Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
dc.contributor.advisor | Ávila Álvarez, Guillermo Eduardo | |
dc.contributor.author | Torres Peña, Miguel Ángel | |
dc.date.accessioned | 2022-02-02T13:29:58Z | |
dc.date.available | 2022-02-02T13:29:58Z | |
dc.date.issued | 2021 | |
dc.description | tablas | spa |
dc.description | Ilustraciones | spa |
dc.description | fotografías a color, gráficas | spa |
dc.description.abstract | El uso de geoceldas sobre suelos blandos se ha estado expandiendo al observar los beneficios enfocados en la mejora de capacidad portante, reducción de asentamientos, mejoramiento del módulo elástico del material y mejoramiento de la resistencia. En este trabajo se evalúa, mediante modelos experimentales y modelos numéricos en elementos finitos, el comportamiento del uso de una geocelda fabricada en polietileno de alta densidad (HDPE) en una capa de material granular sobre un suelo blando, se realizaron una serie de pruebas de carga de placa en modelos experimentales de laboratorio. El suelo blando de la cimentación se simuló utilizando arcilla y bloques de poliestireno expandido (EPS) de diferentes densidades. Se elaboraron modelos numéricos por el método de los elementos finitos utilizando el software PLAXIS 2D, los modelos numéricos se calibraron con los datos obtenidos en los ensayos de laboratorio. El uso de la geocelda mostró mejoras en la rigidez y la resistencia en todos los modelos experimentales que incluyeron geocelda. Los resultados mostraron que la capacidad de carga del sistema con geocelda se incrementó de 1.45 a 2.45 veces la capacidad de carga del sistema sin geocelda. El módulo de elasticidad de la capa de material granular con geocelda mejoró entre 1.25 a 2.8 veces el módulo de la capa de material granular sin geocelda. El aporte de la geocelda se da en mayor proporción sobre subrasantes más blandas. (Texto tomado de la fuente) | spa |
dc.description.abstract | The use of geocells on soft soils has been expanding due to the benefits focused on the improvement of bearing capacity, reduction of settlements, improvement of the elastic modulus of the material and improvement of strength. In this work, the behavior of the use of a geocell made of high-density polyethylene (HDPE) in a layer of granular material on a soft soil is evaluated by means of experimental and finite element numerical models. A series of plate load tests were carried out on experimental laboratory models. The soft foundation soil was simulated using clay and expanded polystyrene (EPS) blocks of different densities. Numerical models were developed by the finite element method using PLAXIS 2D software, the numerical models were calibrated with data obtained from laboratory tests. The use of geocell showed improvements in stiffness and strength in all experimental models that included geocell. The results showed that the bearing capacity of the system with geocell increased from 1.45 to 2.45 times the bearing capacity of the system without geocell. The modulus of elasticity of the granular material layer with geocell improved by 1.25 to 2.8 times the modulus of the granular material layer without geocell. The contribution of the geocell is greater on softer subgrades. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Relaciones constitutivas de suelos, rocas y materiales afines | spa |
dc.format.extent | xix, 133 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80850 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Ari, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.006 | spa |
dc.relation.references | ASTM International. (2007). ASTM D6817-07 Standard Specification for Cellular Polystyrene Geofoam. | spa |
dc.relation.references | ASTM International. (2015). ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes. | spa |
dc.relation.references | Avesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo, São Carlos]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655 | spa |
dc.relation.references | Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007 | spa |
dc.relation.references | Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2015). Evaluation of bearing capacity calculation methods of geocell-reinforced soil. From Fundamentals To Applications in Geotechnics, December, 1512–1519. https://doi.org/10.3233/978-1-61499-603-3-1512 | spa |
dc.relation.references | BC-Noticias. (2019). Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar. https://www.bcnoticias.com.co/colombia-entierra-anualmente-2-billones-de-pesos-en-plasticos-que-se-pueden-reciclar/ | spa |
dc.relation.references | Benson, C. H., Tanyu, B. F., Edil, T. B., Aydilek, A. H., & Lau, A. W. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International. https://doi.org/10.1680/gein.13.00001 | spa |
dc.relation.references | Biswas, A., Murali Krishna, A., & Dash, S. K. (2013). Influence of subgrade strength on the performance of geocell-reinforced foundation systems. Geosynthetics International. https://doi.org/10.1680/gein.13.00025 | spa |
dc.relation.references | Biswas, Arghadeep, & Krishna, A. M. (2017a). Behaviour of geocell–geogrid reinforced foundations on clay subgrades of varying strengths. International Journal of Physical Modelling in Geotechnics. https://doi.org/10.1680/jphmg.17.00013 | spa |
dc.relation.references | Biswas, Arghadeep, & Krishna, A. M. (2017b). Geocell-Reinforced Foundation Systems: A Critical Review. International Journal of Geosynthetics and Ground Engineering, 3(2), 17. https://doi.org/10.1007/s40891-017-0093-7 | spa |
dc.relation.references | Biswas, Arghadeep, & Murali Krishna, A. (2019). Behaviour of circular footing resting on layered foundation: sand overlying clay of varying strengths. International Journal of Geotechnical Engineering, 13(1), 9–24. https://doi.org/10.1080/19386362.2017.1314242 | spa |
dc.relation.references | Bowles. (1996). Foundation analysis and design (5th ed., pp. 286–289). McGraw-Hill. | spa |
dc.relation.references | Dash, S. (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235–256. https://doi.org/10.1016/S0266-1144(01)00006-1 | spa |
dc.relation.references | Dash, Sujit Kumar, Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197–219. https://doi.org/10.1016/S0266-1144(03)00017-7 | spa |
dc.relation.references | Dash, Sujit Kumar, Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell-reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/t07-035 | spa |
dc.relation.references | Dash, S. K., Reddy, P. D. T., & Raghukanth, S. T. G. (2008). Subgrade modulus of geocell-reinforced sand foundations. Http://Dx.Doi.Org/10.1680/Grim.2008.161.2.79, 161(2), 79–87. https://doi.org/10.1680/GRIM.2008.161.2.79 | spa |
dc.relation.references | Dash, Sujit Kumar. (2010). Influence of Relative Density of Soil on Performance of Geocell-Reinforced Sand Foundations. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(asce)mt.1943-5533.0000040 | spa |
dc.relation.references | Dash, Sujit Kumar. (2012). Effect of Geocell Type on Load-Carrying Mechanisms of Geocell-Reinforced Sand Foundations. International Journal of Geomechanics, 12(5), 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162 | spa |
dc.relation.references | Emersleben, A., & Meyer, N. (2008). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545. | spa |
dc.relation.references | Gedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1), 1–18. https://doi.org/10.1007/s40891-020-00249-4 | spa |
dc.relation.references | Geosynthetic Institute. (2016). GRI -GS15 Standard Specification: Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. https://geosynthetic-institute.org/grispecs/gs15.pdf | spa |
dc.relation.references | Han, Jie, Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of Geocell-Reinforced Sand under a Vertical Load: Https://Doi.Org/10.3141/2045-11, 2045, 95–101. https://doi.org/10.3141/2045-11 | spa |
dc.relation.references | Han, J, Pokharel, S. K., & Parsons, R. L. (2010). Effect of infill material on the performance of geocell-reinforced bases. 9th International Conference on Geosynthetics, Brazil, 2010. | spa |
dc.relation.references | Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. In Construction and Building Materials (Vol. 154, pp. 658–674). https://doi.org/10.1016/j.conbuildmat.2017.07.230 | spa |
dc.relation.references | Hegde, A., & Sitharam, T. G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043 | spa |
dc.relation.references | Hegde, A., & Sitharam, T. G. (2015). 3-Dimensional numerical modelling of geocell reinforced sand beds. Geotextiles and Geomembranes, 43(2), 171–181. https://doi.org/10.1016/J.GEOTEXMEM.2014.11.009 | spa |
dc.relation.references | Hegde, A. M., & Sitharam, T. G. (2015). Effect of infill materials on the performance of geocell reinforced soft clay beds. Geomechanics and Geoengineering, 10(3), 163–173. https://doi.org/10.1080/17486025.2014.921334 | spa |
dc.relation.references | IDU. (2011). Especificaciones técnicas generales Sección 330-11 Separación de suelos de subrasante y capas granulares con geotextil. | spa |
dc.relation.references | INVIAS. (2013). Especificaciones Generales de Construcción de Carreteras Artículo 231 Separación de suelos de subrasante y capas granulares con geotextil. | spa |
dc.relation.references | ISO. (2019). ISO 13426-1 Geotextiles and geotextile-related products — Strength of internal structural junctions — Part 1: Geocells. | spa |
dc.relation.references | Kargar, M., & Mir Mohammad Hosseini, S. M. (2018). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2016.1214181 | spa |
dc.relation.references | Kief, O., Schary, Y., & Pokharel, S. K. (2015). High-Modulus Geocells for Sustainable Highway Infrastructure. Indian Geotechnical Journal, 45(4), 389–400. https://doi.org/10.1007/s40098-014-0129-z | spa |
dc.relation.references | Kumawat, N. K., & Tiwari, S. K. (2017). Bearing capacity of square footing on geocell reinforced fly ash beds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2017.06.422 | spa |
dc.relation.references | Mendoza Rojas, G. A. (2020). Evaluación del comportamiento mecánico de un sistema modular compuesto por materiales reciclados para uso en pavimentos de vías terciarias. 155. | spa |
dc.relation.references | Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2017.03.007 | spa |
dc.relation.references | Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2010.06.002 | spa |
dc.relation.references | Sanjei, C., & De Silva, L. I. N. (2016). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCON.2016.7480142 | spa |
dc.relation.references | Shin, E. C., Kang, H. H., & Park, J. J. (2017). Reinforcement efficiency of bearing capacity with geocell shape and filling materials. KSCE Journal of Civil Engineering, 21(5), 1648–1656. https://doi.org/10.1007/s12205-016-1649-0 | spa |
dc.relation.references | Sitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal. https://doi.org/10.1139/t04-117 | spa |
dc.relation.references | Thakur, J. K., Han, J., & Parsons, R. L. (2017). Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading. Journal of Materials in Civil Engineering, 29(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760 | spa |
dc.relation.references | Thallak, S. G., Saride, S., & Dash, S. K. (2007). Performance of surface footing on geocell-reinforced soft clay beds. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-007-9125-8 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.proposal | Geoceldas | spa |
dc.subject.proposal | HDPE | spa |
dc.subject.proposal | Poliestireno expandido (EPS) | spa |
dc.subject.proposal | Suelos blandos | spa |
dc.subject.proposal | capacidad portante | spa |
dc.subject.proposal | Modelo experimental | spa |
dc.title | Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos | spa |
dc.title.translated | Experimental evaluation of the stress dissipation effect produced by geocells on soft soils | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053341438.2021.pdf
- Tamaño:
- 7.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: