Desarrollo de una herramienta computacional que permita simular la dinámica geomorfológica de un meandro a la luz de la geología. Aplicación a la curva el Conejo en La Dorada (Caldas)

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.advisorEscobar Vargas, Jorge Albertospa
dc.contributor.authorSoto Orjuela, Juan Carlosspa
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISIspa
dc.date.accessioned2020-05-07T15:57:25Zspa
dc.date.available2020-05-07T15:57:25Zspa
dc.date.issued2020-02-14spa
dc.description.abstractHumanity, for convenience, has been close to rivers as they can provide food and serve as transportation routes between settlements, and even the capacity to generate energy for our consumption. Along the rivers we find meanders, which are of vital importance for geology, geomorphology and hydrology. The study of these geoforms is of special interest when human settlements are located near them. During the last 60 years, an attempt has been made to explain their behaviour in a quantitative way, but assuming homogeneous lithology. This research proposes an approach using a model based on cellular automata to be able to contemplate situations where the lithology is not homogeneous. Additionally, the research proposes mechanisms to cover the different steps needed to develop projects of this type such as the generation of synthetic data, generation of banks as a function of the change in the height of the water sheet, generation of the banks, generation of transects (simulating the generation of meshes), calculations of velocities and of the value of the lateral erosion that can affect the shape of the banks. Although some topics like the generation of orthogonal meshes, the use of unstructured cellular automata, flooding algorithms should be studied in depth, cellular automata are a good option when simulating physical systems of this type.spa
dc.description.abstractLa humanidad, por conveniencia, ha estado cerca de los ríos ya que estos pueden proveer comida y servir como vías de transporte para establecer rutas entre asentamientos, e incluso la capacidad de generar energía para nuestro consumo. A lo largo de los ríos encontramos meandros, que son de vital importancia para la geología, geomorfología e hidrología. El estudio de esas geoformas cobra especial interés cuando cerca a ellos se encuentran asentamientos humanos. Durante los últimos 60 años se ha tratado de explicar de manera cuantitativa su comportamiento, pero asumiendo litología homogénea. En esta investigación se propone un acercamiento usando un modelo basado en autómatas celulares para poder contemplar las situaciones donde la litología no es homogénea. Adicionalmente, la investigación propone mecanismos para cubrir los diferentes pasos necesarios para poder desarrollar proyectos de este tipo como generación de datos sintéticos, generación de orillas en función del cambio en la altura de la lámina de agua, generación de las orillas, generación de transectos (simulando la generación de mallas), cálculos de velocidades y del valor de la erosión lateral que puede afectar la forma de las bancas. Aunque se debe profundizar en algunos tópicos como la generación de mallas ortogonales, el uso de autómata celulares no estructurados, algoritmos de inundación, los autómatas celulares son una buena opción al momento de simular sistemas físicos de ese tipo.spa
dc.description.additionalMagíster en Ingeniería de Sistemas y Computación. Línea de Investigación: Computación aplicada (Geomorfología fluvial computacional)spa
dc.description.degreelevelMaestríaspa
dc.format.extent117spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSoto Orjuela, J.C. (2020). Desarrollo de una herramienta computacional que permita simular la dinámica geomorfológica de un meandro a la luz de la geología. Aplicación a la curva el Conejo en La Dorada (Caldas). Universidad Nacional de Colombia-Sede Bogota.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77484
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAbad, J. D., & Garcia, M. H. (2006). RVR Meander: A toolbox for re-meandering of channelized streams. Computers and Geosciences, 32(1), 92–101. https://doi.org/10.1016/j.cageo.2005.05.006spa
dc.relation.referencesAdamatzky, A., Alonso-sanz, R., Lawniczak, A., Martinez, G. J., Morita, K., & Worsch, T. (2008). Andrew Adamatzky, Ramon Alonso-Sanz, Anna Lawniczak, Genaro Juarez Martinez, Kenichi Morita, Thomas Worsch Editors.spa
dc.relation.referencesAmbrosio, D. D., Gregorio, S. Di, Gabriele, S., & Gaudio, R. (2002). Il modello ad Automi Cellulari SCAVATU per la simulazione dell ’ erosione del suolo e del trasporto solido nei bacini idrografici : specificazione della parte idrodinamica nel caso di reticolo a celle esagonali regolari.spa
dc.relation.referencesArcos, V. A. (2011). Modeling and prediction of the natural decontamination of the mining-impacted Geul River floodplain, (July), 1–52.spa
dc.relation.referencesAristizabal, V. M. (2013). Modelos hidrológicos e hidráulicos de zonificación de la amenaza por inundación en el municipio de La Dorada Caldas. Corpocaldas, (6), 1–134.spa
dc.relation.referencesAstaiza Amado, L. G., Liberato Luna, J. C., & Soto Orjuela, J. C. (2012). Acercamiento a un estudio sobre la influencia (Erosion/Sedimentacion) historica del rio Magdalena en los alrededores del municipio de La Dorada (Caldas), durante el período 1953-2003. Bogota, DC.spa
dc.relation.referencesAvolio, MV, Crisci, G., D`Ambrosio, D. ., Di Gregorio, S., Iovine, G., Rongo, R., & Spataro, W. (2003). An extended notion of Cellular Automata for surface flows modelling. WSEAS Transactions, (January), 1–6. Recuperado de http://sv.mat.unical.it/~spataro/publications/2003wseas.pdfspa
dc.relation.referencesAvolio, M. V., Bozzano, F., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Mazzanti, P., … Spataro, W. (2011). Debris flows simulation by cellular automata: A short review of the SCIDDICA models. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 387–397. https://doi.org/10.4408/1JEGE.2011-03.B-044spa
dc.relation.referencesAvolio, M. V., Di Gregorio, S., Mantovani, F., Pasuto, A., Rongo, R., Silvano, S., & Spataro, W. (2000). Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. ITC Journal, 2(1), 41–50. https://doi.org/10.1016/S0303-2434(00)85025-4spa
dc.relation.referencesBahrepour, M. (2018). The Forgotten Step in CRISP-DM and ASUM-DM Methodologies. Luminis Amsterdam, 1–6. Recuperado de https://amsterdam.luminis.eu/2018/08/17/the-forgotten-step-in-crisp-dm-and-asum-dm-methodologies/spa
dc.relation.referencesBarrero, D., & Vesga, C. . (1976). Geología de la Plancha 188 La Dorada. Ingeominas, 1909.spa
dc.relation.referencesBEEVERS, R. D. L., CROSATO, A., & WRIGHT, N. (2009). Bank Retreat Study of a Meandering River Reach Case Study: River Irwell. 7th ISE & 8th HIC, 3–4.spa
dc.relation.referencesBerger, J. (1925). Memoria detallada de los estudios del rio Magdalena, obras proyectadas para su arreglo y resumen del presupuesto. Revista del Ministerio de Obras.spa
dc.relation.referencesBras, R. L., Tucker, G. E., & Teles, V. (2003). Six myths about mathematical modeling in geomorphology. Geophysical Monograph Series, 135, 63–79. https://doi.org/10.1029/135GM06spa
dc.relation.referencesBrice, J. (1977). Lateral migration of the middle Sacramento River, California.spa
dc.relation.referencesBrotherton, D. I. (1979). On the origin and characteristics of river channel pattern. Journal of Hydrology, 44, 211–230.spa
dc.relation.referencesCastaneda, J. A., Osorio, H., & Mesa, F. (2018). Evolución y comportamiento del meandro “curva el conejo” del río magdalena en el sector de La Dorada-Caldas. En Scientia et Technica Año XXIII (Vol. 23, pp. 178–185). Universidad Tecnologica de Pereira.spa
dc.relation.referencesCharlton, R. (2010). Fundamentals of Fluvial Geomorphology.spa
dc.relation.referencesChen, Q., & Ye, F. (2008). Unstructured cellular automata and the application to model river riparian vegetation dynamics. En Lecture notes in computer science. https://doi.org/10.1007/978-3-540-79992-4spa
dc.relation.referencesChinnarasri, C., Tingsanchali, T., & Banchuen, S. (2008). Field validation of two river morphological models on the Pasak River, Thailand. Hydrological Sciences Journal, 53(4), 818–833. https://doi.org/10.1623/hysj.53.4.818spa
dc.relation.referencesChopard, B., & Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cellular Automata Modeling of Physical Systems, 27–60. https://doi.org/10.1017/cbo9780511549755spa
dc.relation.referencesChow, V. Te. (1959). Open-Channel Hydraulics. McGraw-Hill Book Company. https://doi.org/ISBN 07-010776-9spa
dc.relation.referencesCormagdalena, & UN-Bogota, C. (2002). Río Magdalena. La Dorada - Puerto Salgar.spa
dc.relation.referencesCoulthard, T., de Rosa, P., & Marchesini, I. (2008). CAESAR: Un modello per la simulazione delle dinamiche d’alveo. Alpine and Mediterranean Quaternary, 21(1), 207–214.spa
dc.relation.referencesCoulthard, T. J., Hicks, D. M., & Van De Wiel, M. J. (2007). Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90(3–4), 192–207. https://doi.org/10.1016/j.geomorph.2006.10.030spa
dc.relation.referencesCoulthard, T. J., Lewin, J., & Macklin, M. G. (2005). Modelling differential catchment response to environmental change. Geomorphology, 69(1–4), 222–241. https://doi.org/10.1016/j.geomorph.2005.01.008spa
dc.relation.referencesCoulthard, T. J., & Van De Wiel, M. J. (2012). Modelling river history and evolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1966), 2123–2142. https://doi.org/10.1098/rsta.2011.0597spa
dc.relation.referencesCoulthard, T. J., & Van De Wiel, M. J. (2013). Numerical Modeling in Fluvial Geomorphology. Treatise on Geomorphology (Vol. 9). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374739-6.00261-Xspa
dc.relation.referencesCoulthard, Tom J. (2006). Modelling fluvial geomorphological response to climate change, 8, 9624.spa
dc.relation.referencesCoulthard, Tom J., Hancock, G. R., & Lowry, J. B. C. (2012). Modelling soil erosion with a downscaled landscape evolution model. Earth Surface Processes and Landforms, 37(10), 1046–1055. https://doi.org/10.1002/esp.3226spa
dc.relation.referencesCoulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478spa
dc.relation.referencesCoulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315spa
dc.relation.referencesCrosato, A. (s/f). MIANDRAS Physics-based model for the prediction of flow field, bed topography and planimetric changes of meandering rivers.spa
dc.relation.referencesCrosato, A. (1990). Simulation of meandering river process. Communication on Hydraulic and Geotechnical Engineering, 90(3), 109.spa
dc.relation.referencesCrosato, A. (2008a). Analysis and modelling of river meandering (portadas). TU Delft.spa
dc.relation.referencesCrosato, A. (2008b). Analysis and modelling of river meandering Analyse en modellering van meanderende rivieren. https://doi.org/10.1111/j.1365-246X.2008.04032.xspa
dc.relation.referencesCrosato, A., & Vriend, H. de. (2008). Analysis and modelling of river meandering. Civiele Techniek en Geowetenschap (Vol. PhD).spa
dc.relation.referencesD’Ambrosio, D., Di Gregorio, S., Gabriele, S., & Gaudio, R. (2001). A cellular automata model for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 33–39. https://doi.org/10.1016/S1464-1909(01)85011-5spa
dc.relation.referencesD’Ambrosio, D., Di Gregorio, S., & Iovine, G. (2003). Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3–hex. Natural Hazards and Earth System Science, 3(6), 545–559. https://doi.org/10.5194/nhess-3-545-2003spa
dc.relation.referencesD’Ambrosio, Donato, Di Gregorio, S., Iovine, G., Lupiano, V., Rongo, R., & Spataro, W. (2003). First simulations of the Sarno debris flows through Cellular Automata modelling. Geomorphology, 54(1–2), 91–117. https://doi.org/10.1016/S0169-555X(03)00058-8spa
dc.relation.referencesDey, S. (2014). Fluvial Hydrodynamics. Springer-Verlag Berlin Heidelberg.spa
dc.relation.referencesDingman, S. L. (2009). Fluvial Hydraulics. Oxford University Press. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesDuque-Escobar, G. (2013). La navegación del Magdalena y la conurbación Honda – La Dorada.spa
dc.relation.referencesDuque-Escobar, G., Valderrama Charry, A., Rios Prada, E., Robledo Vasquez, G., & Maldonado, J. (2012). Nuevo puente La Dorada-Puerto Salgar. Informe Tecnico.spa
dc.relation.referencesDuque, A., Poveda, G., & Posada, L. (2006). Influencia de El Niño en el transporte de sedimentos en algunas cuencas colombianas. XVII Seminario Nacional de Hidráulica e Hidrología, (1).spa
dc.relation.referencesDuque Escobar, G. (2013). La Navegación Del Magdalena Y La Conurbación, Honda- La Dorada. Anales de Ingeniería, 927, 14.spa
dc.relation.referencesGonzalez-Aguirre, J. C. (2012). Simulacion numerica de inundaciones en Villahermosa. Universidad Juarez Autonoma de Tabasco.spa
dc.relation.referencesFernández, R., Motta, D., Abad, J. D., Langendoen, E. J., Oberg, N., & Garcia, M. H. (2011a). Rvr Meander – Tutorials, 24.spa
dc.relation.referencesFernández, R., Motta, D., Abad, J. D., Langendoen, E. J., Oberg, N., & Garcia, M. H. (2011b). Rvr Meander – User´s Manual.spa
dc.relation.referencesGarcia, M. H., Bittner, L., & Nino, Y. (1994). Mathematical modeling of meandering streams in Illinois: A tool for stream management and engineering. CIVIL ENGINEERING STUDIES - Hydraulic Engineering Series No. 43, (43), 49.spa
dc.relation.referencesGiraldo, E. Z. (2015). Análisis comparativo de la modelación hidráulica entre HEC-RAS y CCHE- 2D, aplicado a un cauce aluvial. Caso estudio: río Suarez (Boyacá).spa
dc.relation.referencesGoldsman, D., Nance, R. E., & Wilson, J. R. (2009). A brief history of simulation. Proceedings - Winter Simulation Conference, 310–313. https://doi.org/10.1109/WSC.2009.5429341spa
dc.relation.referencesGoren, L., & Willett, S. (2011). Landscape characterization with DAC ( DIVIDE AND CAPTURE ), a new surface evolution model. Geophysical Research Abstracts, 13, 10614–10614.spa
dc.relation.referencesGoren, L., Willett, S. D., Herman, F., & Braun, J. (2014). Coupled numerical-analytical approach to landscape evolution modeling. Earth Surface Processes and Landforms, 39(4), 522–545. https://doi.org/10.1002/esp.3514spa
dc.relation.referencesGuidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2016). A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling and Software, 84, 378–394. https://doi.org/10.1016/j.envsoft.2016.07.008spa
dc.relation.referencesGutierrez, A., Contreras, V., Ramirez, A. I., & Mejia, R. (2014). Risk zone prediction in meandering rivers by using a multivariate approach. Journal of Hydrologic Engineering, 19(9), 1–9. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000631spa
dc.relation.referencesGyssels, P., Baldissone, C. M., Hillman, G., Corral, M., Pagot, M., Brea, D., … Farias, H. D. (2013). Aplicaciones del modelo numérico Delft3D a diferentes problemas hidrosedimentologicos en casos argentinos, XXXII, 19–22.spa
dc.relation.referencesHancock, G. R., Lowry, J. B. C., Coulthard, T. J., Evans, K. G., & Moliere, D. R. (2010). A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surface Processes and Landforms, 35(8), 863–875. https://doi.org/10.1002/esp.1863spa
dc.relation.referencesHancock, G. R., Willgoose, G. R., & Evans, K. G. (2002). Testing of the SIBERIA landscape evolution model using the tin camp creek, Northern Territory, Australia, field catchment. Earth Surface Processes and Landforms, 27(2), 125–143. https://doi.org/10.1002/esp.304spa
dc.relation.referencesHancock, Greg R. (2004). Modelling soil erosion on the catchment and landscape scale using landscape evolution models – a probabilistic approach using digital elevation model error. System, (December), 5–9.spa
dc.relation.referencesHancock, Greg R., Coulthard, T. J., Martinez, C., & Kalma, J. D. (2011). An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2010.12.002spa
dc.relation.referencesHasegawa, K. (1989). Universal bank erosion coefficient for meandering rivers. Journal of Hydraulic Engineering, 115(6), 744–765.spa
dc.relation.referencesHeitmuller, F. T., Hudson, P. F., & Asquith, W. H. (2015). Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA. Geomorphology, 232, 1–19. https://doi.org/10.1016/j.geomorph.2014.12.033spa
dc.relation.referencesHerman J. C. Berendsen. (2007). Simulating the physical world. Annals of Physics. https://doi.org/10.1017/CBO9780511815348spa
dc.relation.referencesHoward, A. D., & Knutson, T. R. (1984). Sufficient conditions for river meandering: A simulation approach. Water Resources Research. https://doi.org/10.1029/WR020i011p01659spa
dc.relation.referencesHugget, R. J. (2011). Fundamentals of geomorphology 3rd Edition. Evaluation.spa
dc.relation.referencesIkeda, S., Parker, G., & Sawai, K. (1981). Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 112, 363–377. https://doi.org/10.1017/S0022112081000451spa
dc.relation.referencesJamali, B., Bach, P. M., Cunningham, L., & Deletic, A. (2019). A Cellular Automata Fast Flood Evaluation (CA-ffé) Model. Water Resources Research, 55(6), 4936–4953. https://doi.org/10.1029/2018WR023679spa
dc.relation.referencesJohannesson, H., & Parker, G. (1985). Computer simulated migration of meandering rivers in Minnesota, (242), 1–98.spa
dc.relation.referencesJohannesson, H., & Parker, G. (2011). Linear theory of river meanders, 12, 181–213. https://doi.org/10.1029/wm012p0181spa
dc.relation.referencesKamanbedast, A. A., Nasrollahpour, R., & Mashal, M. (2013). Estimation of sediment transport in rivers using CCHE2D model (Case study: Karkheh River). Indian Journal of Science and Technology, 6(2), 138–141. https://doi.org/10.17485/ijst/2013/v6i2/30592spa
dc.relation.referencesKlijn, F., & Schweckendiek, T. (2012). Comprehensive Flood Risk Management. Comprehensive Flood Risk Management. https://doi.org/10.1201/b13715spa
dc.relation.referencesKnighton, D. (1998). Fluvial forms and processes. Routledge. Taylor & Francis Group.spa
dc.relation.referencesKondolf, G. M., & Piégay, H. (2016). Tools in Fluvial Geomorphology, Second Edition.spa
dc.relation.referencesKondolf, G. Mathias, & Piégay, H. (2005). Tools in fluvial geomorphology. Tools in Fluvial Geomorphology, 1–688. https://doi.org/10.1002/0470868333spa
dc.relation.referencesKondolf, M. (2016). Tools in fluvial geomorphology. (H. Kondolf, Mathias; Piegay, Ed.) (2nd ed.). Wiley Blackwell.spa
dc.relation.referencesKondolf, M., & Piégay, H. (2003). Tools in Fluvial Geomorphology. (M. Kondolf & H. Piégay, Eds.), Tools in Fluvial Geomorphology. John Wiley & Sons, Inc. https://doi.org/10.1002/0470868333spa
dc.relation.referencesLai, T., & Dragićević, S. (2011). Development of an urban landslide cellular automata model: A case study of North Vancouver, Canada. Earth Science Informatics. https://doi.org/10.1007/s12145-011-0078-3spa
dc.relation.referencesLangendoen, E. J., Motta, D., Abad, J. D., Garcia, M. H., Fernandez, R., & Oberg, N. (2010). RVR Meander - A toolbox for river meander planform desing and evaluation.spa
dc.relation.referencesLifeng, Y. (2008). A soil erosion model based on cellular automata. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b, 37(6b), 21–26.spa
dc.relation.referencesLin, Y. (2014). Unstructured Cellular Automata in Ecohydraulics Modelling.spa
dc.relation.referencesLuo, W. (2001). LANDSAP: A coupled surface and subsurface cellular automata model for landform simulation. Computers and Geosciences, 27(3), 363–367. https://doi.org/10.1016/S0098-3004(00)00104-7spa
dc.relation.referencesMartinez Aguirre, F. (2002). Erosion fluvial relacionada a la evolución historica del meandro “Curva el Conejo” en el municipio de La Dorada - Caldas - Colombia. Memorias del 1er Simposio Latinoamericano de control de erosión.spa
dc.relation.referencesMiller, J. R., Ritter, J. B., & Rosgen, D. L. (1996). A classification of natural rivers : reply to the, 27, 301–307.spa
dc.relation.referencesModelación Hidráulica Y Morfodinámica De Cauces Sinuosos Aplicación a La Quebrada La Marinilla (Ant). (2011). Boletín de Ciencias de la Tierra, (30), 107–117.spa
dc.relation.referencesMotta, D. (2013). Meander migration with physically-based bank erosion. Ph.D. Thesis. University of Illinois at Urbana-Champaign.spa
dc.relation.referencesMotta, D., Abad, J. D., Langendoen, E. J., & García, M. H. (2011). Floodplain heterogeneity and meander migration. River, Coastal and Estuarine Morphodynamics RCEM2011, 1–16.spa
dc.relation.referencesMotta, D., Abad, J. D., Langendoen, E. J., & García, M. H. (2012). The effects of floodplain soil heterogeneity on meander planform shape. Water Resources Research, 48(July), 1–17. https://doi.org/10.1029/2011WR011601spa
dc.relation.referencesopen TELEMAC-MASCARET. (2014), 2014.spa
dc.relation.referencesOrtigoza, G. M. (2015). Unstructured triangular cellular automata for modeling geographic spread. Applied Mathematics and Computation, 258, 520–536. https://doi.org/10.1016/j.amc.2015.01.116spa
dc.relation.referencesPaluszny, M., & Restrepo, G. (2016). Orthogonal grids on meander-like regions: A database approach. Journal of Computational and Applied Mathematics, 295, 62–69. https://doi.org/10.1016/j.cam.2015.02.034spa
dc.relation.referencesParker, G., Sawai, K., & Ikeda, S. (1982). Bend theory of river meanders. Part 2. Nonlinear deformation of finite-amplitude bends. Journal of Fluid Mechanics, 115(1982), 303–314. https://doi.org/10.1017/S0022112082000767spa
dc.relation.referencesPasculli, A., Audisio, C., & Sciarra, N. (2015). Application of CAESAR for catchment and river evolution. Rendiconti Online Societa Geologica Italiana, 35(August), 224–227. https://doi.org/10.3301/ROL.2015.106spa
dc.relation.referencesPete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.spa
dc.relation.referencesPiazza, S. (2012). The modelling of soil erosion in river beds using cellular automata. University of Leeds. UK.spa
dc.relation.referencesPosner, A. (2011). River Meander Modeling and Confronting Uncertainty. SANDIA Report, (May).spa
dc.relation.referencesPosner, A. J., & Duan, J. G. (2012). Simulating river meandering processes using stochastic bank erosion coefficient. Geomorphology, 163–164, 26–36. https://doi.org/10.1016/j.geomorph.2011.05.025spa
dc.relation.referencesRameshwaran, P., Naden, P., Wilson, C. A. M. E., Malki, R., Shukla, D. R., & Shiono, K. (2013). Inter-comparison and validation of computational fluid dynamics codes in two-stage meandering channel flows. Applied Mathematical Modelling, 37(20–21), 8652–8672. https://doi.org/10.1016/j.apm.2013.07.016spa
dc.relation.referencesRestrepo Arboleda, G. A. (2014). Creación de Mallas Ortogonales con Lemniscatas, 67. Recuperado de http://www.bdigital.unal.edu.co/12604/spa
dc.relation.referencesRhoads, B. L., & Welford, M. R. (1991). Initiation of river meandering. Progress in Physical Geography, 15(2), 127–156. https://doi.org/10.1177/030913339101500201spa
dc.relation.referencesRosgen D.L. (1994). A Classification of Natural Rivers. Catena, 22, 169–199.spa
dc.relation.referencesRotmans, J., Sluijs, V. D. S., Van Asselt, M. B. A., Janssen, P., & Von Krauss, M. P. K. (2003). Defining uncertainty. A conceptual basis for uncertainty management i nmodel- based decision support. Integrated Assessment, 4, 2003, 00(0). Recuperado de https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:fdc0105c-e601-402a-8f16-ca97e9963592spa
dc.relation.referencesRousseau, Y. Y., Van De Wiel, M. J., & Biron, P. M. (2014). Integration of a geotechnical model within a morphodynamic model to investigate river meandering processes. Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2014, 1127–1133. https://doi.org/10.1201/b17133-152spa
dc.relation.referencesRüther, N. (2006). Computational fluid dynamics in fluvial sedimentation engineering.spa
dc.relation.referencesSargent, D. M. (1979). A simplified model for the generation of daily streamflows. Hydrological Sciences Bulletin, 24(4), 509–527. https://doi.org/10.1080/02626667909491890spa
dc.relation.referencesSarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80–107. https://doi.org/10.1145/349194.349202spa
dc.relation.referencesSharma, P., Bhakar, S. R., Ali, S., Jain, H. K., Singh, P. K., & Kothari, M. (2018). Generation of Synthetic Streamflow of Jakham River , Rajasthan Using Thomas-Fiering Model. Agricultural Engineering, 55(4).spa
dc.relation.referencesSIMÕES, F. J. M., & YANG, C. T. (2008). GSTARS computer models and their applications, Part II: Applications. International Journal of Sediment Research, 23(4), 299–315. https://doi.org/10.1016/S1001-6279(09)60002-0spa
dc.relation.referencesSontek/Ysi. (2003). RiverSurveyor System Manual Software Version 3.50, (858), 144.spa
dc.relation.referencesSoto Orjuela, J.C., & Escobar Vargas, J.A. (2015). Una vía hacia el entendimiento del comportamiento del meandro ( curva el conejo ) del rio MAGDALENA al interior del cual se halla ubicada la población de La Dorada. I Congreso Nacional Rios Y Humedales Honda, Tolima, 26 Al 28 De Noviembre, 2015 Sbi.spa
dc.relation.referencesSoto Orjuela, J. C., Escobar Vargas, J. A., & Niño V., L. F. (2017). UNA APROXIMACION A LA SIMULACION DE MEANDROS CON CONTROL LITOLOGICO PARCIAL. En I CONGRESO INTERNACIONAL Y II CONGRESO NACIONAL DE RÍOS Y HUMEDALES (p. 1). Neiva, Huila. Colombia.spa
dc.relation.referencesStruiksma, N., & Crosato, A. (1989). Analysis of a 2-D bed topography model for rivers.spa
dc.relation.referencesSubramanya, K. (2009). Flow in Open Channels.spa
dc.relation.referencesSun, T., Meakin, P., Jøssang, T., & Schwarz, K. (1996). A simulation model for meandering rivers. Water Resources Research, 32(9), 2937–2954. https://doi.org/10.1029/96WR00998spa
dc.relation.referencesThorndycraft, V. R., Benito, G., & Gregory, K. J. (2008). Fluvial geomorphology: A perspective on current status and methods. Geomorphology, 98(1–2), 2–12. https://doi.org/10.1016/j.geomorph.2007.02.023spa
dc.relation.referencesThorne, C., & Darby, S. (1993). Approaches to Modeling Width Adjustment in Curved Alluvial Channels, (February). Recuperado de http://www.stormingmedia.us/37/3723/A372362.htmlspa
dc.relation.referencesTorres, E., & González, E. (2008). Aplicación del modelo de simulación hidráulica hec-ras para la emisión de pronósticos hidrológicos de inundaciones en tiempo real, en la cuenca media del río Bogotá - sector Alicachin.spa
dc.relation.referencesTsige, T. Z., Beevers, L., & Crosato, A. (2009). Application of Monte Carlo techniques to assess the river corridor width, 6, 9–10. https://doi.org/10.1029/2006JF000549.spa
dc.relation.referencesTucker, G. E., Lancaster, S., Gasparini, N., & Bras, R. (s/f). CHILD Channel-HIllslope Integrated Landscape Development Model.spa
dc.relation.referencesTucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., & Rybarczyk, S. M. (2001). An object-oriented framework for hydrologic and geomorphic modeling using triangular irregular networks. Computers and Geosciences, 27, 959–973.spa
dc.relation.referencesTurri, E. (1983). Los rios y el curso de la historia. El correo de la UNESCO. Los rios esas venas del planeta, XXXVI(Septiembre), 4–7.spa
dc.relation.referencesVaghela, C. R., & Vaghela, A. R. (2014). Synthetic Flow Generation. International Journal of Engineering Research and Aplications, 4(7), 66–71.spa
dc.relation.referencesVan De Wiel, M. J., Coulthard, T. J., Macklin, M. G., & Lewin, J. (2007). Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology, 90(3–4), 283–301. https://doi.org/10.1016/j.geomorph.2006.10.024spa
dc.relation.referencesVersteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computacional Fluis Dynamics, The volume finite method. Longman Group Ltd.spa
dc.relation.referencesVieira, D. A. (2005). MODELING HYDRODYNAMICS, CHANNEL MORPHOLOGY, AND WATER QUALITY USING CCHE1D. US-China Workshop on advanced computational modelling in hydroscience & engineering, (May), 1–13.spa
dc.relation.referencesVillaret, C., Hervouet, J. M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers and Geosciences, 53, 105–113. https://doi.org/10.1016/j.cageo.2011.10.004spa
dc.relation.referencesWarmink, J. . J., & Booij, M. J. (2015). Uncertainty analysis in River Modeling. En P. Rowinski & A. Radecki-Pawlik (Eds.), Rivers–Physical, Fluvial and Environmental Processes (pp. 255–277). https://doi.org/10.1007/978-3-319-17719-9spa
dc.relation.referencesWendt, J. F., Anderson, J. D., Degroote, J., Degrez, G., Dick, E., Grundmann, R., & Vierendeels, J. (2009). Computational fluid dynamics: An introduction. Computational Fluid Dynamics. https://doi.org/10.1007/978-3-540-85056-4spa
dc.relation.referencesWillgoose, G. (2005). SIBERIA. User’s manual.spa
dc.relation.referencesWillgoose, G., Bras, R. L., & Rodriguez-Iturbe, I. (1991). A physically based coupled channel network growth and hillslope evolution model. 1. Theory. Water Resources Research, 27(7), 1671–1684. https://doi.org/10.1029/91WR00936spa
dc.relation.referencesYang, C. T., & SIMÕES, F. J. M. (2008). GSTARS computer models and their applications, part I: theoretical development. International Journal of Sediment Research, 23(3), 197–211. https://doi.org/10.1016/S1001-6279(08)60019-0spa
dc.relation.referencesYará Amaya, F. A. (2019). Estudio hidráulico del meandro del río Magdalena , municipio de La Dorada Caldas. Universidad Nacional de COlombia - Sede Manizales.spa
dc.relation.referencesZerfu, T., Beevers, L., Crosato, A., & Wright, N. (2015). Variable input parameter influence on river corridor prediction. Proceedings of the Institution of Civil Engineers: Water Management, 168(5), 199–209. https://doi.org/10.1680/wama.13.00114spa
dc.relation.referencesZhao, J., Li, B., & Huang, L. (2014). Study on the cell size in the simulation of a cellular automaton model for hillslope rill erosion. Journal of Chemical and Pharmaceutical Research, 6(6), 1615–1619.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcComputación aplicadaspa
dc.subject.ddcGeomorfología fluvial computacionalspa
dc.subject.proposalAutómata celularspa
dc.subject.proposalCellular automatoneng
dc.subject.proposalGeomorfología fluvialspa
dc.subject.proposalMeandereng
dc.subject.proposalSimulationeng
dc.subject.proposalMeandrospa
dc.subject.proposalRiver geomorphologyeng
dc.subject.proposalSimulaciónspa
dc.titleDesarrollo de una herramienta computacional que permita simular la dinámica geomorfológica de un meandro a la luz de la geología. Aplicación a la curva el Conejo en La Dorada (Caldas)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79313993.2020.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: