Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos

dc.contributor.advisorÁvila Álvarez, Guillermo Eduardo
dc.contributor.authorTorres Peña, Miguel Ángel
dc.date.accessioned2022-02-02T13:29:58Z
dc.date.available2022-02-02T13:29:58Z
dc.date.issued2021
dc.descriptiontablasspa
dc.descriptionIlustracionesspa
dc.descriptionfotografías a color, gráficasspa
dc.description.abstractEl uso de geoceldas sobre suelos blandos se ha estado expandiendo al observar los beneficios enfocados en la mejora de capacidad portante, reducción de asentamientos, mejoramiento del módulo elástico del material y mejoramiento de la resistencia. En este trabajo se evalúa, mediante modelos experimentales y modelos numéricos en elementos finitos, el comportamiento del uso de una geocelda fabricada en polietileno de alta densidad (HDPE) en una capa de material granular sobre un suelo blando, se realizaron una serie de pruebas de carga de placa en modelos experimentales de laboratorio. El suelo blando de la cimentación se simuló utilizando arcilla y bloques de poliestireno expandido (EPS) de diferentes densidades. Se elaboraron modelos numéricos por el método de los elementos finitos utilizando el software PLAXIS 2D, los modelos numéricos se calibraron con los datos obtenidos en los ensayos de laboratorio. El uso de la geocelda mostró mejoras en la rigidez y la resistencia en todos los modelos experimentales que incluyeron geocelda. Los resultados mostraron que la capacidad de carga del sistema con geocelda se incrementó de 1.45 a 2.45 veces la capacidad de carga del sistema sin geocelda. El módulo de elasticidad de la capa de material granular con geocelda mejoró entre 1.25 a 2.8 veces el módulo de la capa de material granular sin geocelda. El aporte de la geocelda se da en mayor proporción sobre subrasantes más blandas. (Texto tomado de la fuente)spa
dc.description.abstractThe use of geocells on soft soils has been expanding due to the benefits focused on the improvement of bearing capacity, reduction of settlements, improvement of the elastic modulus of the material and improvement of strength. In this work, the behavior of the use of a geocell made of high-density polyethylene (HDPE) in a layer of granular material on a soft soil is evaluated by means of experimental and finite element numerical models. A series of plate load tests were carried out on experimental laboratory models. The soft foundation soil was simulated using clay and expanded polystyrene (EPS) blocks of different densities. Numerical models were developed by the finite element method using PLAXIS 2D software, the numerical models were calibrated with data obtained from laboratory tests. The use of geocell showed improvements in stiffness and strength in all experimental models that included geocell. The results showed that the bearing capacity of the system with geocell increased from 1.45 to 2.45 times the bearing capacity of the system without geocell. The modulus of elasticity of the granular material layer with geocell improved by 1.25 to 2.8 times the modulus of the granular material layer without geocell. The contribution of the geocell is greater on softer subgrades.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afinesspa
dc.format.extentxix, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80850
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAri, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.006spa
dc.relation.referencesASTM International. (2007). ASTM D6817-07 Standard Specification for Cellular Polystyrene Geofoam.spa
dc.relation.referencesASTM International. (2015). ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.spa
dc.relation.referencesAvesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo, São Carlos]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655spa
dc.relation.referencesAvesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007spa
dc.relation.referencesAvesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2015). Evaluation of bearing capacity calculation methods of geocell-reinforced soil. From Fundamentals To Applications in Geotechnics, December, 1512–1519. https://doi.org/10.3233/978-1-61499-603-3-1512spa
dc.relation.referencesBC-Noticias. (2019). Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar. https://www.bcnoticias.com.co/colombia-entierra-anualmente-2-billones-de-pesos-en-plasticos-que-se-pueden-reciclar/spa
dc.relation.referencesBenson, C. H., Tanyu, B. F., Edil, T. B., Aydilek, A. H., & Lau, A. W. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International. https://doi.org/10.1680/gein.13.00001spa
dc.relation.referencesBiswas, A., Murali Krishna, A., & Dash, S. K. (2013). Influence of subgrade strength on the performance of geocell-reinforced foundation systems. Geosynthetics International. https://doi.org/10.1680/gein.13.00025spa
dc.relation.referencesBiswas, Arghadeep, & Krishna, A. M. (2017a). Behaviour of geocell–geogrid reinforced foundations on clay subgrades of varying strengths. International Journal of Physical Modelling in Geotechnics. https://doi.org/10.1680/jphmg.17.00013spa
dc.relation.referencesBiswas, Arghadeep, & Krishna, A. M. (2017b). Geocell-Reinforced Foundation Systems: A Critical Review. International Journal of Geosynthetics and Ground Engineering, 3(2), 17. https://doi.org/10.1007/s40891-017-0093-7spa
dc.relation.referencesBiswas, Arghadeep, & Murali Krishna, A. (2019). Behaviour of circular footing resting on layered foundation: sand overlying clay of varying strengths. International Journal of Geotechnical Engineering, 13(1), 9–24. https://doi.org/10.1080/19386362.2017.1314242spa
dc.relation.referencesBowles. (1996). Foundation analysis and design (5th ed., pp. 286–289). McGraw-Hill.spa
dc.relation.referencesDash, S. (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235–256. https://doi.org/10.1016/S0266-1144(01)00006-1spa
dc.relation.referencesDash, Sujit Kumar, Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197–219. https://doi.org/10.1016/S0266-1144(03)00017-7spa
dc.relation.referencesDash, Sujit Kumar, Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell-reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/t07-035spa
dc.relation.referencesDash, S. K., Reddy, P. D. T., & Raghukanth, S. T. G. (2008). Subgrade modulus of geocell-reinforced sand foundations. Http://Dx.Doi.Org/10.1680/Grim.2008.161.2.79, 161(2), 79–87. https://doi.org/10.1680/GRIM.2008.161.2.79spa
dc.relation.referencesDash, Sujit Kumar. (2010). Influence of Relative Density of Soil on Performance of Geocell-Reinforced Sand Foundations. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(asce)mt.1943-5533.0000040spa
dc.relation.referencesDash, Sujit Kumar. (2012). Effect of Geocell Type on Load-Carrying Mechanisms of Geocell-Reinforced Sand Foundations. International Journal of Geomechanics, 12(5), 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162spa
dc.relation.referencesEmersleben, A., & Meyer, N. (2008). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545.spa
dc.relation.referencesGedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1), 1–18. https://doi.org/10.1007/s40891-020-00249-4spa
dc.relation.referencesGeosynthetic Institute. (2016). GRI -GS15 Standard Specification: Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. https://geosynthetic-institute.org/grispecs/gs15.pdfspa
dc.relation.referencesHan, Jie, Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of Geocell-Reinforced Sand under a Vertical Load: Https://Doi.Org/10.3141/2045-11, 2045, 95–101. https://doi.org/10.3141/2045-11spa
dc.relation.referencesHan, J, Pokharel, S. K., & Parsons, R. L. (2010). Effect of infill material on the performance of geocell-reinforced bases. 9th International Conference on Geosynthetics, Brazil, 2010.spa
dc.relation.referencesHegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. In Construction and Building Materials (Vol. 154, pp. 658–674). https://doi.org/10.1016/j.conbuildmat.2017.07.230spa
dc.relation.referencesHegde, A., & Sitharam, T. G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043spa
dc.relation.referencesHegde, A., & Sitharam, T. G. (2015). 3-Dimensional numerical modelling of geocell reinforced sand beds. Geotextiles and Geomembranes, 43(2), 171–181. https://doi.org/10.1016/J.GEOTEXMEM.2014.11.009spa
dc.relation.referencesHegde, A. M., & Sitharam, T. G. (2015). Effect of infill materials on the performance of geocell reinforced soft clay beds. Geomechanics and Geoengineering, 10(3), 163–173. https://doi.org/10.1080/17486025.2014.921334spa
dc.relation.referencesIDU. (2011). Especificaciones técnicas generales Sección 330-11 Separación de suelos de subrasante y capas granulares con geotextil.spa
dc.relation.referencesINVIAS. (2013). Especificaciones Generales de Construcción de Carreteras Artículo 231 Separación de suelos de subrasante y capas granulares con geotextil.spa
dc.relation.referencesISO. (2019). ISO 13426-1 Geotextiles and geotextile-related products — Strength of internal structural junctions — Part 1: Geocells.spa
dc.relation.referencesKargar, M., & Mir Mohammad Hosseini, S. M. (2018). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2016.1214181spa
dc.relation.referencesKief, O., Schary, Y., & Pokharel, S. K. (2015). High-Modulus Geocells for Sustainable Highway Infrastructure. Indian Geotechnical Journal, 45(4), 389–400. https://doi.org/10.1007/s40098-014-0129-zspa
dc.relation.referencesKumawat, N. K., & Tiwari, S. K. (2017). Bearing capacity of square footing on geocell reinforced fly ash beds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2017.06.422spa
dc.relation.referencesMendoza Rojas, G. A. (2020). Evaluación del comportamiento mecánico de un sistema modular compuesto por materiales reciclados para uso en pavimentos de vías terciarias. 155.spa
dc.relation.referencesPokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2017.03.007spa
dc.relation.referencesPokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2010.06.002spa
dc.relation.referencesSanjei, C., & De Silva, L. I. N. (2016). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCON.2016.7480142spa
dc.relation.referencesShin, E. C., Kang, H. H., & Park, J. J. (2017). Reinforcement efficiency of bearing capacity with geocell shape and filling materials. KSCE Journal of Civil Engineering, 21(5), 1648–1656. https://doi.org/10.1007/s12205-016-1649-0spa
dc.relation.referencesSitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal. https://doi.org/10.1139/t04-117spa
dc.relation.referencesThakur, J. K., Han, J., & Parsons, R. L. (2017). Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading. Journal of Materials in Civil Engineering, 29(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760spa
dc.relation.referencesThallak, S. G., Saride, S., & Dash, S. K. (2007). Performance of surface footing on geocell-reinforced soft clay beds. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-007-9125-8spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalGeoceldasspa
dc.subject.proposalHDPEspa
dc.subject.proposalPoliestireno expandido (EPS)spa
dc.subject.proposalSuelos blandosspa
dc.subject.proposalcapacidad portantespa
dc.subject.proposalModelo experimentalspa
dc.titleEvaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandosspa
dc.title.translatedExperimental evaluation of the stress dissipation effect produced by geocells on soft soilseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053341438.2021.pdf
Tamaño:
7.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: