spa
dc.relation.referencesCastro, F., Contreras, D., Tamayo, L. and Trujillo, L. (2013). Análisis de la competitividad de la cadena algodón, fibras, textiles y confecciones 1. Fedesarrollo. Retrieved from http://www.fedesarrollo.org.co/wp-content/uploads/2011/08/Analisis-de-la-competitividad-de-la-cadena-algodon-Informe-Final-Conalgodon-_paginaweb.pdfspa
dc.relation.referencesChastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C. D., Whitaker, J., Grey, T.L., Sorensen, R.B., Van lersen, M., Byrd, S.A. and Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18–28. https://doi.org/10.1016/j.jplph.2016.05.003spa
dc.relation.referencesChaves, M. M., and Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384. https://doi.org/10.1093/jxb/erh269spa
dc.relation.referencesChen, D., Ye, G., Yang, C., Chen, Y., and Wu, Y. (2005). The effect of high temperature on the insecticidal properties of Bt Cotton. Environmental and Experimental Botany, 53(3), 333–342. https://doi.org/https://doi.org/10.1016/j.envexpbot.2004.04.004spa
dc.relation.referencesChen, J. M. and Black, T. A. (1992). Defining leaf area index for non‐flat leaves. Plant, Cell & Environment, 15(4), 421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.xspa
dc.relation.referencesChool Boo, Y., and Jung, J. (1999). Water Deficit — Induced Oxidative Stress and Antioxidative Defenses in Rice Plants. Journal of Plant Physiology, 155(2), 255–261. https://doi.org/10.1016/S0176-1617(99)80016-9spa
dc.relation.referencesConalgodon. (2019). Estadisticas algodoneras. Retrieved November 22, 2019, from http://conalgodon.com/estadisticas/spa
dc.relation.referencesCruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536spa
dc.relation.referencesDar, N. A., Amin, I., Wani, W., Wani, S. A., Shikari, A. B., Wani, S. H., and Masoodi, K. Z. (2017). Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene, 11, 106–111. https://doi.org/10.1016/j.plgene.2017.07.003spa
dc.relation.referencesDe Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P. and Williams, M. (2011). An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 115, 767–780. https://doi.org/10.1016/j.rse.2010.11.004spa
dc.relation.referencesDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017spa
dc.relation.referencesEhleringer, J. (1980). Leaf morphology and reflectance in relation to water and temperature stress. In Adaptation of Plants to Water and High Temperature Stress (1st ed.). New York: John Wiley and Sons, Inc.spa
dc.relation.referencesEl-Hashash, E. F. and Agwa, A. M. (2018). Genetic Parameters and Stress Tolerance Index for Quantitative Traits in Barley under Different Drought Stress Severities. Asian Journal of Research in Crop Science, 1(1), 1–16. https://doi.org/10.9734/ajrcs/2018/38702spa
dc.relation.referencesEnnahli, S., and Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374–2382. https://doi.org/10.2135/cropsci2005.0147spa
dc.relation.referencesFageria, N. K., Baligar, V. C. and Jones, C. A. (2011). Growth and mineral nutrition of field crops. Books in soils, plants, and the environment. Retrieved from http://files/12941/Fageria et al - Growth and mineral nutrition of field crops - 2011.pdfspa
dc.relation.referencesFang, Y., and Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, Vol. 72, pp. 673–689. https://doi.org/10.1007/s00018-014-1767-0spa
dc.relation.referencesFAO. (2017). FAOSTAT. Retrieved from Food and Agriculture Organization of the United Nations website: http://www.fao.org/faostat/en/#homespa
dc.relation.referencesFarquhar, G. D., O’Leary, M. H. and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121–137. https://doi.org/10.1071/PP9820121spa
dc.relation.referencesFernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetable and Other Food Crops in Temperature and Water Stress (pp. 257–270).spa
dc.relation.referencesGalmés, J., Medrano, H., and Flexas, J. (2007). Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environmental and Experimental Botany, 60(1), 105–111. https://doi.org/10.1016/j.envexpbot.2006.08.001spa
dc.relation.referencesGeladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185(C), 1–17. https://doi.org/10.1016/0003-2670(86)80028-9spa
dc.relation.referencesGoltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058spa
dc.relation.referencesGómez, S., Torres, V., García, Y. and Navarro, J. (2012). Procedimientos estadísticos más utilizados en el análisis de medidas repetidas en el tiempo en el sector agropecuario. Revista Cubana de Ciencia Agrícola, 46(1), 1–7.spa
dc.relation.referencesGonzáles, W. L., Negritto, M. A., Suárez, L. H., and Gianoli, E. (2008). Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 33(1), 128–132. https://doi.org/10.1016/j.actao.2007.10.004spa
dc.relation.referencesHead, G., and Dennehy, T. (2010). Insect resistance management for transgenic Bt cotton. In U. B. Zehr (Ed.), Cotton (Vol. 65, pp. 113–125). https://doi.org/10.1007/978-3-642-04796-1_7spa
dc.relation.referencesHennouni, N., Djebar, M. R., Rouabhi, R., Youbi, M. and Berrebbah, H. (2008). Effects of Artea, a systemic fungicide, on the antioxidant system and the respiratory activity of durum wheat (Triticum durum L.). African Journal of Biotechnology, 7(5), 591–594.spa
dc.relation.referencesHornbeck, J. M., and Bourland, F. M. (2007). Visual Ratings and Relationships of Trichomes on Bracts, Leaves, and Stems of Upland Cotton. The Journal of Cotton Science, 11, 252–258.spa
dc.relation.referencesHsiao, T. C. and Acevedo, E. (1974). Plant responses to water deficits, water-use efficiency, and drought resistance. Agricultural Meteorology, 14(1–2), 59–84. https://doi.org/https://doi.org/10.1016/0002-1571(74)90011-9spa
dc.relation.referencesHummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Marjorie, P., Bouteillé, M., Stitt, M., Gibon, Y., Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357–372. https://doi.org/10.1104/pp.110.157008spa
dc.relation.referencesHuttunen, P., Kärkkäinen, K., Løe, G., Rautio, P., and Agren, J. (2010). Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Annales Botanici Fennici, 47(3), 199–207. https://doi.org/10.5735/085.047.0304spa
dc.relation.referencesIDEAM. (2009). Los fenómenos el niño/niña. Retrieved from http://www.ideam.gov.cospa
dc.relation.referencesIndahl, U. (2005). A twist to partial least squares regression. Journal of Chemometrics, 19(1), 32–44. https://doi.org/10.1002/cem.904spa
dc.relation.referencesIPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. In Cambio Climático 2014: Informe de síntesis. https://doi.org/10.1016/S1353-8020(09)70300-1spa
dc.relation.referencesJarma, A., Cardona, C., and Araméndiz, H. (2012). Efecto del cambio climático sobre la fisiología de las plantas cultivadas: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 15(1), 63–76.spa
dc.relation.referencesJia, H., Wang, C., Wang, F., Liu, S., Li, G., and Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0120646spa
dc.relation.referencesKale, S., Sönmez, B., Madenoğlu, S., Avağ, K., Türker, U., Çayci, G. and Kütük, A. C. (2017). Effect of irrigation regimes on carbon isotope discrimination, yield and irrigation water productivity of wheat. Turkish Journal of Agriculture and Forestry, 41, 50–58. https://doi.org/10.3906/tar-1604-47spa
dc.relation.referencesKennedy, C. W., Ba, M. T., Caldwell, A. G., Hutchinson, R. L. and Jones, J. E. (1987). Differences in root and shoot growth and soil moisture extraction between cotton cultivars in an acid subsoil. Plant and Soil, 101(2), 241–246. https://doi.org/10.1007/BF02370651spa
dc.relation.referencesKhan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R. and Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1), 1–17. https://doi.org/10.1186/s40659-018-0198-zspa
dc.relation.referencesKirkham, M. B. (2005). Stomata and measurement of stomatal resistance. In M. B. Kirkham (Ed.), Principles of Soil and Plant Water Relations (pp. 379–401). https://doi.org/https://doi.org/10.1016/B978-012409751-3/50022-0spa
dc.relation.referencesKoleva, M., and Dimitrova, V. (2018). Evaluation of Drought Tolerance in New Cotton Cultivars Using Stress Tolerance Indices. AGROFOR International Journal, 3(1), 11–17. https://doi.org/10.7251/agreng1801011kspa
dc.relation.referencesKooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012spa
dc.relation.referencesKuai, J., Zhou, Z., Wang, Y., Meng, Y., Chen, B. and Zhao, W. (2015). The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. European Journal of Agronomy, 67, 61–74. https://doi.org/10.1016/j.eja.2015.03.005spa
dc.relation.referencesLawlor, D. W.,and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.xspa
dc.relation.referencesLeidi, E O, Lopez, M, Gorham, J. and Gutie, J. C. (1999). Variation in carbon isotope discrimination and other traits related to drought tolerance in upland cotton cultivars under dryland conditions. Field Crops Research, 61, 109–123. https://doi.org/10.1016/S0378-4290(98)00151-8spa
dc.relation.referencesLevi, A., Ovnat, L., Paterson, A. H. and Saranga, Y. (2009). Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Science, 177(2), 88–96. https://doi.org/10.1016/j.plantsci.2009.04.001spa
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1spa
dc.relation.referencesLiu, F., Jensen, C. R. and Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13. https://doi.org/10.1016/S0378-4290(03)00165-5spa
dc.relation.referencesLiu, Z., Zhang, P., Wang, R., Kuai, J., Li, L., Wang, Y. and Zhou, Z. (2014). Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll. The journal of applied ecology, 25(12), 3533–3539.spa
dc.relation.referencesLoka, D. and Oosterhuis, D. M. (2012). Water Stress and Reproductive Development in Cotton. In D. M. Oosterhuis & J. T. Cothren (Eds.), Floweting and Fruiting in Cotton (pp. 51–58). Cordova, Tennessee.spa
dc.relation.referencesLongenberger, P. S., Smith, C. W., Duke, S. E. and Mc Michael, B. L. (2009). Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica, 166(1), 25–33. https://doi.org/10.1007/s10681-008-9820-4spa
dc.relation.referencesLopez, F. B., Chauhan, Y. S. and Johansen, C. (1997). Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeonpea. Journal of Agronomy and Crop Science, 178(1), 1–7. https://doi.org/10.1111/j.1439-037X.1997.tb00344.xspa
dc.relation.referencesLudlow, M. (1989). Strategies of Response to Water Stress. In T. Kreeeb, K.H., Richter, H. and Hinckley (Ed.), Structural and Functional Responses to Environmental Stresses. The Hague.spa
dc.relation.referencesLugojan, C. and Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173–177.spa
dc.relation.referencesLuo, H. H., Zhang, Y. L. and Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54(1), 65–73. https://doi.org/10.1007/s11099-015-0165-7spa
dc.relation.referencesMadhava Rao, K. V. (2006). Introduction. In K. V. Madhava Rao, A. S. Raghavendra, and K. Janardhan Reddy (Eds.), Physiology and Molecular Biology of Stress Tolerance in plants (pp. 1–14). https://doi.org/10.1007/1-4020-4225-6spa
dc.relation.referencesMaiti, R. K., Pawar, R. V, Misra, S. K., Rajkumar, D., Ramaswamy, A., and Vidyasagar, P. (2011). Comparative anatomy of cotton and its applications. International Journal of Bio-resource and Stress Management, 2(21), 257–262.spa
dc.relation.referencesMalik, R. S., Dhankar, J. S., and Turner, N. C. (1979). Influence of soil water deficits on root growth of cotton seedlings. Plant and Soil, 115, 109–115.spa
dc.relation.referencesMassacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., Chernikova, T. N., Thor, K., and Leipner, J. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 46(2), 189–195. https://doi.org/10.1016/j.plaphy.2007.10.006spa
dc.relation.referencesMelgarejo, L. M., Romero, M., Hernández, S., Barrera, Jaime, S. M. E., Suárez, D. and Pérez, W. (2010). Experimentos en fisiología vegetal, Laboratorio de físiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia. Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1. Retrieved from http://ciencias.bogota.unal.edu.co/fileadmin/content/laboratorios/fisiologiavegetal/documentos/Libro_experimentos_en_fisiologia_y_bioquimica_vegetal__Reparado_.pdfspa
dc.relation.referencesMoreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Agronomía Colombiana, 27(2), 179–191.spa
dc.relation.referencesMurillo Solano, J. (2001). Requerimientos hídricos y efectos del agua sobre el rendimiento del algodonero. Memorias Del Foro Tecnológico Estrategias de Organización, Comercialización y Tecnológicas Para Mejorar La Competitividad Del Sistema de Producción Del Algodón En El César y Guajira.spa
dc.relation.referencesNiu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C. and Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/https://doi.org/10.1016/j.jplph.2018.03.001spa
dc.relation.referencesNounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135spa
dc.relation.referencesNounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S. and Theerakulpisut, P. (2018). High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Frontiers in Plant Science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135spa
dc.relation.referencesOsakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(March), 1–8. https://doi.org/10.3389/fpls.2014.00086spa
dc.relation.referencesPandey, S., and Nagar, P. K. (2002). Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biologia Plantarum, 45(2), 291–294. https://doi.org/10.1023/A:1015165210967spa
dc.relation.referencesPandey, V., and Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/j.rsci.2015.04.001spa
dc.relation.referencesPapathanasiou, F., Dordas, C., Gekas, F., Pankou, C., Ninou, E., Mylonas, I., Tsantarmas, K., Sistanis, I., Sinapidou, E., Lithourgidis, A., Petrevska, J., Katarzyna, Papadopoulos, I., Zouliamis, P., Kargiotidou, A. and Tokatlidis, I. (2015). The Use of Stress Tolerance Indices for the Selection of Tolerant Inbred Lines and their Correspondent Hybrids under Normal and Water-stress Conditions. Procedia Environmental Sciences, 29, 274–275. https://doi.org/10.1016/J.PROENV.2015.07.279spa
dc.relation.referencesParida, A. K., Dagaonkar, V. S. and Aurangabadkar, M. S. P. L. P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery, Acta Physiologiae Plantarum, 30, 619–627. https://doi.org/10.1007/s11738-008-0157-3spa
dc.relation.referencesParida, A. K., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V. and Aurangabadkar, L. P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1(1), 37–48. https://doi.org/10.1007/s11816-006-0004-1spa
dc.relation.referencesParida, A. K., Das, A. B. and Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, 18, 167–174. https://doi.org/10.1007/s00468-003-0293-8spa
dc.relation.referencesParimala, P., and Muthuchelian, K. (2010). Physiological response of non-Bt and Bt cotton to short-term drought stress. Photosynthetica, 48(4), 630–634. https://doi.org/10.1007/s11099-010-0081-9spa
dc.relation.referencesPatil, B. C., Babu, A. G. and Pawar, K. N. (2013). Assessment of Genotypic Variability for Growth, Biophysical Parameters, Yield and Yield-Attributing Characters Under Drought Stress in Cotton. In A. Sabu & A. Augustine (Eds.), Prospects in Bioscience: Addressing the Issues (pp. 103–110). https://doi.org/10.1007/978-81-322-0810-5spa
dc.relation.referencesPettigrew, W. T. (2004). Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4), 1265–1272. https://doi.org/10.2135/cropsci2004.1265spa
dc.relation.referencesPettigrew, W. T. (2004b). Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 96, 377–383. https://doi.org/10.2134/agronj2004.3770spa
dc.relation.referencesPettigrew, W. T. and Gerik, T. J. (2007). Cotton Leaf Photosynthesis and Carbon Metabolism. Advances in Agronomy, 94(06), 209–236. https://doi.org/10.1016/S0065-2113(06)94005-Xspa
dc.relation.referencesQuevedo Amaya, Y. M., Beltrán Medina, J. I. and Barragán Quijano, E. (2019). Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Revista Facultad Nacional de Agronomía Medellín, 72(1), 8699–8706. https://doi.org/10.15446/rfnam.v72n1.72076spa
dc.relation.referencesRaines, C. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology, 115(1), 36–42. https://doi.org/10.1104/pp.110.168559spa
dc.relation.referencesRaja, V., Majeed, U., Kang, H., Andrabi, K. I. and John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/j.envexpbot.2017.02.010spa
dc.relation.referencesRich, S. M. and Watt, M. (2013). Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 64, 1193–1208. https://doi.org/10.1093/jxb/ert043spa
dc.relation.referencesRodríguez P, L., Ñústez L, C. E., and Moreno F, L. P. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901spa
dc.relation.referencesRodriguez, E. (1984). Biology and Chemistry of Plant Trichomes (1st ed.). Springer US.spa
dc.relation.referencesRojas Palacio, H. (1989). Requerimientos de agua en el cultivo del algodonero. Foro Tecnologico Del Algodonero En Valledupar (Colombia), 59–89.spa
dc.relation.referencesRolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P. and Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2014.09.006spa
dc.relation.referencesRosenow, D. T., Quisenberry, J. E., Wendt, C. W. and Clark, L. E. (1983). Drought tolerant sorghum and cotton germplasm. Agricultural Water Management, 7(1–3), 207–222. https://doi.org/10.1016/0378-3774(83)90084-7spa
dc.relation.referencesRosielle, A. A., and Hamblin, J. (1981). Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science, 21(6), 943–946. https://doi.org/doi:10.2135/cropsci1981.0011183X002100060033xspa
dc.relation.referencesRuiz, M. C., Domingo, R., Save, R., Biel, C. and Torrecillas, A. (1997). Effects of water stress and rewatering on leaf water relations of lemon plants. Biologia Plantarum, 39(4), 623–631. https://doi.org/10.1023/A:1000943218256spa
dc.relation.referencesSahito, A., Baloch, Z. A., Mahar, A., Otho, S. A., Kalhoro, S. A., Ali, A., Kalhoro, F., Soomro, R. and Ali, F. (2015). Effect of Water Stress on the Growth and Yield of Cotton Crop (Gossypium hirsutum L.). American Journal of Plant Sciences, 6(7), 1027–1039. https://doi.org/10.4236/ajps.2015.67108spa
dc.relation.referencesSaleem, M. F., Raza, M. A. S., Ahmad, S., Khan, I. H., and Shahid, A. M. (2016). Understanding and mitigating the impacts of drought stress in cotton- A review. Pakistan Journal of Agricultural Sciences, 53(3), 609–623. https://doi.org/10.21162/PAKJAS/16.3341spa
dc.relation.referencesSantos, I. C. dos, Almeida, A.-A. F. de, Anhert, D., Conceição, A. S. da, Pirovani, C. P., Pires, J. L., Valle, R. and Baligar, V. C. (2014). Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit. PLoS ONE, 9(12), e115746. https://doi.org/10.1371/journal.pone.0115746spa
dc.relation.referencesSaranga, Y., Paterson, A. H., and Levi, A. (2009). Bridging Classical and Molecular Genetics of Abiotic Stress Resistance in Cotton. In A. H. Paterson (Ed.), Genetics and Genomics of Cotton (pp. 337–352). https://doi.org/10.1007/978-0-387-70810-2_14spa
dc.relation.referencesSaranga, Y., Rudich, J. and Marani, A. (1991). The relations between leaf water potential of cotton plants and environmental and plant factors. Field Crops Research, 28(1–2), 39–46. https://doi.org/10.1016/0378-4290(91)90072-4spa
dc.relation.referencesSaranga, Yehoshua, Flash, I., Paterson, A. H. and Yakir, D. (1999). Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Science, 142(1), 47–56. https://doi.org/10.1016/S0168-9452(99)00004-7spa
dc.relation.referencesSchneider, K. A., Rosales, R., Ibarra, F., Cazares, B., Acosta, J. A., Ramirez, P., Wassimi, N, Kelly, J. D. (1997). Improving common bean performance under drought stress. Crop Science, 37(1), 43–50. https://doi.org/10.2135/cropsci1997.0011183X003700010007xspa
dc.relation.referencesSekmen, A. H., Ozgur, R., Uzilday, B. and Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99, 141–149. https://doi.org/10.1016/j.envexpbot.2013.11.010spa
dc.relation.referencesShao, H.B., Chu, L.Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R. and Shao, M.-A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29(2), 131–151. https://doi.org/10.1080/07388550902869792spa
dc.relation.referencesSharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., and Nguyen, H. T. (2004). Root growth maintenance during water deficits: Physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343–2351. https://doi.org/10.1093/jxb/erh276spa
dc.relation.referencesShowler, A., and Moran, P. J. (2003). Effects of drought stressed cotton, Gossypium hirsutum L., on beet armyworm, Spodoptera exigua (Hubner), oviposition, and larval feeding preferences and growth. Journal of Chemical Ecology, 29(9), 1997–2011. https://doi.org/10.1023/A:1025626200254spa
dc.relation.referencesSiembra. (n.d.). Demandas de investigación de la cadena algodón-textil-confecciones. Retrieved October 15, 2017, from http://www.siembra.gov.co/siembra/Agenda.aspxspa
dc.relation.referencesSignorelli, S., Coitiño, E. L., Borsani, O. and Monza, J. (2014). Molecular mechanisms for the reaction between ˙OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118(1), 37–47. https://doi.org/10.1021/jp407773uspa
dc.relation.referencesSingh, C., Kumar, V., Prasad, I., Patil, V. R. and Rajkumar, B. K. (2016). Response of upland cotton (G.hirsutum L.) genotypes to drought stress using drought tolerance indices. Journal of Crop Science and Biotechnology, 19(1), 53–59. https://doi.org/10.1007/s12892-015-0073-1spa
dc.relation.referencesSingh, R., Pandey, N., Kumar, A. and Shirke, P. A. (2016a). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-yspa
dc.relation.referencesSingh, R., Pandey, N., Kumar, A., and Shirke, P. A. (2016b). Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma, 253(1), 163–174. https://doi.org/10.1007/s00709-015-0800-yspa
dc.relation.referencesSisó, S., Camarero, J., and Gil-Pelegrín, E. (2001). Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees - Structure and Function, 15(6), 341–345. https://doi.org/10.1007/s004680100110spa
dc.relation.referencesSnider, J. L. and Oosterhuis, D. M. (2015). Physiology. In S. ASA, CSSA (Ed.), Cotton (2nd ed., Vol. 1, pp. 339–400). Madison, WI. https://doi.org/10.2134/agronmonogr57.2013.0044spa
dc.relation.referencesStevens, G., Rhine, M., Straatmann, Z. and Dunn, D. (2016). Measuring Soil and Tissue Potassium with a Portable Ion-Specific Electrode in Cotton. Communications in Soil Science and Plant Analysis, 47(18), 2148–2155. https://doi.org/10.1080/00103624.2016.1228944spa
dc.relation.referencesStrauss, A. J., Krüger, G., Strasser, R. J., and Heerden, P. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/j.envexpbot.2005.01.011spa
dc.relation.referencesSu, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B. and Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2017.07.017spa
dc.relation.referencesTamás, L., Mistrík, I. and Zelinová, V. (2017). Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environmental and Experimental Botany, 140, 34–40. https://doi.org/10.1016/j.envexpbot.2017.05.016spa
dc.relation.referencesTrenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067spa
dc.relation.referencesTuteja, N., Sahoo, R. K., Huda, K. M. K., Tula, S. and Tuteja, R. (2015). OsBAT1 Augments Salinity Stress Tolerance by Enhancing Detoxification of ROS and Expression of Stress-Responsive Genes in Transgenic Rice. Plant Molecular Biology Reporter, 33(5), 1192–1209. https://doi.org/10.1007/s11105-014-0827-9spa
dc.relation.referencesUarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M. and Nerling, D. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress. In D. K. Gupta, J. M. Palma and F. J. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher Plants (1st ed., pp. 207–232). Springer International Publishing. https://doi.org/10.1007/978-3-319-75088-0spa
dc.relation.referencesUllah, A., Sun, H., Yang, X. and Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688spa
dc.relation.referencesUSDA-ERS. (2017). Cotton and Wool Outlook. Retrieved November 22, 2019, from https://www.ers.usda.gov/publications/pub-details/?pubid=84691spa
dc.relation.referencesWang, R., Gao, M., Ji, S., Wang, S., Meng, Y. and Zhou, Z. (2016b). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137–146. https://doi.org/10.1016/j.plaphy.2016.05.035spa
dc.relation.referencesWang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B. and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477spa
dc.relation.referencesWang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., and Zhou, Z. (2016a). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, 56(3), 1265–1276. https://doi.org/10.2135/cropsci2015.08.0477spa
dc.relation.referencesWang, X., Mohamed, I., Xia, Y. and Chen, F. (2014). Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. Journal of Soil Science and Plant Nutrition, 14(2), 833–844. https://doi.org/10.4067/s0718-95162014005000066spa
dc.relation.referencesWang, Y. S., Ding, M. Di, Pang, Y., Gu, X. G., Gao, L. P. and Xia, T. (2013). Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. American Journal of Biochemistry and Biotechnology, 9(3), 235–242. https://doi.org/10.3844/ajbbsp.2013.235.242spa
dc.relation.referencesWani, S. H., Dutta, T., Neelapu, N. R. R., and Surekha, C. (2017). Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 11, 219–231. https://doi.org/10.1016/j.plgene.2017.05.006spa
dc.relation.referencesWerker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35. https://doi.org/10.1016/S0065-2296(00)31005-9spa
dc.relation.referencesWilhite, D. A., Sivakumar, M. V. K. and Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002spa
dc.relation.referencesYakir, D., Deniro, M. J. and Ephrath, J. E. (1990). Effects of water stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environment, 13(9), 949–955.spa
dc.relation.referencesYang, H., Zhang, D., Li, X., Li, H., Zhang, D., Lan, H., Wood, A. and Wang, J. (2016). Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding, 36(3), 1–13. https://doi.org/10.1007/s11032-015-0422-2spa
dc.relation.referencesYi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S. and Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/j.jplph.2016.01.016spa
dc.relation.referencesZahoor, R., Zhao, W., Dong, H., Snider, J. L., Abid, M., Iqbal, B., and Zhou, Z. (2017). Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 119, 21–32. https://doi.org/10.1016/j.plaphy.2017.08.011spa
dc.relation.referencesZangi, M. R. (2005). Correlation Between Drought Resistance Indices and Cotton Yield in Stress and Non Stress Conditions. Asian Journal of Plant Sciences, 4(2), 106–108. https://doi.org/10.3923/ajps.2005.106.108spa
dc.relation.referencesZhang, C. zhi, Zhang, J. bao, Zhao, B. zi, Zhang, H. and Huang, P. (2009). Stable Isotope Studies of Crop Carbon and Water Relations: A Review. Agricultural Sciences in China, 8(5), 578–590. https://doi.org/10.1016/S1671-2927(08)60249-7spa
dc.relation.referencesZhang, C., Zhan, D. X., Luo, H. H., Zhang, Y. L., and Zhang, W. F. (2016). Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica, 54(1), 12–18. https://doi.org/10.1007/s11099-015-0139-9spa
dc.relation.referencesZhang, F., Li, S., Yang, S., Wang, L. and Guo, W. (2015). Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Molecular Biology, 87(1–2), 47–67. https://doi.org/10.1007/s11103-014-0260-3spa
dc.relation.referencesZhao, C. Y., Yan, Y. Y., Yimamu, Y., Li, J. Y., Zhao, Z. M. and Wu, L. S. (2010). Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. Journal of Arid Land, 2(4), 243–249. https://doi.org/10.3724/SP.J.1227.2010.00243spa
dc.relation.referencesZlatev, Z. S. (2013). Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food and Agriculture, 25(12), 1014–1023. https://doi.org/10.9755/ejfa.v25i12.16734spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocGenotiposspa
dc.subject.agrovocgenotypeseng
dc.subject.agrovocGossypium hirsutumspa
dc.subject.agrovocGossypium hirsutumeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalPhotosynthesiseng
dc.subject.proposalAntioxidantseng
dc.subject.proposalosmoregulationeng
dc.subject.proposalprolineeng
dc.subject.proposaltolerance indexeng
dc.subject.proposalyieldeng
dc.subject.proposalFotosíntesisspa
dc.subject.proposalantioxidantesspa
dc.subject.proposalosmoregulaciónspa
dc.subject.proposalprolinaspa
dc.subject.proposalíndices de toleranciaspa
dc.subject.proposalrendimientospa
dc.titleCaracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídricospa
dc.title.translatedPhysiological and biochemical characterization of four cotton genotypes (Gossypium hirsutum L.) under conditions of water deficiteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110520425.2020.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: