Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades

dc.contributor.advisorGiraldo Gómez, Norman Diego
dc.contributor.authorCataño Ospina, Jaider Andrés
dc.date.accessioned2021-11-10T15:30:13Z
dc.date.available2021-11-10T15:30:13Z
dc.date.issued2021-11-09
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractSe exponen diferentes modelos de transferencia entre series de tiempo con valores positivos, el problema principal que aborda este trabajo es la revisión de modelos para transferencia de volatilidades unidireccionales GARCH-X, GLM-GAMMA, G-ARMA y ARDL, para luego con cada modelo realizar dos aplicaciones sobre transmisión de volatilidades, la primera aplicación es sobre la influencia de las volatilidades del precio en dólares del barril de referencia WTI en las del COLCAP y la otra aplicación de las volatilidades de los índices bursátiles pertenecientes al grupo que conforma el Mercado Integrado Latinoamericano (MILA) sobre las del COLCAP. Por último, se realizó un análisis comparativo de los resultados obtenidos, con el fin de determinar cuál modelo captura mejor el efecto de transmisión. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis different transfer models between time series with positive values are studied. The main problem is the review of unidireccional models for volatility transfer as the GARCH-X, GLM-GAMMA, G-ARMA and ARDL models. Then, with each model, we analyze two applications on the transmission of volatilities, the first application is on the influence of the volatilities of the dollar price of the WTI reference barrel on those of the COLCAP and the other application of the volatilities of the stock indices belonging to the group that makes up the Latin American Integrated Market (MILA) over those of COLCAP. Finally, a comparative analysis of the results obtained is carried out, in order to determine which model best captures the transmission effect.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenamemaestríaspa
dc.description.researchareaMétodos Estadísticos en Finanzas y Actuariaspa
dc.format.extentxv, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80675
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAgresti, Alan. 2015. Foundations of linear and generalized linear models. John Wiley & Sons.spa
dc.relation.referencesAkaike, Hirotugu. 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.spa
dc.relation.referencesAlves, Mariane B, Gamerman, Dani, & Ferreira, Marco A. 2010. Transfer functions in dynamic generalized linear models. Statistical Modelling, 10(1), 3–40.spa
dc.relation.referencesAndel, Martin. 1991. Non-negative linear processes. Applications of Mathematics, Vol. 36(4), 277–283.spa
dc.relation.referencesArdia, David, & Hoogerheide, Lennart F. 2010. Bayesian estimation of the garch (1, 1) model with student-t innovations. The R Journal, 2(2), 41–47.spa
dc.relation.referencesArdia, David, et al. 2008. Financial risk management with Bayesian estimation of GARCH models. Vol. 18. Springerspa
dc.relation.referencesBaaske, Markus. 2017. Multivariate GARCH models: a survey. Journal of applied econometrics.Estimation. R package version 0.16-6. https://CRAN.R--project.org/package=qle.spa
dc.relation.referencesBalli, Faruk, Balli, Hatice O, Louis, Rosmy Jean, & Vo, Tuan Kiet. 2015. The transmission of market shocks and bilateral linkages: Evidence from emerging economies. International Review of Financial Analysis, 42, 349–357.spa
dc.relation.referencesBauwens, L., Laurent, S., & Rombouts, J. V. 2006. Multivariate GARCH models: a survey. Journal of applied econometrics, 21(1), 79–109.spa
dc.relation.referencesBeirne, J., G. M. Caporale M. Schulze-Ghattas, & Spagnolo, N. 2013. Volatility Spillovers and Contagion from Mature to Emerging Stock Markets. Review of International Economics, 21(5), 1060–1075.spa
dc.relation.referencesBenjamin, M. A., Rigby, R. A., & Stasinopoulos, D. M. 2003. Generalized autoregressive moving average models. Journal of the American Statistical association, 98(461), 214– 223.spa
dc.relation.referencesBoIlerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 69, 307–327.spa
dc.relation.referencesBorda Ángel, Juan Pablo, et al. Comparación de metodologías de valor en riesgo (VaR), sobre un portafolio de activos financieros. B.S. thesis, Universidad de La Sabana.spa
dc.relation.referencesBoubaker, Heni, & Raza, Syed Ali. 2016. On the dynamic dependence and asymmetric comovement between the US and Central and Eastern European transition markets. Physica A: Statistical Mechanics and its Applications, 459, 9–23.spa
dc.relation.referencesBougerol, Ph., & Picard, N. 1992. Stationarity of Garch processes and of some nonnegative time series. Journal of econometrics, 52(1-2), 115–127.spa
dc.relation.referencesClements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.spa
dc.relation.referencesCox, David Roxbee, & Snell, E Joyce. 2018. Analysis of binary data. Routledge.spa
dc.relation.referencesCzado, C. 2018. Lecture Slides on GLM. Lehrstuhl für Mathematische Statistik. Fakultät für Mathematik Technische Universität München.spa
dc.relation.referencesDebaly, M. Z., & Truquet, L. 2019. Iterations of dependent random maps and exogeneity in nonlinear dynamics. arXiv preprint arXiv:1908.00845.spa
dc.relation.referencesDemirhan, H. 2020. dLagM: An R package for distributed lag models and ARDL bounds testing. 15(2), https://doi.org/10.1371/journal.pone.0228812.spa
dc.relation.referencesDickey, David A, & Fuller, Wayne A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427–431.spa
dc.relation.referencesEmenike, K. O. 2014. Volatility transmission between stock and foreign exchange markets: Evidence from Nigeria. Journal of Banking and Financial Economics, 1 (1), 59–72.spa
dc.relation.referencesEngle, R. F., Ito, T., & Lin, W. L. 1988. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. (No. w2609, National Bureau of Economic Research.spa
dc.relation.referencesCampani, C. H., & Durães, A. G. D. S. 2018. Forecasting USD-BRL Currency Rate Volatility using Realized and Implied Volatilities Data. Estudos Econômicos (São Paulo), 48(4), 687–719.spa
dc.relation.referencesClements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.spa
dc.relation.referencesFleming, Jeff, Kirby, Chris, & Ostdiek, Barbara. 2008. The specification of GARCH models with stochastic covariates. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 28(10), 911–934.spa
dc.relation.referencesFleming, J., Kirby C. Ostdiek B. 2002. No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance, 57(5), 2223–2261.spa
dc.relation.referencesFrancq, Christian, & Zakoian, Jean-Michel. 2019. GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.spa
dc.relation.referencesFrancq, C. Thieu, L. Q. 2019. QML inference for volatility models with covariates. Econometric Theory, 35(1), 37–72.spa
dc.relation.referencesGaleano-González, David Andrés. 2015. A transfer function model for volatilities between water inflows and spot prices for Colombian electricity market. Master thesis, Universidad Nacional de Colombia – Sede Medellín, http://bdigital.unal.edu.co/49539/.spa
dc.relation.referencesGamba-Santamaria, Santiago, Gomez-Gonzalez, Jose Eduardo, Hurtado-Guarin, Jorge Luis, & Melo-Velandia, Luis Fernando. 2017. Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 20, 207–216.spa
dc.relation.referencesGarzón, Miller J Ariza, & Lozano, Javier B Cadena. 2014. Identificación de relaciones entre variables de política económica en Colombia a través de funciones de correlación cruzada. Cuadernos de Administración, 30(51), 36–48.spa
dc.relation.referencesGhalanos, A. 2020. Introduction to the rugarch package. Version 1.3-8, Technical report v. Available at http://cran. r–project. org/web/packages/rugarch.spa
dc.relation.referencesGhalanos, Alexios, Ghalanos, Maintainer Alexios, & Rcpp, LinkingTo. 2019. Package rugarch.spa
dc.relation.referencesGiraitis, Liudas, Kokoszka, Piotr, Leipus, Remigijus, & Teyssiére, Gilles. 2003. Rescaled variance and related tests for long memory in volatility and levels. Journal of econometrics, 112(2), 265–294.spa
dc.relation.referencesGomes, M., & Chaibi, A. 2014. Volatility Spillovers Between Oil Prices And Stock Returns: A Focus On Frontier Markets. Journal of Applied Business Research (JABR), 30(2), 509–526.spa
dc.relation.referencesGranger, Clive WJ. 1969. Investigating causal relations by econometric models and crossspectral methods. Econometrica: journal of the Econometric Society, 424–438.spa
dc.relation.referencesGuesmi, Khaled, & Goutte, Stephane. 2020. Risk Factors and Contagion in Commodity Markets and Stocks Markets. World Scientific.spa
dc.relation.referencesHan, H. 2007. GARCH (1, 1) Process with Persistent Covariates. Citeseerspa
dc.relation.referencesHan, H., & Kristensen, D. 2015. Semiparametric multiplicative GARCH-X model: Adopting economic variables to explain volatility.Toulouse, France: Toulouse School of Economics.spa
dc.relation.referencesHassler, U., & Wolters, J. 2006. Autoregressive distributed lag models and cointegration. In Modern Econometric Analysis. Heidelberg: Springer, Berlin.spa
dc.relation.referencesHastie, T.J., & Tibshirani, R. 1990. Generalized Additive Models. London: hapman and Hall.spa
dc.relation.referencesJudge, G. G.and Hill, R. C.and Griffiths-W.and Lutkepohl H., & Lee, T. C. 1982. Introduction to the Theory and Practice of Econometrics. John Wiley and Sons.spa
dc.relation.referencesKanas, Angelos. 1998. Volatility spillovers across equity markets: European evidence. Applied financial economics, 8(3), 245–256.spa
dc.relation.referencesKiviaho, Jarno, Nikkinen, Jussi, Piljak, Vanja, & Rothovius, Timo. 2014. The co-movement dynamics of European frontier stock markets. European Financial Management, 20(3), 574–595.spa
dc.relation.referencesKoutmos, Gregory, & Booth, G Geoffrey. 1995. Asymmetric volatility transmission in international stock markets. Journal of international Money and Finance, 14(6), 747–762.spa
dc.relation.referencesKwiatkowski, Denis, Phillips, Peter CB, Schmidt, Peter, & Shin, Yongcheol. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1-3), 159–178.spa
dc.relation.referencesLe Quyen, Thieu. 2016. Infèrence de modèles conditionnellement hètèroscèdastiques avec variables exogènes [math.ST]. Ph.D. thesis.spa
dc.relation.referencesLi, W.K. 1994. Time Series Models Based on Generalized Linear Models: Some Further Results. Biometrics, Vol. 50, No. 2, 506–511.spa
dc.relation.referencesLin, W. L., Engle, R. F., & Ito, T. 1994. Do bulls and bears move across borders? International transmission of stock returns and volatility. Review of financial studies, 7(3), 507–538.spa
dc.relation.referencesLo, Andrew W. 1991. Long-term memory in stock market prices. Econometrica: Journal of the Econometric Society, 1279–1313.spa
dc.relation.referencesLongerstaey, Jacques, & Spencer, Martin. 1996. Riskmetricstm: technical document. Morgan Guaranty Trust Company of New York: New York, 51, 54.spa
dc.relation.referencesLopez, R. 2015. Do stylized facts of equity-based volatility indices apply to fixed-income volatility indices? Evidence from the US Treasury market. International Review of Financial Analysis, 42, 292–303.spa
dc.relation.referencesLunn, DJ., Thomas, A., Best, N., & D, Spiegelhalter. 1972. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.spa
dc.relation.referencesMcCullagh, P., & Nelder, J.A. 1989. Generalized Linear Models. London: Chapman and Hall.spa
dc.relation.referencesNana, G. A. N., Korn, R., & Erlwein-Sayer, C. 2013. GARCH-extended models: theoretical properties and applications. arXiv preprint arXiv:1307.6685.spa
dc.relation.referencesNewey, Whitney K, & West, Kenneth D. 1987. Hypothesis testing with efficient method of moments estimation. International Economic Review, 777–787.spa
dc.relation.referencesPesaran, M. H., & Pick, A. 2007. Econometric issues in the analysis of contagion. Journal of Economic Dynamics and Control, 31(4), 1245–1277.spa
dc.relation.referencesPhillips, Peter CB, & Perron, Pierre. 1988. Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.spa
dc.relation.referencesRegino, A. 2006. Estimación y Comparación del Efecto de Asimetría en Modelos GJR, con Aplicaciones. Tesis de Maestría en Estadística. Escuela de Estadística. M.Phil. thesis, Universidad Nacional de Colombia-Sede Medellín.spa
dc.relation.referencesRocha, A. V., & Cribari-Neto, F. 2009. Beta autoregressive moving average models. Test, 18(3), 529.spa
dc.relation.referencesRodríguez Castellanos, Arturo, Urionabarrenetxea Zabalandikoetxea, Sara, & San Martín Albizuri, Nerea. 2008. Crisis financieras y globalización: un análisis de sus factores determinantes. Problemas del desarrollo, 39(153), 159–183.spa
dc.relation.referencesRuppert, D., Wand M. P., & Carroll, R. J. 2003. Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University: 12.spa
dc.relation.referencesSerra, T. 2011. Volatility spillovers between food and energy markets: a semiparametric approach. Energy Economics, 33(6), 1155–1164.spa
dc.relation.referencesShaikh, Imlak. 2021. Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 1–52.spa
dc.relation.referencesShepard, N. 1995. Generalized linear autoregressions Economics Working Papers. University of Oxford: Nuffield College.spa
dc.relation.referencesSoriano, P., & Climent, F. 2006. Volatility transmission models: a survey. Revista de economfinanciera, 10), 32–81.spa
dc.relation.referencesStraumann, D., & Mikosch, T. 2006. Quasi-Maximum-Likelihood Estimation in Conditionally Heteroscedastic Time Series: A Stochastic Recurrence Equations Approach. The Annals of Statistics, Vol. 34, No. 5, 2449–2495.spa
dc.relation.referencesSubba Rao, S. 2015. A course in Time Series Analysis. En https://www.stat.tamu.edu/ ~suhasini/teaching673/time_series.pdf.spa
dc.relation.referencesTsai, H., & Chan, K. S. 2007. A Note on Non-Negative Arma Processes. Journal of Time Series Analysis, 28(3), 350–360.spa
dc.relation.referencesTsay, Ruey S. 2005. Analysis of financial time series. John Wiley and Sons.spa
dc.relation.referencesWood, S.N. 2017. Generalized Additive Models: An Introduction with R. (2nd edition). Chapman and Hall/CRC.spa
dc.relation.referencesWuertz, Diethelm, Setz, Tobias, Chalabi, Yohan, Boudt, Chris, Chausse, Pierre, Miklovac, Michal, Setz, Maintainer Tobias, & RUnit, Suggests. 2013. Package fGarch. Tech. rept. Technical report, working paper/manual, 09.11. 2009. URL https://cran.r-project.org/.spa
dc.relation.referencesZanobetti, A., Wand, M. P., Schwartz, J., & Ryan, L. M. 2000. Generalized additive distributed lag models: quantifying mortality displacement. Biostatistics, 1(3), 279–292.spa
dc.relation.referencesZeger, Scott L., & Qaqish, Bahjat. 1988. Markov Regression Models for Time Series: A Quasi-Likelihood Approach. Biometrics, 44(4), 1019–1031.spa
dc.relation.referencesMcFadden, Daniel. 1974. Conditional Logit Analysis of Qualitative Choice Behavior" in P. Zarembka Eds. Frontiers in Econometrics, New York Acedemic press.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc330 - Economía::339 - Macroeconomía y temas relacionadosspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lemEstadística
dc.subject.lembTime-series analysis
dc.subject.lembAnálisis de series de tiempo
dc.subject.proposalSeries de tiempospa
dc.subject.proposalTransmisiónspa
dc.subject.proposalVolatilidadspa
dc.subject.proposalCausalidadspa
dc.subject.proposalTime serieseng
dc.subject.proposalTransmissioneng
dc.subject.proposalVolatilityfra
dc.subject.proposalCausalityeng
dc.titleModelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidadesspa
dc.title.translatedTransfer models between time series with positive values and their application to the transmission of volatilitieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036636839.2021.pdf
Tamaño:
733.53 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: